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Abstract: The spectrum allocation for cognitive radio sensor networks (CRSNs) has received
considerable research attention under the assumption that the spectrum environment is static.
However, in practice, the spectrum environment varies over time due to primary user/secondary
user (PU/SU) activity and mobility, resulting in time-varied spectrum resources. This paper studies
resource allocation for chunk-based multi-carrier CRSNs with time-varied spectrum resources.
We present a novel opportunistic capacity model through a continuous time semi-Markov chain
(CTSMC) to describe the time-varied spectrum resources of chunks and, based on this, a joint power
and chunk allocation model by considering the opportunistically available capacity of chunks is
proposed. To reduce the computational complexity, we split this model into two sub-problems
and solve them via the Lagrangian dual method. Simulation results illustrate that the proposed
opportunistic capacity-based resource allocation algorithm can achieve better performance compared
with traditional algorithms when the spectrum environment is time-varied.

Keywords: cognitive radio sensor networks; spectrum holes; resource allocation; opportunity capacity

1. Introduction

A wireless sensor network (WSN) is a wireless network that consists of a large number of
sensor nodes that can be applied to environmental monitoring, invasion detection, disaster aid and
various other fields [1,2]. Current WSNs operate in the industrial, scientific and medical (ISM) band,
which is shared by many other successful communication technologies. With emerging broadband
applications of wireless communications, the radio spectrum resources for WSNs in the ISM band
are currently suffering from serious shortages, which degrades the performance of the WSNs [3].
This frequency band problem is exacerbated because radio spectrum is becoming an increasingly
important and scarce resource in wireless communication systems. However, because of the current
fixed spectrum assignment policy, the spectrum utilization efficiency in the licensed spectrum is very
low, which generates many non-continuous vacant frequency bands, referred to as spectrum holes [4,5].
To overcome the spectrum resource limitation experienced by current WSNs and improve the spectrum
utilization, cognitive radio (CR), which allows secondary users (SUs) to opportunistically utilize the
frequency spectrum originally assigned to licensed primary users (PUs), has been used in WSNs as
a promising approach to alleviate spectrum scarcity [6–8]. A WSN in which the sensor nodes are
equipped with cognitive radios is called a cognitive radio sensor network (CRSN) [9–11]. CRSNs are a
candidate area in which cognitive techniques can be used to provide opportunistic spectrum access.

In CRSNs, resource allocation is an important and challenging task that aims to assign discrete
spectrum resources to achieve efficient frequency utilization and maximize the capacity. In the
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existing literature, considerable achievements have been made for resource allocation in CRSNs by
applying methods from game theory [12,13], graph theory [14,15] and linear programming [16–18].
These studies laid the foundation for the researches of resource allocation, but few of them consider
the dynamic available capacity of spectrum resources. Recently, the dynamic available capacity of
spectrum resources have received considerable attention from academia, which has focused mainly
on the time-varied available resources of the sub-carrier, also known as opportunistic capacity [19].
In [20], the authors modeled the PU activity in a sub-carrier as a semi-Markov ON/OFF process using
varying distributions of holding times (ON and OFF states) and studied the impact of activity model
parameters on spectrum efficiency. Subsequently, [21] studied the PU and SU activity and modeled
the busy/idle times in a sub-carrier using two-state Markov chains. In [22], the authors modeled the
PUs as independent M/G/1 queues with Poisson packet arrival rates and investigated the channel
access problem by deriving the probabilities of collisions vs. successful transmissions for the PUs
and SUs. In summary, most existing works focus more on the opportunistic capacity of a single
sub-carrier. However, in practice, a set of contiguous sub-carriers is often grouped into one chunk
and then allocated in a chunk-by-chunk manner to users for simplification, because the number of
sub-carriers is very large in a multi-carrier communication system [23–27]. Similar to the time-varied
available resources of a single sub-carrier, the available resources of chunks are also time-varied in
chunk-based multi-carrier CRSNs. Therefore, exploring a resource allocation algorithm by considering
the opportunistic capacity of chunks is necessary for chunk-based multi-carrier CRSNs. Achieving
such resource allocation will reduce spectrum collisions and greatly improve spectrum efficiency.
To the best of our knowledge, resource allocation in chunk-based multi-carrier CRSNs by considering
opportunistic capacity of chunks has not been studied in previous works.

