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Abstract: Integrating wireless sensor network (WSN) into the emerging computing paradigm,
e.g., cyber-physical social sensing (CPSS), has witnessed a growing interest, and WSN can serve
as a social network while receiving more attention from the social computing research field.
Then, the localization of sensor nodes has become an essential requirement for many applications
over WSN. Meanwhile, the localization information of unknown nodes has strongly affected the
performance of WSN. The received signal strength indication (RSSI) as a typical range-based
algorithm for positioning sensor nodes in WSN could achieve accurate location with hardware
saving, but is sensitive to environmental noises. Moreover, the original distance vector hop (DV-HOP)
as an important range-free localization algorithm is simple, inexpensive and not related to the
environment factors, but performs poorly when lacking anchor nodes. Motivated by these, various
improved DV-HOP schemes with RSSI have been introduced, and we present a new neural network
(NN)-based node localization scheme, named RHOP-ELM-RCC, through the use of DV-HOP, RSSI
and a regularized correntropy criterion (RCC)-based extreme learning machine (ELM) algorithm
(ELM-RCC). Firstly, the proposed scheme employs both RSSI and DV-HOP to evaluate the distances
between nodes to enhance the accuracy of distance estimation at a reasonable cost. Then, with the
help of ELM featured with a fast learning speed with a good generalization performance and minimal
human intervention, a single hidden layer feedforward network (SLFN) on the basis of ELM-RCC is
used to implement the optimization task for obtaining the location of unknown nodes. Since the RSSI
may be influenced by the environmental noises and may bring estimation error, the RCC instead of
the mean square error (MSE) estimation, which is sensitive to noises, is exploited in ELM. Hence,
it may make the estimation more robust against outliers. Additionally, the least square estimation
(LSE) in ELM is replaced by the half-quadratic optimization technique. Simulation results show that
our proposed scheme outperforms other traditional localization schemes.

Keywords: wireless sensor network (WSN); received signal strength indication (RSSI); distance
vector hop (DV-HOP); regularized correntropy criterion (RCC); extreme learning machine (ELM)

1. Introduction

In recent years, there has been an emerging interest in the field of socially-aware computing
through integrating social computing and pervasive computing [1,2]. Then, the cyber-physical social
system could deeply integrate the cyber world and the physical world, as well as the social world [3].
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In addition, the social sensing is a novel application of the cyber-physical social system. Additionally,
a new paradigm, named cyber-physical social sensing (CPSS), was developed, in which the perception
processes allow humans to participate. The wireless sensor network (WSN) with a simple architecture
and cost-saving performance, plays a critical role for the sensor process and provides some important
information to serve as a social network in the CPSS [4,5], where those sensors are the primary entities
replacing humanity in the traditional social network [6]. Various research regarding the WSN has been
undertaken [7–11].

Generally, a critical step in constructing a sensor network is to precisely determine the node
position through the process of localization. In other words, localization is an indispensable part
of WSN [12]. With the purpose of locating sensor nodes precisely, we need effective localization
techniques to improve the performance of WSN. Some traditional approaches of localization, i.e.,
the Global Positioning System (GPS)-based method [13], manual measurement and the calibration
method, are unsatisfactory sometimes due to the high cost, especially for a large-scale sensor network.

Usually, all nodes in WSN are randomly distributed, and only a few nodes, called anchor
nodes, equipped with GPS, could get their positions after being scattered. However, the other nodes,
called unknown nodes, do not capture their own positions. The anchors usually help those unknown
nodes by using connectivity between nodes and exchanging multiple hop routing information to
locate themselves. The node localization methods of sensor networks could be grouped as range-based
and range-free. The former depends on angle or range measurements between nodes, which could
be obtained by the time-of-arrival (TOA) method or the received signal strength indication (RSSI)
method [14], and special hardware equipment is necessary. RSSI is a preferable choice due to its
relatively low cost [15], and RSSI has been widely used for device-free wireless localization [16–19].
Nevertheless, RSSI is sensitive to environmental noise [19] and may lead to a decrease of localization
accuracy. Meanwhile, the latter relies only on connectivity, and it is naturally less expensive and
simpler [20].

Among the available range-free localization schemes, some are heuristic and simple and could be
carried out in a distributed environment. Additionally, the classic range-free localization algorithm,
i.e., distance vector hop (DV-HOP) [21], is a good choice in a hardware support-limited environment
because of its simplicity in implementation. However, the positioning accuracy will be greatly reduced
when the node distribution is uneven. Consequently, some novel methods have been proposed on the
basis of DV-HOP to enhance the accuracy of localization [22–24].

