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Abstract: In this article, the pull-in instability and dynamic characteristics of electrostatically actuated
suspended microchannel resonators are studied. A theoretical model is presented to describe the
pull-in effect of suspended microchannel resonators by considering the electrostatic field and the
internal fluid. The results indicate that the system is subjected to both the pull-in instability and the
flutter. The former is induced by the applied voltage which exceeds the pull-in value while the latter
occurs as the velocity of steady flow get closer to the critical velocity. The statically and dynamically
stable regions are presented by thoroughly studying the two forms of instability. It is demonstrated
that the steady flow can remarkably extend the dynamic stable range of pull-in while the applied
voltage slightly decreases the critical velocity. It is also shown that the dc voltage and the steady flow
can adjust the resonant frequency while the ac voltage can modulate the vibrational amplitude of
the resonator.

Keywords: MEMS; suspended microchannel resonators; electrostatic actuation; internal fluid flow;
instability; dynamics

1. Introduction

Miniaturized beam sensors are significant components of microelectromechanical systems (MEMS)
which have extensive applications in information technology, biomedicine, aerospace, etc. [1,2].
In many applications, beam resonators are required to be operated in fluidic environments where the
fluid damping degrades the signal-to-noise ratio of measurements and hence limits the application.
Burg et al. [3] developed a novel resonator whereby a microchannel was embedded in the microbeam
with vacuum outside, called as suspended microchannel resonator. The dissipated energy in the
devices was almost identical when liquid or air flowed through the channel and was much lower than
that in conventional microcantilevers which were immersed in the same fluid [4]. The good dynamic
characteristics ensure a pure resonance which greatly increases the sensitivity of measurements for
resonant frequency [4]. As a result, the suspended microchannel resonators have broad applications,
including sensing of biomolecules [3,5–7], investigation of phase transitions [8], and measurement of
the fluid viscosity [9] and density [10,11].

The dynamic characteristics of suspended microchannel resonators are fundamental to the
extensive applications [4]. The resonant frequency is a key property and is used to measure the mass of
particle flowing in the embedded channel [3]. Burg et al. [3,12] pioneered the suspended microchannel
resonators and employed them for particle weighing. They employed the first bending mode of the
microbeam in the experiments. Lee et al. [13] pointed out that there existed an intrinsic uncertainty in
mass measuring for the first bending mode as the particle approached to the free end of the microbeam.

Sensors 2017, 17, 114; doi:10.3390/s17010114 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2017, 17, 114 2 of 17

Hence, they used the second bending mode to improve the accuracy. Olcum et al. [14] reported
a suspended microchannel resonator that employed multiple bending modes of the microbeam.
They found that four bending modes were enough for determining the position and mass of flowing
particles with a high speed. By measuring the resonant frequency, the phase transitions of the fluid in
the embedded channel can also be studied. Minhyuk et al. [8] firstly investigated the phase transitions
using the suspended microchannel resonator. They related the temperature-dependent variations of
the frequency to the changes in the density of fluid, from which the phase transition temperatures
were determined. In addition to the resonant frequency, the vibration amplitude and the quality factor
are also significant dynamic properties and can be employed for measurement. Lee et al. [9] presented
two methods for measuring viscosity, one is amplitude-based and the other is quality-factor-based.
They found that the amplitude-based scheme was much faster while the quality-factor-based scheme
had a better accuracy for viscosity measurement. Khan et al. [10] measured the viscosity of fluid with
a high accuracy of 0.025 mPa·s by detecting quality factors of the suspended microchannel resonator.
Due to the significance of dynamics of suspended microchannel resonators, some researchers have
studied on this topic. Burg et al. [15] discovered the nonmonotonic energy dissipation in suspended
microchannel resonators. To interpret the phenomenon, Sader et al. [4,16,17] studied the fluid dynamics
of the internal fluid in the embedded channel and presented a theoretical model, which was rigorous
and was corroborated by experimental data. The results shown that the quality factor not only
non-monotonicaly varied with the increasing of viscosity, but also decreased as the mode number
increased. Zhang et al. [18] developed a theoretical model to investigate the dynamic characteristics of
suspended microchannel resonators by studying the fluid-structure interactions between the laminar
flow and the vibrational microbeam. The instability, frequency variation and energy dissipation were
analyzed and discussed.

