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Abstract: Tracking people’s behaviors is a main category of cyber physical social sensing
(CPSS)-related people-centric applications. Most tracking methods utilize camera networks or sensors
built into mobile devices such as global positioning system (GPS) and Bluetooth. In this article,
we propose a non-intrusive wireless fidelity (Wi-Fi)-based tracking method. To show the feasibility,
we target tracking people’s access behaviors in Wi-Fi networks, which has drawn a lot of interest from
the academy and industry recently. Existing methods used for acquiring access traces either provide
very limited visibility into media access control (MAC)-level transmission dynamics or sometimes are
inflexible and costly. In this article, we present a passive CPSS system operating in a non-intrusive,
flexible, and simplified manner to overcome above limitations. We have implemented the
prototype on the off-the-shelf personal computer, and performed real-world deployment experiments.
The experimental results show that the method is feasible, and people’s access behaviors can be
correctly tracked within a one-second delay.

Keywords: passive cyber physical social sensing (CPSS); wireless fidelity (Wi-Fi); people behavior
tracking; non-intrusive

1. Introduction

Cyber-physical systems (CPSs) have emerged as a promising research paradigm [1] which
integrates computing, communication and control, that has become a new generation intelligent
system. With the extensive development of network applications, CPS has been further integrated,
which facilitates the seamless integration between networks and human society. In this context, people,
machines, and information systems need to be urgently integrated [2–4], which leads to the creation of
cyber-physical-social systems [5,6]. On the other hand, with the extensive penetration and integration
of personalized mobile devices (e.g., wearable devices, smartphones) in people’s daily lives, people
have become the most sensitive social sensors. Therefore, sensing people’s social information has
become a new paradigm of cyber physical social system-related applications, called cyber physical
social sensing (CPSS) [7,8].

CPSS is designed to operate in conjunction with and in service of people. It leverages the
sensed information collected by sensing nodes and aggregates it for recognizing people’s behaviors
(e.g., mobility pattern), and in turn provides people with a higher level of combined information
or services, which simplifies people’s lives. The rapid development of mobile devices with various
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sensors is the catalyst to promote CPSS to form a context-aware or social-aware mobile wireless
sensor network. Many open issues have been studied, such as energy efficiency optimization [9],
security attacks [10,11], etc. Among them, the technology utilized to sense or track people’s behavior
attracts more attention. CPSS allows people to collect and share information using cyber devices
intuitively [12]. In contrast to it, in this article, we explore how to track people’s behaviors without
people actively participating in the activity, namely, passive tracking.

Comparisons between different people tracking technologies are summarized in Table 1. Due to
many attractive features, such as non-intrusive (third-party) and high positioning precision, camera
networks are widely used for tracking people’s behaviors [13,14]. However, camera-based methods
require line of sight (LOS), and cannot be deployed flexibly. Radio frequency identification (RFID) [15]
and IEEE 802.15.4/ZigBee sensor networks [16] can also be utilized as tracking methods. The tracking
systems based on them use electronic tags carried by people, and tag readers deployed in the area of
interest. They can perform in non-line of sight (NLOS) manner and can be deployed flexibly. However,
all these technologies are intrusive.

Given the popularity of mobile devices today, there has been a growing interest in tracking
people’s behaviors through all kinds of sensors built into mobile devices [17], such as global positioning
system (GPS), Wireless Fidelity (Wi-Fi), and Bluetooth, etc. GPS has been used in people tracking [17]
in a participatory manner, however, it rarely works indoors. Bluetooth-based tracking methods [18]
are available indoors, and the tracking mechanism is similar to that of RFID or ZigBee, therefore,
the method is also considered intrusive. In addition, cellular signals can be also used to track people’s
behaviors [19,20], and the tracking is performed on the network side. However, there exist many
limits in this method, such as intrusiveness, poor positioning precision, and inflexible deployment.
Wi-Fi has been ubiquitously deployed, especially in public areas such as airports, shopping centers, etc.
In addition, almost all of the mobile devices integrate Wi-Fi functionality. In this context, Wi-Fi-based
sensing networks have become the world’s largest wireless sensor networks. Researchers have also
utilized Wi-Fi to do participatory CPSS [21]. However, in our work, we focus on passive CPSS
using Wi-Fi.

Table 1. Comparison between different people tracking technologies.

