
sensors

Article

Visual Object Tracking Based on Cross-Modality
Gaussian-Bernoulli Deep Boltzmann Machines with
RGB-D Sensors
Mingxin Jiang 1, Zhigeng Pan 2 and Zhenzhou Tang 3,*

1 Faculty of Computer and Software Engineering, Huaiyin Institute of Technology, Huai’an 223003, China;
jmx@hyit.edu.cn

2 Digital Media &Interaction Research Center, Hangzhou Normal University, Hangzhou 310012, China;
zgpan@hznu.edu.cn

3 College of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035, China
* Correspondence: tzz@wzu.edu.cn

Academic Editor: Joonki Paik
Received: 1 December 2016; Accepted: 5 January 2017; Published: 10 January 2017

Abstract: Visual object tracking technology is one of the key issues in computer vision. In this paper,
we propose a visual object tracking algorithm based on cross-modality featuredeep learning using
Gaussian-Bernoulli deep Boltzmann machines (DBM) with RGB-D sensors. First, a cross-modality
featurelearning network based on aGaussian-Bernoulli DBM is constructed, which can extract
cross-modality features of the samples in RGB-D video data. Second, the cross-modality features
of the samples are input into the logistic regression classifier, andthe observation likelihood model
is established according to the confidence score of the classifier. Finally, the object tracking results
over RGB-D data are obtained using aBayesian maximum a posteriori (MAP) probability estimation
algorithm. The experimental results show that the proposed method has strong robustness to
abnormal changes (e.g., occlusion, rotation, illumination change, etc.). The algorithm can steadily
track multiple targets and has higher accuracy.

Keywords: Gaussian-Bernoulli deep Boltzmann machines; cross-modality features; Bayesian MAP;
visual object tracking

1. Introduction

Visual object tracking is one of the key research topics in the field of computer vision. In recent
years, it has had a wide range of applications, such as robot navigation, intelligent video surveillance,
andvideo measurement [1–4]. Despite many research efforts, visual object tracking is still regarded as
a challenging problem due to changes in object appearance, occlusions, complex motion, illumination
variation and background clutter [5].

A typical visual object tracking algorithm often includes three major components: a state
transition model, an observation likelihood model and a search strategy. A state transition model
is used to model the temporal consistency of the states of a moving object, whereas an observation
likelihood model describes the object and observations based on visual representations. Undoubtedly,
feature representation is the most important factor in visual object tracking. Most of existing RGB-D
trackers [6–8] tend to use hand-crafted features to represent target objects, such as Harr-like features [9],
histogram of oriented gradients (HOG) [10], and local binary patterns (LBP) [11]. Hand-crafted features
aim to describe some pre-defined image patterns, but they cannot capture thecomplex and specific
characteristics of target objects. Hand-crafted features may lead to the loss of unrecoverable information
which is suitable for tracking in different scenarios.
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With the rapiddevelopment of computation power and the emergence of large-scale visual data,
deep learning has received much attention and had a promising performance in computer vision tasks,
e.g., object tracking [12], object detection [13], and image classification [14]. Wang et al. proposed
a so-called deep learning tracker (DLT) for robust visual tracking [15]. DLT trackers learn generic
features from auxiliary natural images offline. ADLT tracker cannot obtain deep features with temporal
invariance, which is important for visual object tracking. In [16], the authors proposed a video tracking
algorithm using learned hierarchical features in which the hierarchical features are learned via a
two-layer convolutional neural network. Ding et al. [17] proposed a new tracking–learning–data
architecture to transfer a generic object tracker to a blur invariant object tracker without deblurring
image sequences. One of the research focuses of this paper is how to use deep learning effectively to
extract the features of the target objects in RGB-D data.