In the aforementioned references [4,15–18], the suspended microchannel resonator was regarded
as a novel microfluidic device and the effects of intrinsic factors, including fluid viscosity, material
of the beam and fluid velocity, on suspended microchannel resonators were studied. However, as
one kind of beam resonator, when the suspended microchannel resonator is performed, the actuation
mechanism should be taken into account. Beam resonators can be actuated by several ways, including
electrostatic actuation [19], piezoelectrical actuation [20], electromagnetical actuation [21] and so on.
For suspended microchannel resonators, electrostatic actuation is usually employed [3,22] due to its
inherent advantages, including high efficiency, low power consumption, simple structure and quick
response [23]. However, electrostatic actuation has an intrinsic instability situation, which is called
as the pull-in instability [24,25]. As the applied voltage exceeds a critical value, known as the pull-in
voltage, the mechanical restoring force are unable to resist the electrostatic force, hence inducing the
collapse of the beam. Pull-in effect is significant for the design and performance of microbeam-based
sensors subjected to electrostatic actuation. As a result, many researchers have paid attention to
studying the pull-in instability during the past decades. A number of theoretical and numerical
methods have been developed for the analysis of pull-in effect, including reduced order models [26,27],
finite element method [28], Full-Lagrangian method [29,30], perturbation method [31] and so on.

Electrostatically actuated suspended microchannel resonators are one kind of coupled systems
which involve microcantilever, laminar flow, flowing particle and electrical field. Many researchers
have paid attention to dynamics of microbeams conveying fluids in the past years [32–39].
Rinaldi et al. [32] initiated the theoretical analysis of miniaturized beam resonators conveying internal
fluid flow. They studied the influences of flow velocity on instability, frequency variation and
damping using the classical equations for fluid-conveying microbeams presented by Paidoussis [40].
Abbasnejad et al. [36] presented the instability analysis of a fluid-conveying microbeam axially loaded
with a pair of piezoelectric layers. They found that imposing voltage difference to piezoelectric layers
can increase the critical flow velocity and hence improve the stability. By considering the electrical
field, Dai et al. [39] developed a theoretical model to predict the dynamics and pull-in behavior of
fluid-conveying microbeams subjected to electrostatic actuation. The results shown that the internal
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fluid not only influenced the static deflection of the microbeam, but also affected the pull-in voltage.
Yan et al. [41] also studied this topic and presented some results. However, differing from the widely
studied microbeams which generally contain straight channels, suspended microchannel resonators
usually have U-shape channels. Hence, the model characterizing the dynamics of microbeams which
contain straight channels is unsuitable for suspended microchannel resonators.

In the paper, a theoretical model for predicting the pull-in effects and dynamic behaviors of
suspended microchannel resonators subjected to electrostatic actuation is established by considering
the internal fluid and the nonlinear electrostatic force. The pull-in instability, frequency variation and
dynamic behaviors are studied and analyzed.

2. Model Development

As shown in Figure 1a, the suspended microchannel resonator is actuated by the static electricity.
Considering the mass of the cross fluid at the end of the channel is much less than the total fluid,
the cross flow can be neglected [4,42]. Hence, the embedded channel is regarded as two parallel
channels, as shown in Figure 1b. Under this assumption, an electrostatically actuated fluid-conveying
microcantilever of uniform thickness hc, width bc and length L with two channels of height h f and
width b f is considered.
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The vibration of the suspended microchannel resonator subjected to the electrostatic field can be
modeled as:

EI
∂4w(x, t)

∂x4 + mc
∂2w(x, t)