This paper studies the resource allocation for chunk-based multi-carrier CRSNs where the
available spectrum resources are time-varied due to PU/SU activity and mobility. We present a
novel opportunistic capacity model through continuous time semi-Markov chain (CTSMC) to describe
the time-varied spectrum resources of chunks. This model is different from existing studies that focus
primarily on the opportunistic capacity of a single sub-carrier. Using our method, a joint power and
chunk allocation model based on the opportunistic capacity of chunks is established for chunk-based
multi-carrier CRSNs with time-varied spectrum resources. To reduce the computational complexity, we
split this model into two sub-problems and solve them using the Lagrangian dual method. Simulation
results illustrate that the proposed opportunistic capacity-based resource allocation can achieve better
performance compared with traditional algorithms when the spectrum environment is time-varied.

The remainder of this paper is organized as follows. The system model is described in Section 2.
Section 3 presents the opportunistic capacity model for chunks. In Section 4, the resource allocation
algorithm based on the opportunistic capacity of chunks is proposed. Numerical results are provided in
Section 5 to demonstrate the advantages of the proposed scheme. We conclude this paper in Section 6.

2. System Model

In this work, we consider chunk-based multi-carrier CRSNs, where a set of sensor nodes are
communicating with a centralized secondary user sink (SU sink) that is either the cluster head or a
secondary base station. Because the sensor nodes communicate using the frequency band licensed
to the PU, we call these secondary sensor nodes SUs. The CRSNs we consider are shown in Figure 1,
which includes PUs, SUs, PUs’ base stations and an SU sink. In this system, the SUs adopt a centralized
chunk-based resource allocation scheme and opportunistically utilize the holes in the spectrum through
spectrum sensing [28]. In the spectrum sensing phase, SUs periodically detect information concerning
the local frequency spectrum and send it to the SU sink. Then, the SU sink summarizes all the detection
information sent by the SUs to find the spectrum holes and divide them into chunks, the minimum
units for allocation. It allocates spectrum to SUs in a chunk-by-chunk manner by considering the
different needs of SUs. We assume that the spectrum environment is time-varied due to PU/SU activity
and mobility, which will lead to frequent busy/idle changes in each sub-carrier and a time-varied
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number of idle sub-carriers in the chunk. These time-varied spectrum resources make resource
allocation quite difficult. To address this issue, we formulate an opportunistic capacity model for
chunks that describes the time-varied spectrum resources. Then, based on this, we propose a joint
power and chunk allocation algorithm for chunk-based multi-carrier CRSNs.
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3. Opportunistic Capacity Model for Chunks

In this section, the time-varied spectrum resources of chunks have been formulated
mathematically. Each chunk is assumed to have n sub-carriers that support a certain frequency
range. Due to the time-varied spectrum environment, each sub-carrier can be in one of two states,
busy or idle, and the number of idle sub-carriers in each chunk changes over time. We consider the
number of available idle sub-carriers in a chunk as the chunk state; then, based on the properties of
the state transition model, we can derive the opportunistic capacity for the chunk. We assume the
number of idle sub-carriers in a chunk at a certain time t is X(t) = Si = i, (0 ≤ i ≤ n), which also
represents the instantaneous available capacity in the chunk at time t. Because i sub-carriers are not
being used by the PUs in state Si, Si is decremented to Si−1 if a PU transmission arrives at any of these
sub-carriers. In contrast, Si can be incremented to Si+1 if one of the n− i PUs in service completes its
transmission and releases the sub-carrier. Based on this, a chunk can transition between states only
during PU arrivals or departures in the chunk. This state transition model can be described by the
embedded Markov method, whose expectation of the number of idle sub-carriers in a chunk is that
chunk’s opportunistic capacity.