To the best of our knowledge, the existing visual tracking methods using deep learning follow a
similar procedure, which tracks objects in 2D sequences. Object tracking is performed over 2D video
sequences in most early research works like TLD tracker [18], MIL tracker [19] and VTD tracker [20].
With the great popularity of affordable depth sensors, such as Kinect, Asus Xtion, and PrimeSense, an
explosive growth of RGB-D data that can be used nowadays has been seen. Reliable depth images can
provide valuable information to improve tracking performance. In [21], the author establishesa unified
benchmark dataset of 100 RGB-D videos, which provide a foundation for further research in both RGB
and RGB-D tracking. One of theresearch focuses of this paper is how to fuse RGB information and
depth information effectively to improve the performance of visual object tracking in RGB-D data.

To overcome the problems in the existing methods, we propose a visual object tracking algorithm
based on cross-modality feature learning using Gaussian-Bernoulli deep Boltzmann machines (DBM)
over RGB-D data. A cross-modality deep learning framework is usedto learn a robust tracker
forRGB-D data. The cross-modality features of the samples are input into the logistic regression
classifier, andthe observation likelihood model is established according to the confidence score of
the classifier. We obtain the object tracking results over RGB-D data using aBayesian maximum a
posteriori probability estimation algorithm. Experimental results show that such a cross-modality
learning can improve the tracking performance.

The main contributions of this paper can be summarized as follows:

• We present a cross-modality Gaussian-Bernoulli deep Boltzmann machine (DBM) to learn
the cross-modality features of target objects in RGB-D data. The proposed cross-modality
Gaussian-Bernoulli DBM is constructed with two single-modality Gaussian-Bernoulli DBMs
by adding an additional layer of binary hidden units on top of them, which can fuse RGB
information and depth information effectively.

• A unified RGB-D tracking framework based on Bayesian MAP is proposed, in which the robust
appearance description with cross-modality features deep learning, temporal continuity is fully
considered in the state transition model.

• Extensive experiments are conducted to compare our tracker with several state-of-the-art methods
on the recent benchmark dataset [21]. From experimental results, we can see that the proposed
tracker performs favorably against the compared state-of-the-art trackers.

The remainder of the paper is organized as follows. First, feature learning over RGB-D data with
cross-modality deep Boltzmann machines is described in the next section. Then we introduce our
tracking framework in Section 3. The implementation of our proposed method is presented in Section 4.
Experimental results and analysis are demonstrated in Section 5, and finally we draw conclusions in
Section 6.
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2. Related Work

2.1. Boltzmann Machine

TheBoltzmann machine (BM) was proposed by Hinton and Sejnowski [22]. A Boltzmann machine
is a feedback neural network consisting of fully connected coupled random neurons. The connections
between neurons are symmetric, and there is no self-feedback. The outputs of neurons only have
two states (active and inactive) which are expressed by 0 and 1, respectively. A set of visible units
v ∈ {0, 1}D and a set of hidden units h ∈ {0, 1}F are included in BM (as shown in Figure 1). The visible
units and hidden units are composed ofthe visible nodes and hidden nodes, and D and F represent the
number of visible nodes and hidden layer nodes, respectively.
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We formulate the energy function over the state {v, h} as:

E(v, h; Ψ) = −v′Wh− 1
2

h′Rh− 1
2

v′Lv− v′B− h′A (1)

where Ψ = {W, L, R, B, A} are the model parameters: W, L, R represent the symmetric interaction
terms of visible nodes to hidden nodes, visible nodes to visible nodes, and hidden nodes to hidden
nodes. The diagonal elements of L and R are set to 0. B and A are the threshold values of the visible
layer and the hidden layer.

The model defines a probability distribution over a visible vector v as:

P(v; Ψ) =
P∗(v; Ψ)

Z(Ψ)
=

1
Z(Ψ)∑h

exp(−E(v, h; Ψ)) (2)

where Z(Ψ) = ∑
v

∑
h

exp(−E(v, h; Ψ)) is called the partition function, and P∗ is an

unnormalized probability.
The following formulations give the conditional distributions over hidden and visible units:

P(hj = 1
∣∣v, h−j) = σ(

D

∑
i=1

Wijvi +
P

∑
m=1\j

Jjmhj) (3)

P(vi = 1|h, v−i) = σ(
P

∑
j=1

Wijhj +
D

∑
k=1\i

Jikvi) (4)

where σ(x) = 1/(1 + exp(−x)) is the logistic function.