Tracking Methods Pros Cons

GPS [17] (participatory)
• High positioning precision
• Low-cost to deploy

• Need people to participate
• Rarely works indoors

Wi-Fi [21] (participatory)
• High positioning precision
• Low-cost to deploy

• Need people to participate
• Need special software

Camera [13,14] (passive)

• Non-intrusive
• High positioning precision
• No devices carried by people

• LOS
• Inflexible deployment

RFID [15] (passive)

• NLOS
• Flexible deployment
• High positioning precision

• Intrusive
• Dedicated devices

carried by people

ZigBee [16] (passive)

• NLOS
• Flexible deployment
• High positioning precision

• Intrusive
• Dedicated devices

carried by people
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Table 1. Cont.

Tracking Methods Pros Cons

Bluetooth [18] (passive)

• NLOS
• Flexible deployment
• High positioning precision

• Intrusive
• Dedicated devices

carried by people

Cellular signal [19,20] (passive)

• NLOS
• Wide Coverage
• Widely deployed infrastructures

• Intrusive
• Poor positioning precision
• Inflexible deployment
• Common devices

carried by people

Proposed system (passive)

• Non-intrusive
• NLOS
• Flexible deployment
• Relatively high

positioning precision

• Common devices
carried by people

Wi-Fi-enabled mobile devices, carried by people, discontinuously send out Wi-Fi messages, even
when not connecting with any access point (AP). The presence of people can be identified by sensing
these messages. Furthermore, each Wi-Fi-enabled mobile device is equipped with a wireless network
adapter, which contains a universal unique device identifier, a media access control (MAC) address.
Almost all of the Wi-Fi messages encapsulate the MAC address, with which different people can be
distinguished [22]. By placing a dedicated set of hardware devices called monitors dispersed in areas
of interest to sense Wi-Fi messages, people’s behaviors can be tracked. One typical application is
Wi-Fi-based indoor localization [23], in which Wi-Fi received signal strength (RSS) is utilized by Wi-Fi
monitors to identify the locations of people with Wi-Fi devices.

To show the feasibility of the Wi-Fi-based passive CPSS approach, we performed a case study that
tracked people’s access behaviors in Wi-Fi networks. Analyzing people’s access behaviors has attracted
significant attention recently [24–35]. This can be beneficial in many aspects, such as assessment of
wireless network utilization, site planning, and design for intelligent and robust wireless network
protocols. Therefore, there is a pressing need to characterize and understand people’s access behaviors,
including access or exit time, session duration, and other access details, etc.

Previous studies have focused on mobility and association pattern analysis based on the traces
collected from Wi-Fi networks through different methods. These methods can be mainly classified into
four categories: wired monitoring, polling based on simple network-management protocol (SNMP),
specialized applications on the Wi-Fi device, and AP syslog. Wired monitoring collects Wi-Fi traffic
at the wired portion adjacent to APs. Schwab et al. [24] presented a method to capture and analyze
traffic patterns on a campus Wi-Fi network, based on the traces collected via wired monitoring. Wired
monitoring can provide accurate and detailed traces. However, the monitor has to build physical
connections with the networks, making this approach inconvenient to deploy. In addition, wired
monitoring provides very limited visibility into MAC-level transmission dynamics. The approach
we propose adopts passive monitoring, which means the monitors can be deployed flexibly without
having to build any connection with the network. SNMP polling is another popular method. Based
on the SNMP traces, user mobility patterns in a large corporate Wi-Fi networks were explored in [27].
The study in [30] examined the utilization of Wi-Fi hotspot networks based on the SNMP traces.
However, SNMP polls data typically at intervals of minutes. Therefore, some instantaneous
transmission dynamics might be lost. Wi-Fi devices with specialized applications can also participate
in the trace collection [32]. However, this method suffers from some limitations. First, the assumption
that people are willing to install these applications is not always true. Second, these applications may
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involve modifying drivers, which is complex and costly. Furthermore, the applications run in the Wi-Fi
device may need sufficient storage capacity, and incur high energy consumption. Researchers have
also used AP syslog [33,35] to characterize and analyze access patterns. However, it is insufficient to
expose the MAC-level transmission dynamics of Wi-Fi networks, such as the retransmission and some
other details of transmission events.