∂t2 = Felec(x, t) + Ff luid(x, t) (1)

where EI is the flexural rigidity, x is the coordinate along the longitudinal direction, mc is the per unit
length mass of the resonator, w is the flexural displacement, t is the time, Felec(x, t) is the electrostatic
force and Ff luid(x, t) is induced by the internal fluid flows. The electrostatic force can be given as:

Felec =
ε0bcV2

2(d− w)2 (2)

where ε0 is the permittivity, V is the applied voltage, d is the initial gap between the microbeam and
the substrate. The fluid-induced force Ff luid(x, t) depends on the fluid-structure interactions and was
presented by Zhang et al. [18]:

Ff luid = −2M
(

∂2w
∂t2 +

6
5

U2 ∂2w
∂x2

)
(3)
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where M is the fluid mass per unit length. By considering the particle flowing in the channel, the
control equation of the system can be expressed as:

EI ∂4w
∂x4 +

(
mc + 2M + mpδ(x− x0)

)
∂2w
∂t2 + 6

5 · 2MU2 ∂2w
∂x2 + mpδ(x− x0)U2 ∂2w

∂x2 +

2mpδ(x− x0)U ∂2w
∂x∂t =

ε0bcV2

2(d−w)2

(4)

where mp is the net added mass of the particle to the fluid, x0 is the position and δ is the Dirac
function. The previous model given in reference [18] focused on the free vibration of suspended
microchannel resonators. The present model extends the previous work by taking the actuation
mechanism into account and hence this model can be used to characterize the pull-in phenomenon of
suspended microchannel resonators. It is noted that only one particle is taken into account in this model.
In practical applications, several particles can be expected to be detected. By neglecting the interactions
between the particles, the governing equations for multiple particles can be directly obtained by

replacing the term mpδ(x− x0) with
NP
∑

i=1
mi

pδ
(
x− xi

0
)
, where NP is the number of particles. Without loss

of generality, the dynamics when one particle is moving is studied in this paper. The boundary
conditions of the cantilever are subjected to:

w(0, t) = 0, ∂w(0,t)
∂x = 0

EI ∂2w(L,t)
∂x2 = 0, EI ∂3w(L,t)

∂x3 = 0
(5)

For convenience, the non-dimensional form can be expressed as:

η′′′′ +
..
η +

6
5

Û2η′′ + δm1δ(ξ − ξ0)
..
η + δm2δ(ξ − ξ0)Û2η′′ + 2δm3δ(ξ − ξ0)Û

.
η
′
=

β2

(1− η)2 (6)

where
η = w

d , ξ = x
L , τ =

√
EI

m+2M
t

L2 , Û =
√

2M
EI UL, δm1 =

mp
(mc+2M)L

δm2 =
mp

2ML , δm3 =
mp√

2M(mc+2M)L
, β2 = ε0bc L4

2d3EI V2 (7)

the spatial and temporal derivatives are given by η′ = (∂η/∂ξ) and
.
η = (∂η/∂τ). The boundary

conditions in non-dimensional form can be expressed as:

η(0, t) = 0, η′(0, t) = 0, η′′ (1, t) = 0, η′′′ (1, t) = 0 (8)

The governing equation is derived according to the fluid-structure interactions which consider
the fluid viscosity and the velocity profile. As a result, this model is valid for laminar flow which is
typical for microscale fluid.

The flexural displacement η(ε, τ) includes two components: the static component and the
vibrational component:

η(ε, τ) = ηs(ε, τ) + ηv(ε, τ) (9)

The electrostatical force can then been expressed in a Taylor series expansion about ηv = 0 by
retaining the first two terms:

β2

(1− η)2 =
β2

[1− ηs(ε)]
2 +

2β2

[1− ηs(ε)]
3 ηv(ε, τ) (10)
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The governing equation for static equilibrium can be obtained from Equation (6) by neglecting
the time-dependent terms:

η′′′′ +
6
5

Û2η
′′
s + δm2∆(ξ − ξ0)Û2η

′′
s =

β2

(1− ηs)
2 (11)

Subtracting the static component from Equation (6), the governing equation for the vibration of
the suspended microchannel resonator about its static position can be obtained:

η
′′′′
v +

..
ηv +

6
5 Û2η

′′
v + δm1∆(ξ − ξ0)

..
ηv + δm2∆(ξ − ξ0)Û2η

′′
v

+2δm3∆(ξ − ξ0)Û
.
η
′
v −

2β2

[1−ηs(ε)]
3 ηv = 0

(12)

Equation (12) can be solved to analyze the natural frequency of the system [39] while Equation (6)
is used to characterize the pull-in effect and the dynamic behaviors. Since the reduced-order model
has been shown to be valid and effective for characterizing the pull-in effect of microbeams and the
dynamic characteristics of microbeams conveying internal fluid [18,24,43], the method is directly
adopted without further introduction.

The governing Equation (6) can be discretized through the Galerkin procedure. The displacement
is expressed as:

η(ε, τ) =
N

∑
i=1

φi(ε)ui(τ) (13)

where φi is the mode shape of the microbeam and ui is the general coordinate. Multiply Equation (6)
by φn(ξ)(1− η)2, substitute Equation (13) into the resulting equation, integrate the outcome from
ξ = 0 to 1, and obtains:

N
∑

i=1
ui
∫ 1

0 φnφiv
i dξ − 2

N
∑

i,j=1
uiuj

∫ 1
0 φnφiφ

iv
j dξ +

N
∑

i,j,k=1
uiujuk

∫ 1
0 φnφiφjφ

iv
k dξ

+
..
un − 2

N
∑

i,j=1

..
uiuj

∫ 1
0 φnφiφjdξ +

N
∑

i,j,k=1

..
uiujuk

∫ 1
0 φnφiφjφkdξ + 6

5 Û2
N
∑

i=1
ui
∫ 1

0 φnφ
′′
i dξ

− 12
5 Û2

N
∑

i,j=1
uiuj

∫ 1
0 φnφiφ

′′
j dξ + 6

5 Û2
N
∑

i,j,k=1
uiujuk

∫ 1
0 φnφiφjφ

′′
k dξ + δm1φn(ξ0)

N
∑

i=1

..
uiφi(ξ0)

−2δm1φn(ξ0)
N
∑

i,j=1

..
uiujφi(ξ0)φj(ξ0) + δm1φn(ξ0)

N
∑

i,j,k=1

..
uiujukφi(ξ0)φj(ξ0)φk(ξ0)

+δm2Û2φn(ξ0)
N
∑

i=1
uiφ

′′
i (ξ0)− 2δm2Û2φn(ξ0)

N
∑

i,j=1
uiujφi(ξ0)φ

′′
j (ξ0)

+δm2Û2φn(ξ0)
N
∑

i,j,k=1
uiujukφi(ξ0)φj(ξ0)φ

′′
k (ξ0) + 2δm3Ûφn(ξ0)

N
∑

i=1

.
uiφ
′
i(ξ0)

−4δm3Ûφn(ξ0)
N
∑

i,j=1

.
uiujφ

′
i(ξ0)φj(ξ0) + 2δm3Ûφn(ξ0)

N
∑

i,j,k=1

.
uiujukφ′i(ξ0)φj(ξ0)φk(ξ0)

= β2
∫ 1

0 φndξ

(14)

Equation (14) represents a system including second-order nonlinear ordinary differential
equations in terms of the generate coordinates u = (u1, u2 · · · uN)

T . The mode shapes φi can be
given as:

φi(ε) = (cosh λiε− cos λiε)− σi(sinh λiε− sin λiε), i = 1, 2, 3 · · · (15)

where
cosh λi cos λi + 1 = 0, σi =

sinh λi − sin λi
cosh λi + cos λi

(16)

According to Equations (15) and (16), the integral constants in Equation (14) can be directly
obtained. For example, the values of

∫ 1
0 φnφiv

i dξ are listed in Table 1.
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Table 1. The values of the integral constant
∫ 1

0 φnφiv
i dξ.

i
n

1 2 3 4 5

1 1.236× 101 0 0 0 0
2 0 4.855× 102 0 0 0
3 0 0 3.807× 103 0 0
4 0 0 0 1.462× 104 0
5 0 0 0 0 3.994× 104

By introducing a vector y = (y1, y2 · · · yN , y1+N , y2+N · · · y2N)
T , where yi = ui, yN+i =

.
ui,

1 ≤ i ≤ N, Equation (14) can be transformed to a system composed of 2 N first-order ordinary
differential equations. Using the Runge-Kutta method, these equations can be solved and the results
can be obtained.