2.2. Restricted Boltzmann Machine

Setting both L = 0 and R = 0 in Equation (1), we will recover the model of a restricted Boltzmann
machine (RBM), as shown in Figure 2.
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A restricted Boltzmann machine(RBM) is a generative stochastic artificial neural networkthat can
learn a probability distribution over its set of inputs. It is an undirected graphical model with each
visible unit only connected to each hidden unit. The energy function over the visible and hidden units.

E(v, h; Ψ) = −v′Wh− v′B− h′A (5)

where E : {0, 1}D+F → R , Ψ = {W, A, B} are the model parameters. Equation (6) defines the joint
probability distribution over the visible units v ∈ {0, 1}D and hidden units h ∈ {0, 1}F.

P(v, h; Ψ) =
1

Z(Ψ)
exp(−E(v, h; Ψ)) (6)

where the normalizing factor Z(Ψ) denotes the partition function.

2.3. Gaussian-Bernoulli Restricted Boltzmann Machines

When inputs are real-valued images, we formulate the energy function of the Gaussian-Bernoulli
RBM over the state {v, h} as follows [23]:

E(v, h; Ψ) = −
D

∑
i=1

(vi − bi)
2

2σ2
i

−
D

∑
i=1

F

∑
j=1

Wijhj
vi
σi
−

F

∑
j=1

ajhj (7)

where Ψ = {a, b, W, σ} are the model parameters, bi and aj are biases corresponding to visible and
hidden variables, respectively, Wij is the matrix of weights connecting visible and hidden nodes, and
σi is the standard deviation associated with a Gaussian visible variable vi.

2.4. Gaussian-Bernoulli Deep Boltzmann Machine

A deep Boltzmann machine (DBM) [24] contains a set of visible units v ∈ {0, 1}D, and a sequence
of layers of hidden units h1 ∈ {0, 1}L1 , h2 ∈ {0, 1}L2 , . . . , hN ∈ {0, 1}LN . Connections only exist
between hidden units in adjacent layers. We illustrate a two-layer Gaussian-Bernoulli deep Boltzmann
machine, consisting of learning a stack of modified Gaussian-Bernoulli RBMs (see Figure 3).
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The energy function of the joint configuration {v, h(1), h(2)} is formulated as:

E(v, h(1), h(2); Ψ) = −v′W(1)h(1) − h(1)′W(2)h(2) (8)

where Ψ = {W(1), W(2)} are the model parameters, and h = {h(1), h(2)} denote the set of hidden units.
The probability distribution over a visible vector v can be modelled as:

P(v; Ψ) =
1

Z(Ψ) ∑
h(1),h(2)

exp(−E(v, h(1), h(2); Ψ)) (9)

3. Proposed Tracking framework

3.1. Feature Learning UsingCross-Modality Deep Boltzmann Machines over RGB-D Data

ABoltzmann machine (BM) is an effective tool in representing probability distribution over its
inputs. Deep Boltzmann Machines (DBMs) have been successfully used in many application domains,
e.g., topic modelling, classification, dimensionality reduction, feature learning, etc. According to the
task, DBMs can be trained in either unsupervised or supervised ways. In this paper, we propose the
cross-modality DBMs for feature learning in visual tracking over RGB-D data. In this section, we first
describe how to establish cross-modality DBMs, review BMs, RBMs and Gaussian-Bernoulli restricted
Boltzmann machines, then go over them in detail.

Multimodal deep learning was proposed forvideo and audio [25,26]. In RGB-D data, we can
also learn deep features over multiple modalities (RGB modality and depth modality). The proposed
cross-modality DBM is constructed with two single-modality Gaussian-Bernoulli DBMs by adding an
additional layer of binary hidden units on top of them (see Figure 4). Firstly, we model a RGB-specific
Gaussian-Bernoulli DBM with two hidden layers as Figure 4a, where vRGB ∈ RD denotes a real-valued

image input. Let h(1RGB) ∈ {0, 1}FRGB
1 and h(2RGB) ∈ {0, 1}FRGB

2 be the two layers of hidden units in
the RGB-specific DBM. Then, the energy function of Gaussian-Bernoulli DBM over