Taking advantage of both the range-free method and the range-based method, some algorithms
were proposed by incorporating RSSI and DV-HOP to execute the localization for unknown
nodes [25–28]. In this way, the localization error of the unknown and anchor nodes could be reduced
effectively. Nevertheless, the calculation of the coordinate may still not be accurate in some cases [29].

Motivated by the scheme of neural network (NN)-based node localization with RSSI and hop
counts [30], we present a novel DV-HOP localization scheme with RSSI and regularized correntropy
criterion (RCC)-based ELM (ELM-RCC), named RHOP-ELM-RCC, to improve the performance of
WSN in the CPSS. Compared with SNR (signal to noise ratio) parameters, the parameters of RSSI are
more related to position [31]; RSSI may be accordingly more appropriate in our proposed scheme.
We combine the DV-HOP and RSSI to reduce distance measurement error without additional hardware,
in which RSSI estimates the distance utilizing the decreasing degree of the signals in the transfer
process [32].

Since ELM is an effective NN learning algorithm with fast learning speed and minimal human
intervention [33,34], it can be used to improve the performance of WSN [35,36]. In our previous
work [37], we exploited the ELM-based single-hidden layer feedforward network (SLFN) to calculate
the sub-anchor nodes. Moreover, RCC could be used to improve the ability of the anti-noise of
ELM [38]. Here, we utilize the algorithm ELM-RCC to calculate the coordinates of unknown nodes
in this article. Then, integrating the ELM-RCC into the DV-HOP localization algorithm with RSSI,
the robustness for environmental noise and transport errors may be improved.
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It should be indicated that RHOP-ELM-RCC is a general schema for wireless networks, e.g., IEEE
802.11, Scenario 4G/5G. Our work assumes a well-known transmission power. The case of unknown
transmission power is out of the scope of the current article. This scenario is studied in [39]. In addition,
the transmission power attenuation is directly proportional to the transmission distance.

The rest of this article is as follows. Preliminaries, including DV-HOP, RSSI, ELM, correntropy
and ELM-RCC, are analyzed in Section 2. The details of our proposed scheme are shown in Section 3,
in which DV-HOP localizations with RSSI based on ELM or ELM-RCC are described, respectively.
The simulation results and analysis are provided in Section 4. Additionally, a conclusion is drawn in
Section 5.

2. Preliminaries

2.1. DV-HOP Algorithm

DV-HOP is a typical range-free localization algorithm. The key of the DV-HOP scheme is that the
distance between the anchor nodes and the unknown nodes is gained through multiplying the average
hop size by the hop count, and then, the coordinates of the unknown nodes are obtained using the
maximum likelihood estimation method [40]. The anchor node estimates the average hop size using
the minimum hop count and the distances, which are gained from itself to all other anchors, and then
each unknown node determines its average hop size by selecting the minimum hop count to an anchor
node [41]. Although the range measurement method of DV-HOP is unaffected by environmental
factors, such as landscape and climate, the range measurement error is large if the sensor nodes are
unevenly distributed in WSN. For example, in Figure 1, we assume that nodes A1, A2 and A3 are
all anchor nodes, and the positions of the unknown nodes U1, U2, U3 and U4 are to be identified.
The true distances of these anchor nodes are known, i.e., 30, 30, 40. Then, each anchor node obtains its
average hop distance as follows:

A1 : (30 + 40)× (3 + 5)−1 = 8.75,
A2 : (30 + 40)× (4 + 5)−1 = 7.78,
A3 : (30 + 30)× (3 + 4)−1 = 8.57.

(1)

Figure 1. A diagram of the range measurement error for the distance vector hop (DV-HOP) algorithm.

Then, each anchor node transfers its average hop distance by broadcasting in the form of
flooding through the network, and the unknown node only receives the first value as its average
hop size. Our flooding method could have a negative impact on battery-powered-only anchor nodes.
Nevertheless, this aspect is out of scope of the current proposal. We take the unknown node U1 shown
in Figure 1 as an example; the hop count from A1 to U1 is only one hop; thus, U1 just saves the average
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hop distance of A1, i.e., 8.75, as its average hop size. Then, U1 estimates the distances to all other
anchors as follows:

U1→ A1 : 8.75× 1 = 8.75,
U1→ A2 : 8.75× 4 = 35,
U1→ A3 : 8.75× 2 = 17.5.

(2)

In Figure 1, it is obvious that the range measurement error is large with the DV-HOP scheme,
where the actual range between A1 and U1 is 15, but not 8.75. Additionally, the large range error will
make the final position error even greater by using the maximum likelihood estimation method or the
triangular positioning algorithm.