3. Results and Discussions

3.1. Instability Analysis

In this subsection, the pull-in instability and fluid-induced instability are analyzed. To validate the
model and the method of solution, consider an electrostatically actuated cantilever with as follows [44]:
Young’s modulus is 155.8 GPa, Poisson’s ratio is 0.06, the length of the microcantilever is 20 mm, the
width bc is 5 mm, the thickness hc is 57 µm, the initial gap d is 92 µm, and the permittivity of air is
8.85 pF/m. The static deflection can be obtained by solving Equation (14) with setting all of the time
derivatives equal to zero. Figure 2 shows the results of the end gap versus voltage which are compared
with the experimental and analytical results [44]. It can be found that the present results agree well
with the reported data, which can verify this model.
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Figure 3 illustrates the static deflections of the suspended microchannel resonators. It is obvious
that as the flow velocity increases, the static deflection decreases. When the flow velocity is zero,
because the internal fluid has no stiffness, the fluid has no effect on the static deflection and only
the elastic restoring force inhibits the microbeam from bending. As the internal fluid flows with a
certain velocity, it induces a centripetal force whose direction is opposite to the electrostatic force.
Both the elastic force and the centripetal force keep the microbeam from bending. As a result, as
the flow velocity increases, not only the static deflection decreases as shown in Figure 3, but also
both the nondimensional static pull-in voltage β2

PI and the nondimensional pull-in displacement
ηPI increase, as illustrated in Figure 4. Figure 4 also demonstrates the static pull-in phenomenon of
suspended microchannel resonators and it can be found that the internal fluid can extend the pull-in
displacement. It should be noted that the static behaviors of the suspended microchannel resonators
are very similar to the ones of electrostatically actuated microbeams conveying fluid which were
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studied by Dai et al. [39] and Yan et al. [41]. This is because that the static behaviors are studied by
solving the governing equations with setting all of the time derivatives equal to zero, which makes the
forms of the two governing equations describing the different systems become identical. Table 2 shows
the variation of β2

PI and ηPI with the employed modes in the calculation. It can be found that when the
used modes are more than three, the obtained results have no obvious differences. Employing five
modes in the calculation can accurately predict the dynamic characteristics.
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Table 2. The nondimensional pull-in voltage and displacement of the suspended microchannel
resonator for different modes employed in the calculation at Û = 3.5.

The Employed Modes in
the Calculation

Nondimensional Pull-In
Voltage β2

PI

Nondimensional Pull-In
Displacement ηPI

One mode 4.66 0.67
Two modes 5.21 0.54

Three modes 5.04 0.56
Four modes 5.11 0.56
Five modes 5.08 0.56

Although the flow velocity can enhance the static pull-in range, it cannot be increased unlimitedly
because the flutter occurs once the velocity exceeds the critical value Ûc. When β2 = 0, the Argand
diagram for vibrations of the suspended microchannel resonator has been presented in reference [18].
And the results for β2 = 1.6 are illustrated in Figure 5. The parameter ω̂ is the dimensionless complex
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frequency. The real part of ω̂ is the dimensionless radian frequency, and the imaginary real part
represents the damping ratio. It was found that with the increasing of dimensionless velocity Û, the
resonant frequency of the first mode increases while the one of the second mode decreases until Û
reaches the critical value Ûc = 4.088. It can be found that the Argand diagram for β2 = 1.6 is very
similar to the one for β2 = 0. And the critical flow velocity for the first and second mode is almost
identical to the value for β2 = 0. This phenomenon indicates that the electrostatic force has little effect
on the fluid-induced instability of suspended microchannel resonators, at least, for lower values of β2.
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of the dimensionless flow velocity for β2 = 1.6.