The state transition model for the number of idle sub-carriers in a chunk is depicted in Figure 2.
The state space S = {S0, S1 . . . , Sn} consists of the state Si = i where 0 ≤ i ≤ n, which denotes that the
number of idle sub-carriers in the chunk is i. Pi,i−1 denotes the transition probability that a PU arrival
in any of i idle sub-carriers in state Si, while Pi,i+1 represents the transition probability that one of the
n− i PUs in a busy sub-carrier completes its service and releases the sub-carrier. We can assume that
the holding time of the PUs in each sub-carrier follows an exponential distribution with expectation 1

λ

and that the idle time in each sub-carrier follows a Pareto distribution Pa(a, tm) because [29] analyzed
real-world empirical data and concluded that a Pareto distribution function can easily describe the idle
time for all the considered bands at long timescales. The memory property of the Pareto distribution
transmits the state transition model into a CTSMC model, which makes it quite complicated, because
the remaining idle time of the idle period at a given idle time, t, is related to the past idle time for
each sub-carrier. These kinds of CTSMC models do not have a general solution at present. Thus, to
reduce the complexity, we tackle this issue by approximating the probability density function (PDF)
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of the remaining idle time of the idle period in the sub-carrier. According to the method in [30], the
cumulative distribution function (CDF) of the remaining idle time t can be approximated as follows:

Ge(t) =

t∫
0
[1− G(u)]du

E[G(t)]
, (1)

where G(t) indicates the CDF of the idle period in the sub-carrier, and E[G(t)] denotes the expectation
of the idle period. Substituting the Pareto distribution Pa(a, tm) into Equation (1) yields

Ge(t) =

{
a−1

a + 1
a (1−

tm
a−1

ta−1 ) t > tm
(a−1)t

atm
t < tm

. (2)

Now Ge(t) can denote the CDF of the remaining idle time t, and the PDF of the remaining idle
time can be given as follows:

ge(t) =

{
(a−1)tm

a−1

ata t > tm
a−1
atm

t < tm
. (3)

Therefore, the expectation of the remaining idle time can be achieved by calculating

E[Ge(t)] =
+∞∫
0

tg(t)dt =
tm∫

0

a− 1
atm

tdt+
+∞∫
tm

(a− 1)tm
a−1

ata−1 dt =
(a− 1)tm

2(a− 2)
. (4)

Then, the transition rate of the idle sub-carrier, which is the reciprocal of the remaining idle time,
can be approximated by

ν =
2(a− 2)
(a− 1)tm

. (5)

Based on the memorylessness property of exponential distribution, the transition rate of the busy
sub-carrier is λ. Therefore, Pi,i+1 and Pi,i−1 in state Si can be expressed as follows:

Pi,i+1 =
λtm(a− 1)(n− i)

λtm(a− 1)(n− i) + 2i(a− 2)
, (6)

and

Pi,i−1 =
2i(a− 2)

λtm(a− 1)(n− i) + 2i(a− 2)
. (7)

Then, the state transition matrix P can be given:

P =



0 1 0
P1,0 0 P1,2 0

. . . . . . . . .
Pi,i−1 0 Pi,i+1

. . . . . . . . .
1 0


. (8)

Therefore, the stationary probability π = (π1, π2, . . . , πn), which represents the proportion
of transitions that take the process into state Si, (0 ≤ i ≤ n) can be obtained by solving the
following equations:

πP = π, (9)



Sensors 2017, 17, 175 5 of 15

and
n

∑
i=0

πi = 1. (10)

Subsequently, according to [31], the limiting probability Pi, which represents the proportion of
time that the process is in state Si, can be calculated by