2.2. Received Signal Strength Indication

Due to the lower implementation complexity without the need for additional hardware,
RSSI becomes an attractive alternative in WSN [39]. However, RSSI is easily affected by noise and
obstacles and may lead to significant estimation errors; moreover, two nodes may receive different RSSI
originated from each other under an uncertain environment [30]. Currently, the signal propagation
model of RSSI for WSN can be divided into three types, including the two-ray ground model, free space
model and log-normal shadow model [42,43]. The first two models are applicable to some special
occasions, while the last one describes the fading of signal strength and is appropriate for both outdoor
and indoor environments, and it is a more general model of signal propagation. Then, the received
signal power of nodes for the log-normal shadow model can be defined by [44]:

RSS(d)(dBm) = Ptr − Ploss(d0)− 10τlog10
d
d0

+ Xσ, (3)

where d means the distance between the sending nodes and the receiving nodes, RSS(d) indicates the
received signal power of nodes located at the distance of d, d0 is the referenced distance, Ptr denotes
the transmitting power, Ploss(d0) means the path loss for d0, τ indicates loss exponent in the path and
its value relies on the environment of propagation and Xσ is the noise in RSSI, which is described as
a Gaussian random variable with zero-mean and standard deviation σ.

2.3. Extreme Learning Machine

For P arbitrary different training samples {(xi, ti)
P
i=1}, where ti = (ti1, ti2, · · · , tin) ∈ Rn and

xi = (xi1, xi2, · · · , xim) ∈ Rm. In a WSN, ti denotes the coordinate of node i, and xi means the distances
from the node i to all other m nodes. With a random input x, the corresponding output function of
ELM could be specified as:

O(x) = h̄(x)W , (4)

W =

(
I
C
+ HHT

)−1
HTT , (5)

where W indicates the output weight in the connection of the hidden layer and the output in
an NN, I denotes the identity matrix, C is the regularization parameter, OP×n = (O1, O2, · · · , OP)

T,
TP×n = (T1, T2, · · · , TP)

T = (t1, t2, · · · , tP)
T, HP×h = (h̄(x1), h̄(x2), · · · , h̄(xP))

T represents the
output of the hidden layer corresponding to the given training dataset and h indicates the amount
of hidden nodes in the hidden layer. In addition, h̄(xi) = (h̄1(xi), h̄2(xi), · · · , h̄h(xi)) ∈ Rh,
where i = 1, 2, · · · , P, and h̄(xi) maps corresponding input xi from m-dimensional space to the
h-dimensional feature space of the hidden layer.
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If the feature mapping function h̄(x) in the hidden layer is unclear to users, a kernel-based ELM
was proposed in [33]. Then, the kernel matrix of ELM could be defined as:

ΩELM = HHT =

 h̄(x1)
...

h̄(xP)

 [ h̄T(x1) · · · h̄T(xP)
]

=

 h̄(x1)h̄T(x1)
...

h̄(xP)h̄T(x1)

· · ·
...
· · ·

h̄(x1)h̄T(xP)
...

h̄(xP)h̄T(xP)



=

 K(x1, x1)
...

K(xP, x1)

· · ·
...
· · ·

K(x1, xP)
...

K(xP, xP)

 ,

(6)

where the corresponding kernel function in Equation (6) could be denoted as:

K(a, b) = e−γ||a−b||2 , (7)

where γ is parameter of the kernel.
Then, the output function in Equation (4) could be rewritten as:

O(x) = h̄(x)
(

I
C
+ ΩELM

)−1
HTT . (8)

In the above kernel implementation of ELM, it is not necessary to explicitly give the formula of
the feature mapping function in the hidden layer, as well as the number of hidden nodes [45].

The weight connecting matrix W between the output layer and the hidden layer in Equation (4) is
obtained by [38]:

min
W

(
‖O − T‖2

F

)
= min

W

(
‖HW − T‖2

F

)
, (9)

where ‖ · ‖F indicates the Frobenius norm. Usually, the minimum norm least square problem is
sensitive to noises.

Equality-constrained optimization is used to enhance the stability and generalization of ELM [33].
Hence, Equation (9) could be converted as:

min
W

(
‖HW − T‖2

F + λ‖W‖2
F

)
, (10)

where ‖W‖2
F = ∑h

i=1 ‖Wi‖2
2, in which the L2-norm is used, and λ is the regularization parameter,

usually, λ = I
C . Here, C and I are mentioned above.

Thus, the kernel-based ELM with regularization could be described as Algorithm 1.

Algorithm 1 The kernel-based ELM with regularization.
Input: training samples {(xi, ti) | xi ∈ Rm, ti ∈ Rn, i = 1, · · · , P}; the regularization parameter C;
the kernel function K(a, b); the input of a random testing sample x.