Some works utilized these methods simultaneously. Researchers in [25] analyzed user behavior
and network performance in a public-area wireless network based on traces from SNMP and wired
monitoring. In [26] researchers analyzed the usage of a mature campus Wi-Fi network based on traces
from syslog, SNMP polling, and tcpdump sniffers. Furthermore, some researchers [28,29,31] have
modeled user mobility and association patterns in university campus Wi-Fi networks, based on the
traces from SNMP and AP syslog. However, none of them can sense the transmissions from Wi-Fi
devices which do not build connection with any AP.

In this article, we develop a passive CPSS system operating in a non-intrusive, flexible,
and simplified manner to tracking people’s access behaviors in Wi-Fi networks. Through this system
we ease the way to collect detailed access traces with low cost and high flexibility such that brings us
closer to understanding people’s access patterns and behaviors in Wi-Fi networks. The contributions
are summarized as follows:

• We propose a Wi-Fi based passive CPSS approach for tracking people’s behaviors. The approach
works in a non-intrusive, flexible, and simplified manner, and has the ability to provide deep
visibility into MAC-level transmission dynamics between Wi-Fi devices and APs. Specifically,
it tracks people’s behaviors by sensing Wi-Fi messages from mobile devices people carry with.
By extracting the information from these Wi-Fi messages, more data can be obtained.

• Based on the approach, we design a non-intrusive CPSS system. The system works as a third-party
monitor, and can be deployed conveniently and cost-effectively. To show the feasibility, we use the
system to track people’s access behaviors in Wi-Fi networks. We design the system architecture,
and propose a two-sized sliding window algorithm, with which the unreliable information,
caused by the loss and retransmission of the 802.11 frame, can be eliminated from the tracked
traces. In addition, we design a policy to judge the validness of an access operation.

• We implement the system on the off-the-shelf PC, without changing the hardware or firmware.
We also evaluate the system in real Wi-Fi networks. The results show that the system can track
people’s access behaviors accurately.

The rest of this article is organized as follows: Section 2 introduces the system description and
some definitions. The architecture and implementation details of the proposed system are given in
Section 3. In Section 4, the prototype of the system and the experimental results are presented. Finally,
we present our conclusions and outlook in Section 5.

2. System Description

The target Wi-Fi networks we consider in this article are unencrypted or encrypted by Wi-Fi
protected access or Wi-Fi protected access 2 in pre-shared key mode (WPA/WPA2-PSK), which are
ubiquitously being deployed in airports, shopping malls, and cafes, etc. As shown in Figure 1,
the system we designed works as a third-party monitor. It tracks the access behaviors of nearby Wi-Fi
users, and extracts the access information, including access time, exit time, and some other details.
The extracted information will be elaborated in detail subsequently, as illustrated in Section 3.3.
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For the convenience of description, we give the common 802.11 state diagram first, as shown
in Figure 2. A Wi-Fi device usually works in three states, and each state is a successively higher
point in the development of an IEEE 802.11 connection. Frames are also divided into different
classes. The Wi-Fi device starts in state 1, and data can be transmitted through a distribution
system only in state 3. The Wi-Fi device changes the state by exchanging different frames with
the AP. When a device tries to access an AP, it exchanges the Authentication frame with the AP first,
and then sends the Association/Re-association Request frame to the AP, the AP replies with the
Association/Re-association Response frame. The Disassociation or De-authentication frame can be
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We make some definitions about people’s access and exit operations from an AP, as illustrated
subsequently. For the sake of simplicity, we define Association/Re-association Response frame and
Disassociation/De-authentication frame as the access frame and exit frame, respectively. We define
the access frame and the exit frame reception time on the monitor side as the approximation of the
actual occurrence time of the access and exit event on the Wi-Fi device side. Therefore, there is a delay
between them. The delay changes under different wireless environment. For example, the delay may
get longer if the wireless networks congest, or vice versa.