{
vRGB, hRGB} is

defined as:

E(vRGB, h(1RGB), h(2RGB); ΨRGB) =
D
∑

i=1

(v(RGB)
i −b(RGB)

i )
2

2σ
(RGB)2

i

−
D
∑

i=1

FRGB
1
∑

j=1

v(RGB)
i

σ
(RGB)
i

W(1RGB)
ij h(1RGB)

j

−
FRGB

1
∑

j=1

FRGB
2
∑

l=1
W(2RGB)

jl h(1RGB)
j h(2RGB)

l −
FRGB

1
∑

j=1
a(1RGB)

j h(1RGB)
j −

FRGB
2
∑

l=1
a(2RGB)

l h(2RGB)
l

(10)
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where σ
(RGB)
i is thedeviation of the corresponding Gaussian model, and ΨRGB is the parameter

vector of RGB-specific Gaussian-Bernoulli DBM. Therefore, the joint distribution of the energy-based
probabilistic model is defined through an energy function as:

P(vRGB, hRGB; ΨRGB) =
1

Z(ΨRGB)
∑

hRGB

exp(−E(vRGB, hRGB; ΨRGB)) (11)

where Z(ΨRGB) is the partition function.
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Similarly, the corresponding probability assigned to vDepth by Depth-specific DBM has the same
form with Equation (11). Let vDepth ∈ RK denotes a real-valued depth image input. Let h(1Depth) ∈
{0, 1}FDepth

1 and h(2Depth) ∈ {0, 1}FDepth
2 be the two layers of hidden units in the Depth-specific DBM,

as show in Figure 4b. The energy of the Gaussian-Bernoulli DBM and the joint distribution of the
energy-based probabilistic model over

{
vDepth, hDepth

}
are defined as:

E(vDepth, h(1Depth), h(2Depth); ΨDepth) =
D
∑

i=1

(v(Depth)
i −b(Depth)

i )
2

2σ
(Depth)2

i

−
D
∑

i=1

FDepth
1
∑

j=1

v(Depth)
i

σ
(Depth)
i

W(1Depth)
ij h(1Depth)

j

−
FDepth

1
∑

j=1

FDepth
2
∑

l=1
W(2Depth)

jl h(1Depth)
j h(2Depth)

l −
FDepth

1
∑

j=1
a(1Depth)

j h(1Depth)
j −

FDepth
2
∑

l=1
a(2Depth)

l h(2Depth)
l

(12)

P(vDepth, h(1Depth), h(2Depth); ΨDepth) = 1
Z(ΨDepth)

∑
h(1Depth)(2Depth)

exp(−E(vDepth, h(1Depth), h(2Depth); ΨDepth)) (13)

where σ
(Depth)
i is deviation of the corresponding Gaussian model, and ΨDepth is the parameter vector

of Depth-specific Gaussian-Bernoulli DBM.
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Let vRGB ∈ RD and vDepth ∈ RK denote a real-valued RGB input and a real-valued depth input
respectively. Consider modeling an image-depth DBM with three hidden layers, let {vRGB, vDepth}
be real-valued Gaussian variables, and {h(1RGB), h(2RGB), h(1Depth), h(2Depth), h(3)} be binary stochastic

hidden units. Let h(1RGB) ∈ {0, 1}FRGB
1 and h(2RGB) ∈ {0, 1}FRGB

2 be the two layers of hidden units

in the RGB-specific two layer DBM. Similarly, let h(1Depth) ∈ {0, 1}FDepth
1 and h(2Depth) ∈ {0, 1}FDepth

2

be the two layers of hidden units in the depth-specific two layer DBM. The energy of the proposed
cross-modality Gaussian-Bernoulli DBM over {v, h} can be defined as:

E(v, h; Ψcross−modality) =
D
∑

i=1

(v(RGB)
i −b(RGB)

i )
2

2σ
(RGB)2

i

−
D
∑
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∑
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i
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i
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−
FRGB