(1) Calculate the kernel matrix ΩELM of the given P training samples based on Equation (6);
(2) Calculate the output of the test sample O based on Equation (8).

Output: the test sample O.
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2.4. Correntropy

Inspired by information theoretic learning (ITL) [46], the original correlation function of
correntropy [47] is extended to the general case [48], while it is only used for a single random process
before. Assume two arbitrary random variables S and J, of which the similarity could be measured
by correntropy:

Vδ(S, J) = E[κδ(S− J)], (11)

where κδ denotes the kernel function defined by Mercer’s theorem [49] and the mathematical
expectation denoted by E[·]. Then, the maximum of (11) is named the maximum correntropy criterion
(MCC) [48,50].

Let P be the number of samples and it is finite, then the correntropy could be expressed as:

V̂δ(S, J) =
1
P

P

∑
i=1

κδ(si − ji), (12)

we omit the subscript δ in κδ for simplicity, and:

κ(si − ji) = κδ(si − ji) = e−
(si−ji)

2

2δ2 . (13)

Since correntropy is robust against outliers, it outperforms the traditional measure, i.e., mean
squared error (MSE), when there exist outliers in the training data [48].

2.5. Regularization Correntropy Criterion-Based ELM

Another optimal solution of Equation (9) could be obtained by utilizing MCC [38], which is
defined as:

F (W̃) = max
W̃

P

∑
i=1

κ (Ti −Oi) , (14)

where the target vector, Ti, corresponds to the i-th input vector xi, while Oi is obtained by [38]:

Oi =
h

∑
j=1

Wj h̄j(xi) + ω0, i = 1, 2, · · · , P, (15)

where Wj = (Wj1, Wj2, · · · , Wjn)
T ∈ Rn and the bias vector ω0 = (ω01, ω02, · · · , ω0n)

T ∈ Rn represents
the threshold of the output units.

For simplicity, we give a definition ˜̄h(xi) = (˜̄h1(xi), ˜̄h2(xi), · · · , ˜̄hh+1(xi)) =

(1, h̄1(xi), h̄2(xi), · · · , h̄h(xi)) ∈ Rh+1, i = 1, 2, · · · , P. Additionally, H̃P×(h+1) =

(˜̄h(x1), ˜̄h(x2), · · · , ˜̄h(xP))
T. In addition, W̃(h+1)×n = (W̃1, W̃2, · · · , W̃h+1)

T = (ω0, W1, · · · , Wh)
T,

where W̃j = (W̃j1, W̃j2, · · · , W̃jn) ∈ Rn, j = 1, 2, · · · , (h + 1). Then, Equation (15) could be updated as:

Oi =
h+1

∑
j=1

˜̄hj(xi)W̃j. (16)

Then, we add L2 regularization into Equation (14), named RCC, and it is revised as:

F (W̃) = max
W̃

[
P

∑
i=1

κ

(
Ti −

h+1

∑
j=1

˜̄hj(xi)W̃j

)
− λ‖W̃‖2

F

]
, (17)

where λ still means the regularization parameter. Here, unlike the optimization in the kernel-based
ELM with regularization using least square estimation (LSE), the half-quadratic optimization
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method [51] and the position rules of the convex conjugated function [52–54] are exploited to get the
optimal solution [38]. With a fixed W̃ , Equation (17) is converted to:

F (W̃) = F (W̃ , θ) = max
W̃ ,θ


P

∑
i=1

θi

∥∥∥∥∥Ti −
h+1
∑

j=1

˜̄hj(xi)W̃j

∥∥∥∥∥
2

2
2δ2 − ϕ(θi)

− λ‖W̃‖2
F

 , (18)

and in half-quadratic optimization, θ = (θ1, θ2, · · · , θP) represents the auxiliary variables.
Let D be a diagonal matrix, where the one in the i-th column and the i-th row is Dii = θr+1

i . Then,
we have an iterative process as follows [38]:

θr+1
i = −κ

(
Ti −

h+1

∑
j=1

˜̄hi(xj)W̃ r
j

)
, (19)

W̃ r+1 = argmax
W̃

[
Tr
(
(T − H̃W̃)TD(T − H̃W̃)− λW̃TW̃

)]
, (20)

where r means the r-th iteration and it is determined by:

|Cr − Cr+1| < ε. (21)

Here, ε is a user-specified threshold, which controls the number of iterations indirectly. In addition,
C is the correntropy of the target vector and the estimated output vector, and it is given as:

C = 1
P

P

∑
i=1

κ(Ti −Oi). (22)

3. The Proposed Scheme

This section is to demonstrate the details of the novel scheme of DV-HOP localization with RSSI
based on ELM-RCC, named RHOP-ELM-RCC. RSSI is used to improve the localization accuracy,
and the accuracy could be further improved if the noise sensitivity of RSSI could be overcome.
Moreover, when there exist outliers, the estimated coordinates, calculated by least squares (LS) [55] or
ELM [37], will be affected to a certain extent. Then, the ELM-RCC mentioned above could decrease
the effect of both noise and transport error. Meanwhile, for the sake of comparison, we also give
a description of the DV-HOP localization algorithm with RSSI based on ELM, named RHOP-ELM.