Figure 3a shows the procedures of accessing an encrypted AP. The Wi-Fi device scans the AP
first. After finding the AP, the device tries to build a connection with the AP, and it starts with
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authentication with the AP. Open system authentication can always succeed. Then, the device sends
association/re-association request to the AP, and the AP replies with the access frame. Whether an
association operation succeeds or not is denoted by the Status Code field in the header of the access
frame. The Status Code field is set to 0 when an association/re-association operation succeeds and
nonzero on failure. If the association/re-association succeeds, there is a process of 4-way handshake
between the AP and the device, which is used for key exchange. The device can exchange data with
the AP only if 4-way handshake succeeds.
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Figure 3b illustrates the process of 4-way handshake. The AP distributes keys to the Wi-Fi
device using extensible authentication protocol over LAN-key (EAPOL-Key) messages encapsulated
in quality of service (QoS) Data frames. If 4-way handshake fails, there are several execution loops
including steps 1 and 2 in Figure 3b, without step 3 and 4. Then the device or the AP sends the exit
frame to the other side to abort the connection. Note that the access procedures for a Wi-Fi device
in unencrypted Wi-Fi networks only include access point scanning, open system authentication, and
association/re-association process in Figure 3a.

However, the access operation for a Wi-Fi device is not always valid. When a device tries to
access an encrypted AP, if the 4-way handshake fails, the device still cannot exchange data with the
AP, although the association/re-association succeeds. Therefore, the access operation for the device is
invalid. If a Wi-Fi device associates with an unencrypted AP successfully, the access operation is valid.
If a Wi-Fi device associates with an encrypted AP successfully, and the 4-way handshake succeeds,
then the access operation for the device is valid. However, if the 4-way handshake fails, though the
association succeeds, the access operation for the device is invalid.

3. System Design

The aim of this section is to describe in details the system. The proposed system is shown in
Figure 4 and is explained below. The system has three key components, namely, wireless frame collecting,
frame processing, and information storage. Wireless frame collecting captures 802.11 MAC frames in Wi-Fi
networks. Frame processing is responsible for selecting frames related to people’s access behaviors
from the captured frames and extracting useful information from each selected frame. Information
storage stores the extracted information into database. Furthermore, the two-sized sliding window
algorithm and the judging policy for access validness are implemented in information cleansing.
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3.1. Wireless Frame Collecting

Capturing 802.11 MAC frames in Wi-Fi networks can be realized via the monitor mode of the
wireless network adapter. Monitor mode [36] allows a wireless network adapter to monitor all traffic
received from Wi-Fi networks in a non-intrusive manner. Usually whether a wireless adapter is able
to operate in monitor mode or not depends on its driver, firmware, and chipset features. Different
operating systems show different features for supporting monitor mode. For example, the network
driver interface specification on older Windows versions does not support any extensions for wireless
monitor mode, whereas Windows Vista and later versions of Windows do. Some Unix-like operating
systems provide interfaces for many drivers (i.e., 802.11 drivers) that support monitor mode, such as
Linux, FreeBSD, NetBSD, OpenBSD, DragonFly Bsd, and Mac OS X 10.4 and later releases.

The way to enable the monitor mode varies from the type of the operating system. For example, the
monitor mode of a wireless network adapter can be enabled by command lines on Linux, or by invoking
function libraries that comprises application programming interface (API) for capturing network traffic
(i.e., Winpcap on Windows, Libpcap on Linux). Besides, some packet analyzer applications such as
OmniPeek, CommView, and Wireshark (i.e., on Windows or Linux) can also be utilized.

After enabling the monitor mode, a computer with a wireless network adapter can monitor all
wireless frames that flow through the adapter in Wi-Fi networks. The APIs provided by function
libraries, or packet analyzers can be utilized to store the captured packets in pcap files. In this article,
Linux is used as the operating system, under which the wireless network adapter with monitor
mode works. And APIs of function libraries are invoked to operate the adapter and process the
collected frames.

3.2. Frame Processing

Frame processing includes frame filtering and information extracting. In frame filtering, we select frames
related to people’s access behaviors from captured frames, including Association/Re-association
Response frames, Disassociation frames, De-authentication frames, and QoS Data frames that
encapsulate EAPOL-Key messages, based on the frame format. These frames use generic frame
format [37], and each can be identified by the six-bit Type and Subtype fields, as shown in Figure 5.
Table 2 shows how the Type and Subtype identifiers are used for different frames. In Table 2,
bit strings are written most-significant bit first, which is the reverse of the order used in Figure 5.
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Table 2. Information fields description.