1
∑

j=1

FRGB
2
∑

l=1
h(1RGB)

j W(2RGB)
jl h(2RGB)

l −
FRGB

2
∑

l=1

FRGB
3
∑

p=1
h(2RGB)

j W(3RGB)
lp h(3RGB)

p −
FRGB

1
∑

j=1
a(1RGB)

j h(1RGB)
j

−
FRGB

2
∑

l=1
a(2RGB)

l h(2RGB)
l +

K
∑

i=1

(v(Depth)
i −b(Depth)

i )
2

2σ
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i

−
K
∑
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1
∑
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i
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i
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j

−
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1
∑

j=1
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2
∑
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j W(2Depth)
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l −
FDepth

2
∑

l=1

FDepth
3
∑

p=1
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j W(3Depth)
lp h(3Depth)

p −
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∑

j=1
a(1Depth)

j h(1Depth)
j

−
FDepth

2
∑

l=1
a(2Depth)

l h(2Depth)
l −

F3
∑

p=1
a(3)p h(3)p

(14)

Therefore, the joint probability distribution over the cross-modal input {vRGB, vDepth} can be
written as:

P(vRGB, vDepth; Ψcross−modality) = ∑
h(2RGB),h(2Depth),h(3)

P(h(2RGB), h(2Depth), h(3))( ∑
h(1RGB)

P(vRGB, h(1RGB), h(2RGB))

( ∑
h(1Depth)

P(vDepth, h(1Depth), h(2Depth))

= 1
Z(Ψcross−modality)

∑
h

exp(−∑
i

(vRGB
i )

2

2s2
i

+ ∑
ij

v(RGB)
i

si
W(1RGB)

ij h(1RGB)
j + ∑

jl
W(2RGB)

jl h(1RGB)
j h(2RGB)

l

−∑
i

(vDepth
i )

2

2s2
i

+ ∑
ij

v(Depth)
i

si
W(1Depth)

ij h(1Depth)
j + ∑

jl
W(2Depth)

jl h(1Depth)
j h(2Depth)

l

+∑
lp

W(3RGB)h(2RGB)
l h(3)p + ∑

lp
W(3Depth)h(2Depth))

l h(3)p )

(15)

where Ψcross−modality is the parameter vector of cross-modality Gaussian-Bernoulli DBM. The task
of learning the cross-modality Gaussian-Bernoulli DBM is the maximum likelihood learning for
Equation (6) with respect to the model parameters.

3.2. Bayesian Framework

In this paper, the object tracking is formulated as a hidden state variable Bayesian maximum a
posteriori (MAP) estimation problem in the Hidden Markov model. Given a set of observed variables
Zt = {Z1, Z2, . . . , Zt}, we can estimate the hidden state variable Xt =

{
X1

t , X2
t , . . . . . . XN

t
}

by using
Bayesian MAP theory [27].

The posteriori probability distribution according to the Bayesian theory can be modelled as the
following derivation:

p(Xt|Zt) ∝ p(Zt|Xt)
w

p(Xt|Xt−1)p(Xt−1|Zt−1)dXt−1 (16)

where p(Z t|Xt) stands for an observation likelihood model and p(Xt|Xt−1) is called a state transition
model for two consecutive frames. We can obtain the optimal state X̂t among all the candidates through
maximum posterior probability estimation:

X̂t = arg max
Xt

p(Xt|Zt) (17)
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3.2.1. State Transition Model

The state variable is defined as Xt = {xt, yt, θt, st, αt, φt}, which includes the six parameters of the
motion affine transformation, where xt and yt denote the x-direction and y-direction translation of
the object in the frame t respectively, θt represents the rotation angle, st stands for the scale change,
αt denotes the aspect ratio, and φt represents skew direction at time t.

We assume that the candidate states are generated according to Gaussian distribution:

p(Xt|Xt−1) = N(Xt; Xt−1, Σ) (18)

where Σ is a diagonal covariance matrix whose diagonal elements are σ2
x , σ2

y , σ2
θ , σ2

S , σ2
α , σ2

φ.