3.1. DV-HOP Localization with RSSI Based on ELM-RCC

In the proposed scheme, we reduce distance measurement error by incorporating the DV-HOP
and RSSI without additional hardware. After getting the distance from all of the anchor nodes to
each unknown node, the coordinates of unknown nodes are calculated by the SLFN using ELM-RCC,
which is of good nonlinear mapping capability and high learning speed, as well as it shows a powerful
noise-resistant ability. Here, the localization scheme RHOP-ELM-RCC is presented as follows.

(1) Each anchor node delivers a beacon detail and RSSI packet to all neighboring nodes
through broadcasting. The beacon message includes the identity IDi of the anchor node,
location coordinates (xi, yi), hop count value hopsi initialized to zero and the accumulated
distance DRSSIi, which is initialized to zero, as well. Then, the format of the beacon message
can be expressed as {IDi, (xi, yi), hopsi, DRSSIi}. When each neighboring node receives the
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broadcast, it updates the values of hopsi and DRSSIi through Equation (23) and then continues
to broadcast the updated beacon message to other neighbor nodes.{

hopsi = hopsi + 1
DRSSIi = DRSSIi + dis_hop

(23)

where “dis_hop” is the estimated distance transformed by the RSSI value of this neighboring
node [56]. Note that the increase of the number of RSSI samples could reduce the impact of noise
on RSSI measurement. Thus, given a certain number of RSSI samples, we average all of the RSSI
values in the same measurement. Then, “dis_hop” can be defined by:

dis_hop = 10
Ptr−Ploss(d0)−RSSI

10τ × d0, (24)

where RSSI is the average RSSI values of this neighboring node.

A node will compare the newly arriving hopsi with the existing hopsi once it receives a new
packet of the same ID and will discard the new message of which the hop count is greater than
the existing hop count. Otherwise, the new message would be adopted to replace the existing
message of the same ID. After this process, all nodes in the framework will get the minimal hop
count and the corresponding accumulated RSSI distance to every anchor node.

(2) Once the minimal hop count of one anchor and the corresponding accumulated RSSI distances
from the anchor to other anchors are obtained, naturally, an average hop size and RSSI range
of one hop could be estimated easily. The average hop size written as HOPi and average RSSI
distance written as DRSSAVGi per hop are then estimated by anchor node i as:

HOPi =

(
n
∑
j 6=i

√
(xi − xj)

2 + (yi − yj)
2

)
·
(

n
∑
j 6=i

hij

)−1

DRSSAVGi =

(
n
∑
j 6=i

DRSSIij

)
·
(

n
∑
j 6=i

hij

)−1 (25)

where (xj, yj) and (xi, yi) are the coordinates of anchor j and anchor i, respectively. Additionally,
hij is the minimum hop count between anchor node i and anchor node j; DRSSIij is the RSSI
accumulated distance between anchor i and anchor j. Here, the number of anchor nodes is n.

After obtaining the average hop size and the average hop RSSI distance, each anchor node
transfers its hop size and average hop RSSI distance information. Once the unknown node gets
the average hop RSSI range information from a certain anchor, as well as the hop size, it saves
them as the average hop RSSI distance and the average hop size, then omits all of the subsequent
information. Obviously, such a strategy guarantees that most of the unknown nodes will only
receive the average hop size and average RSSI distance for one hop of the closest anchor nodes
with the minimal hops.

(3) The correction factor γ is estimated for the size of each hop through dividing the RSSI distance
per hop, dis_hop, by average RSSI distance per hop. Then, the correction hop size can be
updated by multiplying the correction factor by the average hop size. Let m be the hop count of
unknown node j and anchor i. Then, the distance between the anchor i and unknown node j
could be gained by:

dji =
m
∑

k=1
γk ×HOPi =

m
∑

k=1

dis_hopk
DRSSAVGi

×HOPi

=

m
∑

k=1
dis_hopk

DRSSAVGi
×HOPi =

DRSSIji
DRSSAVGi

×HOPi,

(26)
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where γk (k = 1, · · · , m) means the correction factor of the k-th hop from anchor i to unknown
node j, dis_hopk means the RSSI range of the k-th hop and DRSSIji is the RSSI accumulated
distance of anchor node i and unknown node j. From Equation (26), each unknown node could
evaluate the distances to all anchor nodes on the basis of the stored information in packets,
which include the accumulated RSSI distance to each anchor node, its own hop size and average
RSSI distance per hop.