Type Subtype Frame Name Address1 Address2 Address3

00 0001 Association Response Destination Source BSSID
00 0011 Reassociation Response Destination Source BSSID
00 1010 Disassociation Destination Source BSSID
00 1100 Deauthentication Destination Source BSSID
10 1000 QoS Data(from AP) Destination BSSID Source
10 1000 QoS Data(to AP) BSSID Source Destination

To identify which EAPOL-Key message a QoS Data frame encapsulates, the Ethernet Type field
and the Secure Flag field in the QoS Data frame can be used, as shown in Figure 6. The code 0x888e
is assigned to EAPOL, and the Secure Flag is set to bit 1 when the message is EAPOL-Key 3 or
EAPOL-Key 4. Therefore, we can distinguish different QoS Data frames using above description.Sensors 2017, 17, 143 8 of 17 
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Then in information extracting, useful information from each selected frame is extracted.
As shown in Table 2, each frame includes three address fields, that is, destination address (DA),
source address (SA), and basic service set identifier (BSSID). BSSID represents the MAC address of an
AP. By comparing BSSID with the DA or SA, the MAC addresses and the transmission directions of
the Wi-Fi device and the AP can be determined. Furthermore, the occurrence time of the access and
exit event on the Wi-Fi device side can be obtained according to the assumptions defined in Section 2.
From time to time, frames may be retransmitted. The Retry field of the retransmitted frame is set to
bit 1. Besides, the two-byte Status Code field of the Association/Re-association Response frame is set
to 0 when an association operation succeeds and nonzero on failure. While the two-byte Reason Code
field of the Disassociation or De-authentication frame indicates the reason of an exit operation. Status
codes and reason codes have been standardized, which can be referenced in [37].

3.3. Information Storage

After frame processing, the information is stored into database. Table 3 illustrates the information
fields stored in database in this article. The ValiFlag field is used to denote the validness of an access
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operation. If an access operation is valid, then the field is set to 1, otherwise, set to 0. The InOut
field is set to eapol12 for the EAPOL-Key 1 or EAPOL-Key 2 message, and is set to eapol34 for the
EAPOL-Key 3 or EAPOL-Key 4 message.

Table 3. Information fields description.

Field Name Description Illustration

StaAdd Mac address of station 0c:37:dc:d3:25:22
ApAdd Mac address of AP 1c:fa:68:4e:4c:c6

FrameInfo Frame type and direction disassociation_from_ap
RecTime Receiving time 2014-08-26 20:33:00
InOut Access or exit in/out/eapol12/eapol34

StaCode Status code 0-65535/65536(default)
ReaCode Reason code 0-65535/65536(default)
RetrFlag Retransmitted or not 1(retransmit)/0(not)
ValiFlag Access succeeds or not 1(succeed)/0(not)/65536(default)

The access/exit information of different Wi-Fi devices stored in database is in chronological
order based on the time when the system receives each access/exit frame. The information is not
completely reliable. The loss and retransmission of the 802.11 MAC frame, caused by inevitable noises
and electromagnetic interferences result in some unreliable information in database. Here we only
consider the items stored in database with same StaAdd and ApAdd. There are five possible cases:

Case 1: If the InOut fields of two adjacent items are set to in, then whatever the RetrFlag fields are set
to, the first item is always unreliable. When the RetrFlag field of the second item is set to 0,
it means the corresponding exit frame to the first item is lost. If the RetrFlag field the second
item is set to 1, the first item is useless, and should be abandoned.

Case 2: If the InOut fields of two adjacent items are different, we think they are both reliable.
Case 3: If the InOut fields of two adjacent items are out, and the RetrFlag field of the second item is set

to 0, then the second item is unreliable, because the corresponding access frame is lost.
Case 4: For three adjacent items, if the InOut fields of the latter two are set to out, and the RetrFlag

fields of the latter two are set to 0 and 1 respectively, then the unreliable item depends on the
first item: (1) if the InOut field of the first item is set to in, then the second item is unreliable,
because only the last retransmission is considered; and (2) if the InOut field of the first item is
set to out, both of the second and third items are unreliable, and if there are more items after
the third item, of which the InOut fields are set to out and the RetrFlag fields are set to 1, then
these items are also unreliable, because the corresponding access frames are missing.

Case 5: For three adjacent items, if the InOut fields of the latter two are set to out, and the RetrFlag fields
are both set to 1, then no matter what the first item is, the second item is always unreliable.
The concrete details are similar to Case 4, not tired in words here.