3.2.2. Observation Likelihood Model

In this paper, the observation model that we use is discriminative. A binary linear classifier
is adopted to classify tracking observations into object class and background class during tracking.
Observations are represented using features learned from the DBM introduced previously. We can
obtain a training dataset with approximate labels after extracting features of positive and negative
samples. Deep representations are likely to be linearly separable, and linear classifiers are less prone to
overfitting. We adopt the logistic regression classifier owing to its capability of providing predictions
in probability estimation.

Let h3
i ∈ Rr×1 denote the deep feature for the i-th training sample, and yi ∈ {−1,+1} represent

the label for the i-th training sample. Z+ = [h3
1+ , h3

2+ , . . . , h3
D+ ] ∈ Rr×D+

stands for the positive

training set with their respective labels as Y+ = [y1+ , y2+ , . . . , yD+ ] ∈ {−1,+1}D+×1. Similarly,
Z− = [h3

1− , h3
2− , . . . , h3

D− ] ∈ Rr×D− represents the negative training set with their respective labels as

Y− = [y1− , y2− , ..., yD− ] ∈ {−1,+1}D−×1. Training the logistic regression classifier by optimizing:

min
±w

C+
D+

∑
i+=1

log(1 + eyi+±wT±h(3)
i+ ) + C−

D−

∑
i−=1

log(1 + eyi−±wT±h(3)
i− ) (19)

where C+ ∈ R is the parameter to weight the logistic cost of the positive-class and C− ∈ R is the
parameter to weight the logistic cost of the negative-class logistic. Weight regularization w is added to
the cost function in Equation (19) to reduce overfitting. In the prediction stage, the confidence score of
the trained logistic regression classifier can be computed as follows:

p(Zt|Xt) =
1

1 + e−(±wT±zt)
(20)

4. The Implementation of Our Proposed Method

Our method has two major components, which are shown in Figures 5 and 6. In the first place,
as demonstrated in Figure 5, unlabeled patches in RGB and depth modality are used to train the
cross-modality Gaussian-Bernoulli DBM offline.
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5. Experimental Results and Analysis

The experiments of our proposed tracking algorithm is implemented on MATLAB R2014a, Intel(R)
Core(TM) i7-4712MQ, CPU@3.40 GHz and TITAN GPU, 8.00 GB RAM, Windows 8.1 operating system,
in Beijing, China.

5.1. Qualitative Evaluation

In order to show the robustness of the visual object tracking algorithm discussed in this paper,
we compare our tracker with several state-of-the-art methods on arecent benchmark dataset [21] in
different environments with heavy or long-time partial occlusion, rotation, scale change, and fast
motion. Given the limited space, in this section we only list four of them to show the experimental
results and the forms of data statistics.
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We compare our method with several state-of-the-art trackers, including TLD Tracker[18], MIL
Tracker [19],VTD Tracker [20], and RGB-D Tracker [28], CT Tracker [29], Struck Tracker [30], Deep
Tracker [15], and Multi-cues Tracker [31],andwe ranthe experiments based on the code provided by
the authors.

Figure 7 demonstrates that our method performs well in terms of rotation, scale and position when
the object undergoes severe occlusion. The MIL tracker and VTD tracker are sensitive to occlusion.

Sensors 2017, 17, 121 10 of 17 

 

motion. Given the limited space, in this section we only list four of them to show the experimental 
results and the forms of data statistics.  

We compare our method with several state-of-the-art trackers, including TLD Tracker[18], MIL 
Tracker [19],VTD Tracker [20], and RGB-D Tracker [28], CT Tracker [29], Struck Tracker [30], Deep 
Tracker [15], and Multi-cues Tracker [31],andwe ranthe experiments based on the code provided by 
the authors.  

Figure 7 demonstrates that our method performs well in terms of rotation, scale and position 
when the object undergoes severe occlusion. The MIL tracker and VTD tracker are sensitive  
to occlusion. 

 
RGB image Depth image Frame 29 

 
RGB image Depth image Frame 53 

 
RGB image Depth image Frame 95 

Figure 7.The tracking results on the test video 1 obtained by different methods. 