(4) When the estimated distances from each anchor node to the unknown nodes are obtained,
we will use the SLFN based on ELM-RCC to obtain the coordinates of these unknown nodes.
The training samples for the SLFN using ELM-RCC are obtained from the virtual framework
covering all cases [30]. If all nodes are deployed randomly in an N × N area, N × N training
samples could be easily obtained. The inputs of these training datasets are the distances
between every two coordinates from (1, 1), (1, 2) · · · , (1, N), · · · , (N, 1), (N, 2), · · · , (N, N),
in the virtual complete topology to all anchor nodes, and the outputs of these samples are
their corresponding coordinates. After getting the training samples, the SLFN using ELM-RCC
is accordingly constructed and trained by using these N × N training samples and learning
algorithm ELM-RCC, then the coordinate of the unknown node j could be estimated by exploiting
the trained SLFN on the basis of input vector dj = (djl)

q
l=1, where q is the number of anchors,

djl is the distance between unknown node j and anchor l, which could be obtained using
Equation (26).

On the whole, the proposed DV-HOP localization scheme using RSSI and ELM-RCC could be
concluded in the Algorithm 2.

Algorithm 2 DV-HOP localization scheme with RSSI based on ELM-RCC (RHOP-ELM-RCC).
Input: the distance between anchor l and unknown node j: djl (l = 1, 2, · · · , q).

(1) Obtain the hop count and RSSI distance by broadcasting the beacon messages and RSSI packets of
each anchor nodes;

(2) Average hop size and calculate the mean value of RSSI distance per hop based on Equation (25);
(3) Compute the distances between anchor nodes and unknown nodes with the correction factor γ on

the basis of Equation (26);
(4) Use the distances obtained in Equation (26) as the input of ELM-RCC, and then, calculate the

coordinate (xj, yj) for unknown node j using ELM-RCC.
Output: the coordinate of unknown node j.

3.2. DV-HOP Localization Scheme with RSSI Using Kernel-Based ELM

The DV-HOP localization scheme with RSSI using kernel-based ELM (RHOP-ELM) is also
presented here to compare with RHOP-ELM-RCC. The only difference between them is whether
RCC is exploited. The general steps of RHOP-ELM are similar to RHOP-ELM-RCC, and we could get
RHOP-ELM by using the kernel-based ELM with regularization to replace the ELM-RCC in Step (4) of
Algorithm 2.

4. The Performance Comparison and Analysis

4.1. Simulation Description

To test the performance of RHOP-ELM-RCC and RHOP-ELM in a WSN, some simulations are
carried out. We measure the effectiveness of those schemes through localization error. Meanwhile,
our performance comparisons are implemented among those schemes, including the DV-HOP
scheme [24], DV-HOP utilizing RSSI (named RHOP) [29], a new DV-HOP (named One-HOP) [41],
RHOP-ELM and RHOP-ELM-RCC. The MATLAB R2012a computing environment is applied to
all simulations.

The training samples are obtained from the virtual framework including all cases. In this article,
WSN is deployed in a two-dimensional area, and the actual data samples are randomly gathered
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from 50 nodes of the area of 50 m × 50 m or 100 nodes from an area of 100 m × 100 m. Then,
we proportionally select the anchor nodes from all nodes. It should be indicated that the node density
of the area of 100 m× 100 m with 100 nodes is 0.01, while the node density is 0.02 in the area of
50 m× 50 m with 50 nodes. Additionally, it explains why in our simulations, the localization error in
the area 100 m× 100 m with 100 nodes is higher than that in the area 50 m× 50 m.

Moreover, the sensor nodes and anchor nodes could communicate freely, and they have the same
communication capabilities. In the following simulations, we assume that 10% of the total nodes
are anchor nodes, as shown in Figure 2. Additionally, every two nodes could communicate on the
condition that the Euclidean distance between those two nodes is within the node transmission range
R, which is the same as its maximum communication distance. Then, we run each algorithm 20 times in
different areas and then calculate the average location error against R, (R ∈ {22, 24, 25, 28, 30}) shown
in Figure 3; finally, we set R = 25. In the simulations of DV-HOP, RHOP and one-HOP, if there exist less
than three anchor nodes that could communicate with an unknown node within the communication
range R, then the coordinate of the unknown node cannot be obtained.