Pi =
πiµi

n
∑

j=1
πjµj

, (11)

where µi is the expectation of residence time in state Si during each visit. Because the end of state Si
can occur only at times of PU arrival and PU departure in the chunk, µi can be written as

µi = pi,i+1E[hi,i+1(t)] + pi,i−1E[hi,i−1(t)], (12)

where hi,i+1(t) and hi,i−1(t) are the PDFs of residence times in state Si before transition to the states
Si+1 and Si−1, respectively, and E[hi,i+1(t)] and E[hi,i−1(t)] represent the expectations of residence time
in state Si before transition to the states Si+1 and Si−1, respectively. The residence time in state Si before
transition to state Si−1 can be expressed by the minimum remaining idle time of i idle sub-carriers,
because transition can occur only at the time that a PU arrives at one of the idle sub-carriers. Assume
that the remaining idle time of each idle sub-carrier be a random variable. Then hi,i−1(t) can be given
as the PDF of the minimum order statistic of i random variables. Similarly, hi,i+1(t) can be given as
the PDF of the minimum order statistic of n− i random variables, representing the remaining busy
time of busy sub-carriers. According to the minimum order statistic [32], hi,i+1(t) and hi,i−1(t) can be
written as

hi,i−1(t) =

{
i(a−1)tm

i(a−1)

aiti(a−1)+1 t > tm

iq[1− qt]i−1 t ≤ tm
, (13)

and
hi,i+1(t) = (n− i)λe−λ(n−i)t, (14)

respectively, where q = a−1
atm

. Then, E[hi,i+1(t)] and E[hi,i−1(t)] can be obtained as follows:

E[hi,i−1(t)] =
tm∫
0

iqt[1− qt]i−1dt +
+∞∫
tm

i(a−1)tm
i(a−1)

aiti(a−1) dt

= iq
tm∫
0

t
i

∑
k=0

i!(−q)ktk

(i−k)!k! dt + i(a−1)tm
i(a−1)

ai

+∞∫
tm

1
ti(a−1) dt

= iq
i

∑
k=0

i!(−q)ktm
k+2

(i−k)!k!(k+2) +
i(a−1)tm

ai(ia−i−1)

, (15)

E[hi,i+1(t)] =
+∞∫
0

(n− i)λe−λ(n−i)tdt =
1

λ(n− i)
. (16)

Substituting Equations (6), (7), (15) and (16) into Equation (12) yields

µi =

(a− 1){atm + 2i2(a− 2)[
i

∑
k=0

i!(−q)ktm
k+1

(i−k)!k!(k+2) +
i(a−1)

ai(ia−i−1) ]}

a[λtm(a− 1)(n− i) + 2i(a− 2)]
. (17)
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By bringing µi and πi into Equation (11), the result is

Pi =

πi(a−1){atm+2i2(a−2)[
i

∑
k=0

k!(−q)ktmk+1

(i−k)!k!(k+2) +
i(a−1)

ai(ia−i−1)
]}

a[λtm(a−1)(n−i)+2i(a−2)]

n
∑

j=1

πj(a−1){atm+2j2(a−2)[
j

∑
k=0

j!(−q)ktmk+1
(j−k)!k!(k+2) +

j(a−1)
aj(ja−j−1)

]}

a[λtm(a−1)(n−j)+2j(a−2)]

. (18)

Based on this, the opportunistic capacity that denotes the expectation of the number of idle
sub-carriers in a chunk can be calculated as follows:

C =
n

∑
i=0

iPi =
n

∑
i=0

iπi(a−1){atm+2i2(a−2)[
i

∑
k=0

k!(−q)ktmk+1

(i−k)!k!(k+2) +
i(a−1)

ai(ia−i−1)
]}

a[λtm(a−1)(n−i)+2i(a−2)]

n
∑

j=1

πj(a−1){atm+2j2(a−2)[
j

∑
k=0

j!(−q)ktmk+1
(j−k)!k!(k+2) +

j(a−1)
aj(ja−j−1)