Figure 8 shows the tracking results in the sequence with long-time partial occlusion, pose change 
and background clutter. We can see that the RGBD, MIL and VTD methods do not perform well and 
they are less effective in this case. 

 
RGB image Depth image Frame 60 

Figure 7. The tracking results on the test video 1 obtained by different methods.

Figure 8 shows the tracking results in the sequence with long-time partial occlusion, pose change
and background clutter. We can see that the RGBD, MIL and VTD methods do not perform well and
they are less effective in this case.

Sensors 2017, 17, 121 10 of 17 

 

motion. Given the limited space, in this section we only list four of them to show the experimental 
results and the forms of data statistics.  

We compare our method with several state-of-the-art trackers, including TLD Tracker[18], MIL 
Tracker [19],VTD Tracker [20], and RGB-D Tracker [28], CT Tracker [29], Struck Tracker [30], Deep 
Tracker [15], and Multi-cues Tracker [31],andwe ranthe experiments based on the code provided by 
the authors.  

Figure 7 demonstrates that our method performs well in terms of rotation, scale and position 
when the object undergoes severe occlusion. The MIL tracker and VTD tracker are sensitive  
to occlusion. 

 
RGB image Depth image Frame 29 

 
RGB image Depth image Frame 53 

 
RGB image Depth image Frame 95 

Figure 7.The tracking results on the test video 1 obtained by different methods. 

Figure 8 shows the tracking results in the sequence with long-time partial occlusion, pose change 
and background clutter. We can see that the RGBD, MIL and VTD methods do not perform well and 
they are less effective in this case. 

 
RGB image Depth image Frame 60 

Figure 8. Cont.



Sensors 2017, 17, 121 11 of 17
Sensors 2017, 17, 121 11 of 17 

 

 
RGB image Depth image Frame 90 

 
RGB image Depth image Frame 196 

Figure 8.The tracking results on the test video 2 obtained by different methods. 

Figure 9 illustrates the tracking results on the test video with severe occlusion, appearance 
change and fast motion. From the results, we can notice that the TLD, MIL and VTD methods are 
sensitive to target appearance change or occlusion. 

 
RGB image Depth image Frame 20 

 
RGB image Depth image Frame 46 

  

Figure 8. The tracking results on the test video 2 obtained by different methods.

Figure 9 illustrates the tracking results on the test video with severe occlusion, appearance change
and fast motion. From the results, we can notice that the TLD, MIL and VTD methods are sensitive to
target appearance change or occlusion.

Sensors 2017, 17, 121 11 of 17 

 

 
RGB image Depth image Frame 90 

 
RGB image Depth image Frame 196 

Figure 8.The tracking results on the test video 2 obtained by different methods. 

Figure 9 illustrates the tracking results on the test video with severe occlusion, appearance 
change and fast motion. From the results, we can notice that the TLD, MIL and VTD methods are 
sensitive to target appearance change or occlusion. 

 
RGB image Depth image Frame 20 

 
RGB image Depth image Frame 46 

  
Figure 9. Cont.



Sensors 2017, 17, 121 12 of 17
Sensors 2017, 17, 121 12 of 17 

 

 
RGB image Depth image Frame 175 

Figure 9.The tracking results on the test video 3 obtained by different methods. 

Figure 10 shows the tracking results in the sequence with all occlusion, pose change and 
background clutter. We can see that the Stuck, MIL and VTD methods do not perform well and they 
are less effective in this case. 

 
RGB image Depth image Frame 28 

 
RGB image Depth image Frame 35 

 
RGB image Depth image Frame 39 

Figure 10.The tracking results on the test video 4 obtained by different methods. 

Figure 11 illustrates the “bad” tracking results of our method,meaning frames where tracking 
failures are observed. When the objects are all occluded, the tracking results of our method experience 
a drift phenomenon. 

Figure 9. The tracking results on the test video 3 obtained by different methods.

Figure 10 shows the tracking results in the sequence with all occlusion, pose change and
background clutter. We can see that the Stuck, MIL and VTD methods do not perform well and
they are less effective in this case.