(a) (b)

Figure 2. Different areas of node distribution. (a) There are 50 nodes in the area of 50 m × 50 m;
(b) There are 100 nodes in the area of 100 m × 100 m.

(a) (b)

Figure 3. The impact of R in different areas. (a) The location error against R in the area of 50 m × 50 m;
(b) The location error against R in the area of 100 m × 100 m.

Additionally, other simulation parameters for the algorithms in the network are shown
in Table 1. The parameter ε of the proposed algorithm affects the location accuracy to
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a certain extent. We execute the proposed algorithm 20 times within different area; ε is set in
{10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8}, and the average value is shown in Figure 4. To obtain
low location error, we accordingly set ε = 10−3 in the area of 50 m× 50 m and ε = 10−4 in the area of
100 m× 100 m.

Table 1. Simulation parameters.

Item Value

area 50 m× 50 m, 100 m× 100 m
transmission range, R 25 m
path loss exponent, τ 4

transmitting power, Ptr 0 dB
path loss of the reference, Ploss(d0) −55 dB (d0 = 1 m)

numbers of total nodes 50, 100, 120
ratios of anchors 10%, 20%, 30%, 40%, 50%

numbers of nodes in hidden layer number of total nodes × ratio of anchors
numbers of RSSI samples 1, 5, 10, 15, 20
noise standard deviation 2, 5, 8, 11, 14
the proportion of outliers 0%, 3%, 6%, 9%, 12%, 15%, 18%

the threshold, ε 10−3, 10−4

(a) (b)

Figure 4. The impact of ε in different areas when R = 25. (a) The average ε in the area of 50 m × 50 m
when R = 25; (b) The average ε in the area of 100 m×100 m when R = 25.

Here, the performance measurement is the localization error, which is inversely proportional with
the localization accuracy. Then, the localization error is mathematically modeled as:

Error =
(

1
m

m
∑

i=1

(
(xi − x′i)

2 + (yi − y′i)
2)) 1

2
, (27)

where (x′i , y′i) and (xi, yi) are the estimated coordinate and real coordinate of unknown node i,
respectively. Additionally, m means the number of the unknown nodes except those nodes whose
coordinates cannot be obtained.

4.2. Localization Errors against the Amount of Anchor Nodes

The system scenarios with pairs of the amount of nodes and node distribution area are
(50, 50 m× 50 m) and (100, 100 m× 100 m), with the percentage of anchor nodes varying within {10%,
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20%, 30%, 40%, 50%}. In addition, the RSSI samples and the noise standard deviation are set to 10 and
5, respectively.

Figure 5 demonstrates the comparison results of our scheme with other schemes under such
a condition that the number of anchor nodes changes while the amount of total nodes remains
unchanged. It is clear that the accuracy rate of the localization algorithm is closely correlated with the
density of anchor nodes, and our scheme outperforms other schemes in localization error. Specifically,
RHOP-ELM-RCC is superior to RHOP-ELM. When the localization errors of all schemes are large,
the ratio of anchor nodes is very small; while increasing the ratio of anchor nodes, the localization
error of each scheme decreases. The reason is that the growth of the percentage of anchor nodes will
reduce the distance between unknown nodes and the anchor nodes, decrease the information loss and
lead to a relatively high accuracy.
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Figure 5. Localization errors against the amount of anchor nodes. (a) The case with 50 nodes in the
area of 50 m × 50 m; (b) The case with 100 nodes in the area of 100 m × 100 m.

4.3. Localization Errors against the Amount of RSSI Samples

Here, the WSN scenario is with a total of 50 nodes in 50 m× 50 m and 100 nodes in 100 m× 100 m.
In addition, the anchor density is fixed to 20%, and the noise standard deviation is supposed to be five.
Besides, the number of RSSI samples is described in Table 1.

We observe that increasing RSSI samples is able to achieve an improvement in the distance
estimation. Meanwhile, when the number of RSSI samples increases to 10 in Figure 6a and 15 in
Figure 6b, the tendencies of localization error approach a steady state. These indicate that the number
of RSSI samples is not a critical influencing factor in the positioning error along with the increase
of this parameter. Additionally, the curves of DV-HOP and one-HOP are nearly horizontal, and the
reason is that RSSI is not adopted in DV-HOP, which only utilizes hop count, while one-HOP does
not exploit RSSI unless the hop count between the anchor node and the unknown node is just one.
Besides, our proposed scheme is much better than others, and the performance of RHOP-ELM-RCC is
also superior to that of RHOP-ELM.
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Figure 6. Localization errors against the amount of RSSI samples. (a) The case with 50 nodes in the
area of 50 m × 50 m; (b) The case with 100 nodes in the area of 100 m × 100 m.