Aiming at the above cases, two-sized sliding window algorithm is proposed as the correcting
mechanism. Each time the items with same StaAdd and ApAdd in database, denoted by set
S = {s0, s1, . . .}, are considered. Note that the items are still in chronological order. Then each
two adjacent items in S from beginning to end are compared, and the unreliable items are removed.
Let L = {l0, l1, . . .} be the unreliable item set. Algorithm 1 presents the pseudo-code of two-sized
sliding window algorithm.
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set R = {r0, r1 . . .} comprises the invalid access items. If an access operation is valid, the ValiFlag field
of the access item is set to 1; otherwise set it to 0.
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4. Experimental Demonstration

This section mainly focuses on the implementation and evaluation of the system we designed.
The major emphasis of the experiment is placed on the accuracy verification of the tracked information.
It makes sense to confirm this issue for further studying the feasibility of the proposed system.
To this end, the system was prototyped and experiments were conducted on single target AP within
real outdoor Wi-Fi networks.

4.1. Prototype Setup

The proposed system is implemented on a HP Pivilion g4 PC equipped with a 2.66 GHz Intel
Core 2 Duo Processor. The PC is equipped with the Qualcomm Atheros AR9285 802.11b/g/n Wi-Fi
Adapter. The operating system (OS) is 32-bit Ubuntu LTS 12.04. Libpcap [38], a network packet capture
library, is invoked to capture Wi-Fi messages. The captured information is stored into MySQL [39].
GTK + toolkit [40] is used to create graphical user interface (GUI), as shown in Figure 7b.
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plan of the experiment.

We have evaluated the system in Chongqing University Library (CUL), China, in which some APs
had been deployed. Most these APs were encrypted by WPA/WPA2-PSK, and less were unencrypted.
We chose encrypted AP as the experiment target. The reason why we did this choice instead of
unencrypted AP is that the access procedures on the encrypted AP comprise those on the unencrypted
AP as shown in Figure 3. In other words, the latter can be regarded as a special case of the former.
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Therefore, we can conduct experiments on encrypted AP for the accuracy verification of the tracked
information without loss of generality. The target encrypted AP we chose operates on the frequency
of 2.412 GHz. For the issue of monitor placement, we have placed the system near the target AP to
increase chances of people being monitored. The floor plan of CUL is shown in Figure 7c. Note that
the wireless environment is complicated and changeable, especially in doors. The Wi-Fi signal always
suffer the influence of unpredictable path loss and multipath fading [40]. One way to compensate this
limitation is to model the wireless environment. However, when the tracking environment changes,
the model built before is useless, a new model has to be constructed. In our work, we neglect the
environment factor.

We choose smartphones as the Wi-Fi devices. We prepared ten smartphone prototypes
with 1.6 GHz Intel Atom Z2460 processors as Wi-Fi devices and distributed them to ten participants,
as shown in Figure 7a. Note that the type of the Wi-Fi device can influence the tracking accuracy.
For instance, the Wi-Fi devices equipped with iOS 8 randomize the MAC addresses while scanning
for Wi-Fi networks [41]. That means the MAC address used for Wi-Fi scans may not always be the
device’s real (universal) address. This may cause some interference for identifying people. All ten
participants knew the password to access the target AP beforehand. They accessed the target AP
randomly, and each of them had to access and exit from the target AP at least once respectively.
Furthermore, the access and exit time information was recorded by the small android application
running on the smartphone. The application runs as a background process to monitor the Wi-Fi
connection status.

The time we did the experiment was from 7 p.m. to 8 p.m., during which the flow of people is
relatively large so the wireless environment is crowded and complicated. This prerequisite ensures
that our experiment was conducted in a common scenario.

4.2. Experimental Results

Figure 8 shows the comparison between the original records and the output information of the
system. Figure 8a illustrates the original records during the experiment. The records are mainly about
the access and exit time of each people, and the time is accurate to seconds. As we can see from
Figure 8a, each user accessed the target AP only once, except for user 4 and user 7. In our experiment,
we arranged user 4 and user 7 to access the AP twice. In addition, both of user 4 and user 7 used
wrong passwords on purpose when the first time they accessed. Using wrong password can result
in 4-way handshake failure in Figure 3. As we mentioned before, if 4-way handshake fails, the Wi-Fi
device will continue to attempt to access the AP several times, rather than giving up. As shown in
Figure 8b, after the first access operation failed, the device of user 4 or user 7 did one more attempt.
However, the access still failed. After that, the device or the AP aborted the association. Under normal
circumstances, each user accessed the AP at a certain instant, and exited at another instant. However,
as illustrated in Figure 8b, the access and exit time of user 4 or user 7 are overlapped. This is because
the access and exit operations occurred almost simultaneously when access failed.
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As we can see from Figure 8, the output information of the proposed system shows a
close agreement with the original experiment records, which fairly verifies the feasibility of the
proposed system and correctness of the proposed two-size sliding window algorithm. Furthermore,
by comparing the time information recorded on the smartphones and that recorded by the system,
we observe that the system can correctly track people’s access information within a one-second
delay. Such low delay can be neglected in the researches for characterizing people’s access behaviors,
in which the minimum unit of the time is one minute or one hour.