Sensors 2017, 17, 121 12 of 17 

 

 
RGB image Depth image Frame 175 

Figure 9.The tracking results on the test video 3 obtained by different methods. 

Figure 10 shows the tracking results in the sequence with all occlusion, pose change and 
background clutter. We can see that the Stuck, MIL and VTD methods do not perform well and they 
are less effective in this case. 

 
RGB image Depth image Frame 28 

 
RGB image Depth image Frame 35 

 
RGB image Depth image Frame 39 

Figure 10.The tracking results on the test video 4 obtained by different methods. 

Figure 11 illustrates the “bad” tracking results of our method,meaning frames where tracking 
failures are observed. When the objects are all occluded, the tracking results of our method experience 
a drift phenomenon. 

Figure 10. The tracking results on the test video 4 obtained by different methods.

Figure 11 illustrates the “bad” tracking results of our method,meaning frames where tracking
failures are observed. When the objects are all occluded, the tracking results of our method experience
a drift phenomenon.
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As shown in experimental results, the proposed tracking method performs favorably against
the state-of-the-art tracking methods in handling challenging video sequences, but there are some
limitations for our method. The robustness of the proposed tracking method is not strong enough to
solve allocclusion and abrupt movement.

5.2. Quantitative Evaluation

We use two measurements to quantitatively evaluate tracking performances. The first one is
called average center location error [32] which measures distances of centers between tracking results
and ground truths in pixels. The second one is called success rate (SR) which is calculated according to
area(RT∩RG)
area(RT∪RG)

and indicates theextent of region overlapping between tracking results RT and RG.
Figures 12–15 report the average center location errors of different tracking methods over three

test videos. The comparison results show that the proposed method has a smaller average center
location error than the state-of-the-art methods indifferent situations.
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Table 1 reports the success rates, where larger scores mean more accurate results.

Table 1. The evaluation results of SR under different categorizations.

Method
Object Type Movement Occlusion

Human Animal Fast Slow Yes No

Our Tracker 80.1% 72.9% 77.5% 82.3% 81.2% 82.6%
TLD Tracker 29.0% 35.1% 29.7% 51.6% 33.8% 38.7%
VTD Tracker 30.9% 48.8% 37.2% 57.3% 28.3% 63.1%
MIL Tracker 32.2% 37.2% 31.5% 45.5% 25.6% 49.0%

RGB-D Tracker 47.1% 47.0% 51.8% 56.7% 46.9% 61.9%
Struck Tracker 35.4% 47.0% 39.0% 58.0% 30.4% 63.5%

CT Tracker 31.1% 46.7% 31.5% 48.6% 34.8% 46.8%
Deep Tracker 72.1% 64.8% 70.1% 76.3% 71.4% 72.6%

Multi-cues Tracker 33.2% 49.5% 52.3% 55.6% 44.7% 57.5%

Table 2 lists the average speed of each method on the recent benchmark dataset [21]. The
average speed of our method is 0.14 fps, implemented in Matlab without optimization for speed.
The fine-tuning of our method is time-consuming.

Table 2. The average speed of each method on the recent benchmark dataset [21].

Method The Average Speed (fps)

Our Tracker 0.14
TLD Tracker 28.5
VTD Tracker 6.7
MIL Tracker 38.9

RGB-D Tracker 2.6
Struck Tracker 20.8

CT Tracker 64.7
Deep Tracker 0.23

Multi-cues Tracker 40.7

6. Conclusions

By analyzing the problems of the existing technologies, this paper proposes a visual object tracking
algorithm based on cross-modality features learning using Gaussian-Bernoulli deep Boltzmann
machines (DBM) over RGB-D data. We extract cross-modality features of the samples in RGB-D video
data based on across-modality Gaussian-Bernoulli DBM and obtain the object tracking results over
RGB-D data using aBayesian maximum a posteriori probability estimation algorithm. The experimental
results show that the proposed method greatly improves the robustness and accuracy of thealgorithm.
In the future, we will extend the proposed method to solve other vision problems (e.g., object detection,
face recognition, etc.).
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