]}

a[λtm(a−1)(n−j)+2j(a−2)]

. (19)
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4. Opportunistic Capacity-Based Resource Allocation for Chunk-Based Multi-Carrier CRSNs

4.1. Opportunistic Capacity-Based Resource Allocation Model

We assume that the CRSNs consist of m SUs and k idle chunks with total transmit power constraint
PT . Among these, each chunk contains n sub-carriers, and each SU i (i = 1, 2, 3, · · ·, m) can utilize
multiple chunks to ensure that its data rate requirements indicated by Q = {q1, . . . , qm} can be met.
To consider the statistical property of available capacity in the chunk at long timescales, we introduce
C = {c1, . . . , ck} (cj ≤ n, j = 1, 2, 3, · · ·, k) as the opportunistic capacity of chunks and make the total
opportunistic capacity assigned to each SU satisfy that SU’s data rate requirement. This opportunistic
capacity-based resource allocation can reduce spectrum collisions and greatly improve spectrum
efficiency under a time-varied spectrum environment (e.g., allocating chunks with small opportunistic
capacity to SUs that have small data rates demands to make full use of spectrum fragments). The joint
power and chunk allocation model can be transformed into a combinatorial optimization problem to
achieve the maximum transmission rate:

max
m

∑
i=1

k

∑
j=1

cjri,jxi,j, (20)

s.t.
m

∑
i=1

k

∑
j=1

xi,j pi,j ≤ PT , (21)

k

∑
j=1

cjri,jxi,j ≥ qi, (22)
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and
m

∑
i=1

xi,j ≤ 1. (23)

Let xi,j indicate whether chunk j is allocated to SU i. If chunk j is allocated to SU i, xi,j = 1;
otherwise, xi,j = 0. Then, pi,j denotes the transmit power allocated to SU i when SU i transmits on
chunk j, and ri,j represents the data rate per sub-carrier in chunk j for SU i because the channel fading
within the same chunk is assumed to be the same. Constraint (21) ensures that the total transmit power
satisfies the power constraint. Constraint (22) ensures that the total opportunistic capacity assigned
to each SU satisfies SU’s data rate requirement. Let cj,t be the number of idle sub-carriers in chunk j
detected by the SU sink at time t, and let Cj =

{
cj,t−g+1, cj,t−g+2, . . . , cj,t

}
represent the number of idle

sub-carriers in chunk j over the recent g times spectrum-sensing operations. Then, we can determine
the parameter for the opportunistic capacity model by applying the point estimation method [32] to
achieve the opportunistic capacity of chunk j. Moreover, by adopting the adaptive modulation and
coding (AMC) scheme, SUs at different positions can achieve different data rates in the same chunk
due to differences in the environment. According to G. J. Foschini’s inference [33], ri,j can be calculated
as follows:

ri,j = b log2(1 +
γi,j

− 2
3 ln Pb

2

), (24)

where Pb is the maximum tolerable error rate, b denotes the bandwidth of the sub-carrier, and
γi,j = pi,j · Hi,j, which indicates the signal-to-interference plus noise ratio (SINR) when SU i transmits
on chunk j. Here, pi,j and Hi,j represent the transmit power and the channel factor, respectively.

To explore in which case the proposed allocation model can be used, we analyze the feasibility for
it. This analysis also can be used to determine the relationship between the available resources and SUs’
requirements. For the proposed model, the conditions to acquire a feasible solution can be achieved by
using expectation constraint method which mainly used in stochastic programming [34]. Due to the
randomness of channel condition, the data rate per chunk can achieve different values by adopting the
AMC scheme. Thus, we can use random variable to express the data rate of chunks. Based on this,
Equations (22) and (23) can be integrated into an expectation constraint which is as follows

k

∑
j=1

cjrj,avg ≥ Q, (25)

where rj,avg represents the expectation of the data rate for chunk j and Q =
m
∑

i=1
qi. Now we can

get the relationship between the available resources and SUs’ requirements. This can help us to set
model parameters and determine under which condition the feasible solution exists. When the SUs’
requirements are beyond the available resources, Equation (25) cannot be satisfied, and we gradually
reduce the access number of SUs to obtain feasible allocation scheme.