4.4. Localization Errors against the Noise Standard Deviation

During this simulation, the density of anchors and the amount of RSSI sample are set to 20%
and 10, respectively. Additionally, the dynamic standard deviation of noise could be found in Table 1.
The simulation performs on two different topology areas with different total nodes, as well as different
communication ranges, which are described in Section 4.1.

The localization errors against different noise standard deviations are shown in Figure 7.
Obviously, DV-HOP and one-HOP are less effected by the noise. Because DV-HOP does not depend on
the RSSI and RSSI is only being used when hop count between the unknown node and an anchor node
is right at one in the one-HOP scheme, when the hop count is over one, one-HOP works similarly to
DV-HOP, which is unrelated to the RSSI. In addition, the other schemes are implemented by using
RSSI through the whole process.
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Figure 7. Localization errors against the noise standard deviation. (a) The case with 50 nodes in the
area of 50 m × 50 m; (b) The case with 100 nodes in the area of 100 m × 100 m.

It should be indicated that the increase of noise standard deviation would lead to unstable
fluctuating of RSSI in the log-normal shadow model during the calculation of the accuracy of the
distance estimation. The localization errors of schemes related to RSSI all increase along with the
increase of noise deviation. Comparing the performance of RHOP, RHOP-ELM and RHOP-ELM-RCC,



Sensors 2017, 17, 135 14 of 17

the contribution of ELM could help to reduce the localization error to a certain extent, and combining
RCC with half-quadratic optimization could further improve anti-noise ability.

4.5. Localization Errors against the Outliers

In this part, we will demonstrate the robustness against outliers, caused by transmission error.
In this simulation, the density of anchors is 20%; the number of RSSI samples is 10; the standard
deviation of noise is five; and other initial parameters are shown in Table 1.

Since different algorithms have different ways to calculate the coordinates of unknown nodes,
as well as the methods to generate outliers, to generate abnormal values for RHOP-ELM-RCC and
RHOP-ELM, we randomly choose a proportion of outputs in the training samples, i.e., the coordinates
of unknown nodes in the training samples, and change their coordinates. Meanwhile, for other
schemes, i.e., DV-HOP, one-HOP and RHOP, we randomly select a proportion of sensor nodes as
outliers, after the corresponding RSSI distances and hop counts are obtained, then change their
coordinates. Additionally, the proportion of outliers is chosen from {0, 3%, 6%, 9%, 12%, 15%, 18%}.

Figure 8 illustrates that, except the location error of RHOP-ELM-RCC, the location errors of other
schemes are influenced by the outliers, and the trends of location error increase along with the increase
of the proportion of outlier. Although there exist outliers, our proposed scheme outperforms others,
due to the utilization of robust correntropy.

(a) (b)

Figure 8. Localization errors against the outliers. (a) The case with 50 nodes in the area of 50 m × 50 m;
(b) The case with 100 nodes in the area of 100 m × 100 m.

5. Conclusions

In the wireless CPSS system, the issue of sensor node localization plays a critical role in improving
computational efforts. To improve the performance of WSN in wireless CPSS further, this article
presents a novel NN learning scheme, named RHOP-ELM-RCC, through the combination of DV-HOP
and RSSI using ELM-RCC. It is effective while calculating the coordinates of unknown nodes and
decreasing the location error with no additional hardware consumption. During the localization
process, we combine DV-HOP with RSSI to reduce the distance error. When the distances between
anchor nodes and unknown nodes have been obtained, the SLFN based on ELM is adopted to compute
the coordinates of unknown nodes. Since ELM has good abilities of nonlinear mapping and fast
learning, the localization accuracy of RHOP-ELM is significantly improved. However, as the original
ELM is implemented on the basis of the measure, i.e., MSE, which is sensitive to outliers, the ELM-RCC
is accordingly employed using RCC, which is robust against noises, and the half-quadratic technique
is utilized for the optimization. Through the simulation comparisons for the localization error,
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the results show the satisfactory performance of our proposed scheme. Furthermore, the performance
of RHOP-ELM-RCC is better than that of RHOP-ELM and other traditional localization schemes.

This article only focuses on the optimization of the localization algorithm. In the future, to further
improve the localization performance while using our scheme in the real world, we will discuss some
issues, e.g., modeling the sleep/active functional modes of sensors to manage the battery efficiently,
optimizing our scheme with unknown transmission power and many others.
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