In addition to above information, there are some other details about access and exit operations
of the Wi-Fi devices. Figure 9 illustrates the type and transmission direction of access or exit frames
for each Wi-Fi device. For the sake of simplicity, we encode the information into different codes,
as shown in Table 4. Note that all access frames are Association Response frames sent by the target AP,
not including Re-association Response frames. This indicates there was no roam or hand-off happens.
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Table 4. Frame Information Encoding.

Frame Information Code

Association Response frame from AP to Wi-Fi Device 0
Re-association Response frame from AP to Wi-Fi Device 1

Disassociation frame from AP to Wi-Fi Device 2
Disassociation frame from Wi-Fi Device to AP 3

De-authentication frame from AP to Wi-Fi Device 4
De-authentication frame from Wi-Fi Device to AP 5

Most exit information codes are 3. We can infer that the Disassociation frame is commonly used to
abort a connection. Furthermore, the Wi-Fi device of user 8 sent the De-authentication frame to abort
the connection. We observe that the first two exit operations of the Wi-Fi devices of user 4 and user 7
used the De-authentication frame to abort the connection. More importantly, the frames were sent by
the target AP, not by the two Wi-Fi devices. We can infer that because the 4-way handshakes failed,
the target AP could not distribute keys to the two Wi-Fi devices, and it had to end the connections.

As shown in Figure 10, the status codes of the access frames are 0, which means all the association
operations succeeded. But there are different reasons for the exit operation of each Wi-Fi device.
According to the 802.11 standard [37], code 8 indicates disassociation because sending Wi-Fi device is
leaving or has left from the basic service set (BSS) in which the target AP is located. Code 3 indicates
de-authentication because sending Wi-Fi device is leaving or has left from the extended service set
(ESS). Because we only used one AP, the BSS and ESS are identical. We can infer these users might
disable the Wi-Fi or they left the coverage of the AP. Note that for the first two exit operations of user 4
and user 7, the reason code is 15 indicates the 4-way handshakes are timeout, which matches what we
expected before. Note that for user 9, the reason code is 1, which indicates the reason is unspecified.
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To examine the accuracy of Algorithm 2, we also observe the ValiFlag field. As we mentioned
before, the ValiFlag field in database is used to denote the validness of an access operation. If an access
operation is valid, the field is set to 1, otherwise, set to 0. Figure 11 gives an intuitive illustration of the
value of ValiFlag after the proposed algorithms. As shown in Figure 11, the first two access operations
of user 4 and user 7 are invalid, which is in well agreement with the analysis before.
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5. Conclusions and Outlook

5.1. Conclusions

In this article, we studied a method of tracking people’s behaviors. First, we summarized
the shortcomings of traditional methods, and proposed a Wi-Fi-based passive CPSS method.
Then, to validate the feasibility of the proposed method, a third-party system was designed targeting
for tracking people’s access behaviors in Wi-Fi networks. The system operates in a non-intrusive,
flexible, and simplified manner. We also described the details of the system implementation, including
a two-sized sliding window algorithm used to eliminate the interference information caused by the
loss and retransmission of the IEEE 802.11 MAC frame, and a policy to judge the validity of an access
operation. Finally, the system was implemented on an off-the-shelf PC, and evaluated in real Wi-Fi
networks. Real-world experiments showed the feasibility of the proposed method. The proposed
system could correctly track people’s access behaviors within a one-second delay.