4.2. Simplification and Solution

The joint power and chunk allocation causes the model to become a mixed integer programming
problem, which is hard to solve because the chunk allocation involves 0-1 integer programming and the
power allocation involves non-integer programming. One of the direct solution methods is using the
heuristic algorithm to realize chunk and power allocation for SUs. The heuristic algorithm exhaustively
searches over all possible chunk combinations for SUs and implements power allocation algorithm for
each combination. The computational complexity of this algorithm is very high, because the number
of combinations is very large and each power allocation is a NP-hard problem. For m SUs and k idle
chunks, there exist mk possible combinations. Thus, the heuristic algorithm needs O(mk) operations
which have NP-hard computational complexity. To reduce the computational complexity, we simplify
the model described above by splitting it into two sub-problems. The first step is chunk allocation,
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which allocates a chunk so a particular user can transmit its data over the chunk. Chunk allocation is
based on chunk channel quality, without considering information concerning the transmit power. The
second step is power allocation, which allocates the required transmit power over the allocated chunk.

In the chunk allocation part, we introduce a suboptimal algorithm with low complexity because
the integer programming problem with large numbers of variables is difficult to solve. We assume
the total transmit power is assigned equally to each chunk with the average power pv and allocate
a chunk to a particular SU with the best channel quality to achieve the maximum transmission rate.
This procedure is shown in Figure 3. The proposed chunk allocation needs O(kmlogm) operations.
After that, the power allocation algorithm only needs to be implemented once. Thus, it has lower
computational complexity than the heuristic algorithm.
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After all chunks have been allocated, the original objective in Equation (20) leads to power
allocation for all chunks based on the previous chunk allocation result. Denoting the chunk allocation
result as X =

{
x1,1, . . . , x1,k, . . . , xm,k

}
, the optimization problem can be solved by using the Lagrangian

dual method [35,36]. For Equation (20), consider the following Lagrangian function:

L(P, λ, µ) =
m

∑
i=1

k

∑
j=1

cjri,jxi,j + λ(PT −
m

∑
i=1

k

∑
j=1

pi,jxi,j) +
m

∑
i=1

µi(
k

∑
j=1

cjri,jxi,j − qi), (26)

where P = [p1,1, . . . , pm,k]
T ≥ 0. λ ≥ 0 and µ = [µ1, . . . , µm]

T ≥ 0 are the Lagrange multipliers for
Constraints (21) and (22), respectively. The Lagrangian dual objective function is

θ(λ, µ) = max
λ,µ≥0

L(P, λ, µ). (27)
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Hence, the Lagrange dual problem can be obtained as follows

minθ(λ, µ) = minmax
λ,µ≥0

L(P, λ, µ). (28)

The derivative of L(P, λ, µ) is

∂L
∂pi,j

= cjxi,j
dri,j

dpi,j
− λxi,j + µicjxi,j

dri,j

dpi,j
, (29)

where
dri,j
dpi,j

can be obtained by differentiating Equation (24) with pi,j.

dri,j

dpi,j
=

bHi,j

(− 2
3 ln Pb

2 + pi,j Hi,j) ln 2
. (30)

Substituting Equation (30) into Equation (29) yields

∂L
∂pi,j

=
cjbHi,jxi,j

(− 2
3 ln Pb

2 + pi,j Hi,j) ln 2
− λxi,j +

µicjbHi,jxi,j

(− 2
3 ln Pb

2 + pi,j Hi,j) ln 2
. (31)

Thus, the solution for the optimal power allocation based on the chunk allocation result can be
derived by setting ∂L

∂pi,j
= 0. Then, the transmit power of chunk j for SU i is

pi,j =
CjbHi,j(1 + µi) +

2
3 λ ln 2 ln Pb

2
λHi,j ln 2

. (32)

Taking Equation (32) into Equation (28), the result is

minθ(λ, µ) = min
λ,µ≥0

L(λ, µ). (33)

Subsequently, the problem can be solved by using gradient method. According to the gradient
method and Equation (32), the iterative formulas for µ and λ are

λ(t + 1) = [λ(t)− α(t)(PT −
m

∑
i=1

k

∑
j=1

pi,jxi,j)]

+

, (34)

and

µi(t + 1) = [µi(t)− βi(t)(
k

∑
j=1

cjri,jxi,j − qi)]

+

, (35)

respectively, where [·]+ = max(0, ·), t is the iteration number, and α(t) and βi(t) denote the step
sizes for each iteration. Based on this, by selecting a sufficiently small step size, the gradient method
convergence is guaranteed and the optimal power allocation will be achieved [37]. The pseudocode
for solving algorithm shown in Algorithm 1.
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5. Simulation Results 

This section investigates the performance of the proposed opportunistic capacity-based 
resource allocation algorithm using numerical simulations. We assume that all SUs are randomly 
located around the SU sink and that the simulation parameters are set as shown in Table 1. To 
simulate the time-varied spectrum environment caused by PU/SU activity and mobility, we 
randomly generate spectrum holes and divide them into chunks in which the available capacity 
changes based on a chunk capacity change rate p  (which denotes the probability of the chunk 
capacity changing in the next moment). Then, we compare the performance of the proposed 
opportunistic capacity-based resource allocation algorithm with the traditional chunk-based 
resource allocation [24] and the sub-carrier-based resource allocation algorithm ( 1n  ). 

Table 1. Simulation parameters. 
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Maximum tolerable error rate bP  610  

SU number AMUN  40 
Sub-carrier bandwidth BW  20 KHz 

Sub-carrier number S  400 
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Rician fading channel factor K  3 
Noise power 0N B  −111 dBm 

Chunk capacity change rate p  0.1~1 

5. Simulation Results

This section investigates the performance of the proposed opportunistic capacity-based resource
allocation algorithm using numerical simulations. We assume that all SUs are randomly located around
the SU sink and that the simulation parameters are set as shown in Table 1. To simulate the time-varied
spectrum environment caused by PU/SU activity and mobility, we randomly generate spectrum holes
and divide them into chunks in which the available capacity changes based on a chunk capacity change
rate p (which denotes the probability of the chunk capacity changing in the next moment). Then, we
compare the performance of the proposed opportunistic capacity-based resource allocation algorithm
with the traditional chunk-based resource allocation [24] and the sub-carrier-based resource allocation
algorithm (n = 1).

Table 1. Simulation parameters.