The collected traces can be utilized to characterize people’s individual behavior or group
behaviors [28,29], which is beneficial for modelling, managing, leveraging and designing efficient
mobile networks. By conducting aggregated statistics and modeling analysis on access and exit
information, people’s presence activities, mobility, and association preferences in the area of interest
can be evaluated [28]. Combing the status code and reason code information, more in-depth insights
into association behaviors can be provided, which contributes to the statistics and models. In addition,
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by the aid of frame type and transmission direction information, hand-off events can be identified and
studied. In a word, through this system we ease the way to collect detailed access traces with low cost
and high flexibility, such that brings us closer to understanding people’s access patterns and behaviors
in Wi-Fi networks.

5.2. Outlook

For future work, we will consider large-scale experiments in the environment with multiple APs
such as university campus or office buildings. There are some open issues which need to be addressed:

• The effective access behavior tracking will require deployment of several wireless monitoring
systems. In this case, the density and topology of deployment can influence the accuracy [42].
Obviously, the more monitors are deployed, the higher accuracy can be realized, but as the amount
of monitors increases, the cost goes up. Therefore, how to design the optimized topology of the
monitor to minimize the cost is a big challenge. It is possible to tackle this challenge in future by
using the knowledge of geometry.

• In addition, the traces captured by multiple monitors will require additional data sanitization
techniques to address the scenario when a transmission from a single Wi-Fi device is observed on
multiple monitors. cloud-based processing architecture will be explored, in which cloud servers
are utilized to perform centralized processing for the traces captured by multiple monitors.

• Furthermore, a single system may be utilized to monitor multiple APs with different operating
frequencies. In this case, some mechanisms like dynamic frequency switching must be considered,
in which a system switches to different frequencies in different time slot to perform tracking.
In this case, how to design the switching policy to maximize the tracking accuracy can be a
big challenge.

• In some scenarios, there are massive people trying to access single AP. The network becomes very
congested. Therefore, the probability of missing tracking gets higher. Some solutions need to be
proposed, such as using multiple monitors and designing reasonable deployment structures to
mitigate the burden.

Toward this end, more tests need to be conducted to further validate the performance of
the proposed system. Moreover, more practical potential applications for the proposed system
will be experimentally demonstrated, such as passenger flow statistics, precision marketing,
and criminal hunting.

• Passenger flow statistics. By counting the number of different MAC addresses extracted
from the receiving Wi-Fi frames, the proposed system can be utilized to conduct statistics on
passenger flow in some operating regions, such as tourist attractions. Comparing to traditional
statistical methods, such as artificial statistics and camera statistics, the proposed system can
save the labor cost and lower the statistics difficulty. However, there are some open issues exist.
For example, how to guarantee the Wi-Fi enabling of all the Wi-Fi devices to avoid missing of
statistics. In addition, some people carry more than one Wi-Fi device, how to avoid duplication of
statistics on these people.

• Precision marketing. By sensing the Wi-Fi signals from the Wi-Fi devices carried by people,
people’s presence can be recognized. Furthermore, by deploying a set of the proposed systems in
the area of interest, people’s movement trajectories can be tracked. This would be very helpful
for precision marketing in retail stores or shopping malls. For example, changing the store
layout according to the people’s moving trajectories to conducting marketing campaigns and
advertising deliveries in the popular paths. In addition, by the analysis on the MAC addresses
and time information the system tracked, the proportion of new and old customers, visiting cycle,
and customer activity are easy to obtained, which can be utilized for grasping the composition
of customers to provide references for the marketing strategy adjustment. In this application,
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how to consider the density and topology of the multiple systems to minimize deployment cost
and maximize tracking accuracy is a big challenge.

• Criminal hunting. Our system can also be used as a criminal hunting technology. In large scale
deployment, the tracked information such as MAC addresses of criminals’ Wi-Fi devices on each
sensing node is delivered to the central servers combing the time information and location tags
of each node. By comparing the tracked information with that in the database built beforehand,
the location or the trajectory of the criminal can be tracked. Compared to the hunting technology
based on base station positioning, using the proposed system can enormously improve the
positioning precision. Usually, people possess many Wi-Fi devices with multiple different MAC
addresses, while only one cellphone number. Therefore, compared to the hunting technology
based on base station positioning, using the proposed system can also increase the success
probability for criminal hunting. There also exists a challenge. For the Wi-Fi devices equipped
with iOS 8, the MAC addresses are randomized while scanning for Wi-Fi networks. That means
the MAC address used for Wi-Fi scans may not always be the device’s real address, which causes
some interference for criminal hunting.
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