Parameters Values

Maximum tolerable error rate Pb 10−6

SU number AMUN 40
Sub-carrier bandwidth BW 20 KHz

Sub-carrier number S 400
Sub-carrier number in each chunk n 10–20

Rician fading channel factor K 3
Noise power N0B −111 dBm

Chunk capacity change rate p 0.1~1
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Figure 4 depicts the average throughput with different chunk capacity change rates p for different
chunk sizes (n = 10 and n = 20). In Figure 4, as p increases, the average throughput decreases
noticeably due to bandwidth collisions caused by the fast spectrum changes. The sub-carrier-based
allocation has similar behavior as the opportunistic capacity-based allocation (n = 10) in p < 0.3
part because of the flexible sub-carrier allocation. However, as p increases, the sub-carrier-based
allocation has a serious performance degradation because it only considers current static optimization
and can hardly adapt the dynamic spectrum environment. Moreover, compared with the chunk-based
allocation, the sub-carrier-based allocation introduces more computational complexity since the
assignable units increased by n times. The traditional chunk-based allocation method achieves lower
average throughput than does the opportunistic capacity-based allocation method because the former
considers only the current static optimal, and it uses constant allocation parameters, which leads to
more bandwidth collisions. In the n = 10 scenario, the throughput gap between the opportunistic
capacity-based allocation and traditional chunk-based allocation is small when p = 0.1. However,
as p increases, the opportunistic capacity-based allocation method increasingly outperforms the
traditional chunk-based allocation, which shows that the opportunistic capacity-based allocation
method adapts better to situations with frequency time-varied spectrum environments and can achieve
high spectrum efficiency. This occurs because the traditional chunk-based allocation method is unable
to follow the fast-changing spectrum environment in real time. The spectrum changes occur quickly,
but the opportunistic capacity-based allocation, using its dynamic optimization method, reduces
bandwidth collisions by considering the statistical properties of chunks. In addition, when the number
of sub-carriers in chunks increase (the n = 20 scenario), the average throughput is lower than when
n = 10, showing that large chunks reduce the throughput because they are less flexible. Besides,
because there are massive rounds of spectrum changes (1000 rounds in our simulation), the average
throughput will approach the values achieved by taking the expectation of chunk capacity as the
changed chunk capacity. So the average throughput approaches a linear manner since p changed in a
linear manner.
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Figure 5 shows the number of SUs accessing the network at different chunk capacity change rates
p and different chunk sizes (n = 10 and n = 20). In the figure, as p increases, the SU access number
decreases due to bandwidth collisions. The sub-carrier-based allocation achieves well performance
in p < 0.3 part due to the flexible sub-carrier allocation, but its performance decreased rapidly as
p increased. This is because the spectrum changes will cause the sub-carrier collisions and greatly
degrade its performance. The opportunistic capacity-based allocation scheme behaves well in this
scenario, which has a time-varied spectrum environment. This occurs because compared with
the traditional chunk-based allocation and the sub-carrier-based allocation methods, opportunistic
capacity-based allocation takes the opportunistic capacity of chunks into consideration and, thus, can
ensure that the SUs’ data rate requirements are met and also reduce the impact of bandwidth collisions
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when the spectrum environment changes. In addition, the number of SUs accessing the network under
the opportunistic capacity-based allocation method falls less as p increases in both the n = 10 and
n = 20 scenarios. This result shows that the proposed method can obtain good performance with
different chunk sizes.

Figure 6 shows the average spectrum collision rate with different chunk capacity change rates
p for different chunk sizes (n = 10 and n = 20). From Figure 6, we can see that as p increases,
the spectrum collision rate increases dramatically due to the fast-changing spectrum environment.
In such scenarios, the opportunistic capacity-based allocation method achieves a lower collision rate
than the traditional chunk-based allocation and sub-carrier-based allocation. This occurs because
the opportunistic capacity-based allocation reduces bandwidth collisions by assigning spectrum
resources while considering the statistical properties of chunks. This result shows that opportunistic
capacity-based allocation can effectively minimize the spectrum collision rate when the spectrum
environment changes. In the n = 20 scenario, the spectrum collision rate of the opportunistic
capacity-based allocation almost the same as when n = 10, which also implies that the spectrum
collision rate is not susceptible to variations in chunk size. In addition, the average spectrum collision
rate approaches a linear manner because of the similar reasons for the average throughput.
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6. Conclusions

In this paper, we investigated resource allocation for chunk-based multi-carrier CRSNs, where
the available spectrum resources vary over time due to PU/SU activity and mobility. We presented a
novel opportunistic capacity model using a CTSMC to describe the time-varied spectrum resources
of chunks. This approach established a joint power and chunk allocation model based on the
opportunistic capacity of chunks for chunk-based multi-carrier CRSNs with time-varied spectrum
resources. To reduce the computational complexity, we split this model into two sub-problems
and solved them via the Lagrangian dual method. Simulation results showed that the proposed
opportunistic capacity-based resource allocation achieves better performance than the traditional
chunk-based allocation algorithms in time-varied spectrum environments.
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