As discussed in the above, the electrostatically actuated suspended microchannel resonators are
subjected to both the pull-in instability induced by the electrostatic force and the fluid-induced
instability resulted from the internal flow. The values of the nondimensional voltages and the
nondimensional velocities cannot exceed some certain values to ensure the stability of the system,
as shown in Figure 6. This figure is separated into two sub regions according to different dynamic
characteristics. As mentioned in the foregoing, the flow velocity can enhance the static pull-in range,
which is illustrated by the pull-in boundary. The applied voltage also affects the critical velocity but the
effect is not obvious. As the nondimensional voltage β2 increases from zero to about 7.484, the critical
velocity decreases from 4.088 to 4. For a certain β2, if β2 is small (approximately β2 < 1.679), the static
pull-in instability does not occur and the microbeam loses stability as Û crosses the flutter boundary.
When β2 is relatively large (approximately 1.679 < β2 < 7.436), the microbeam is subjected to static
pull-in instability for small Û, regains stability at a larger value of Û by crossing the pull-in boundary
and again loses stability via flutter at a much larger Û. For very large values of β2 (β2 > 7.618),
the system loses stability absolutely. As discussed in the reference [41], the stable regions for the
electrostatically actuated microbeams conveying fluid depend on the mass ratio, which is the ratio
of the fluid mass per unit length to the structure mass per unit length and characterizes the effects
of Coriolis force. However, for the suspended microchannel resonators, the Coriolis forces in the
embedded channels cancel out each other due to the opposite flow directions. Hence, the stable region
is not related to the mass ratio.



Sensors 2017, 17, 114 9 of 17

Sensors 2017, 17, 114  9 of 17 

 

critical velocity decreases from 4.088 to 4. For a certain 
2 , if 

2  is small (approximately 

2 1.679  ), the static pull-in instability does not occur and the microbeam loses stability as Û  
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3.2. Frequency Shift

The resonant frequency plays a significant role in applications of beam resonators. Figure 7
illustrates the variation of frequency with the applied voltage and the fluid velocity for the fundamental
mode. In Figure 7a, the 3D surface intuitively shows the effect of voltage and velocity and it is obvious
that both the applied voltage and the internal fluid velocity significantly affect the resonant frequency.
The projection of the 3D surface to the bottom depicts the stable boundary, as shown in Figure 6.
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Figure 7. The variation of the fundamental frequency with the nondimensional voltage and the
nondimensional velocity. (a) The effect of both applied voltage and fluid velocity on the resonant
frequency; (b) The effect of voltage on the frequency for different fluid velocities; and (c) The effect of
velocity on frequency for different applied voltages.
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Figure 7b demonstrates the variation of frequency with the applied voltage for different velocities.
For Û < 3.9, the frequency monotonically decreases with the increasing of voltage, and as the voltage
approaches to the pull-in voltage, the frequency decreases sharply to zero. This phenomenon has
been reported [45] and it is due to the fact that the electrostatic force can be regarded as a spring with
negative stiffness. For Û ≥ 3.9, as the voltage increases the flutter occurs prior to the pull-in and as a
result, the frequency firstly decreases and then increases. The internal fluid flow always makes the
frequency increase, as illustrated in Figure 7c. It is noted that for β2 = 2, β2 = 4 and β2 = 6, the
values of nondimensional velocity are not started from zero which is due to the instability.

Figure 8 depicts the frequency shift of the second mode. The applied voltage has no obvious
influence on the frequency and the effect of the fluid velocity is contrary to the fundamental mode,
which can be attributed to the different mode shapes of the two modes. As shown in Figure 9, for the
first mode the centripetal force, induced by the fluid flow and the beam curvature, acts towards to
the position of equilibrium and it regards as an additional restoring force. As a result, the effective
stiffness of the system is increased by the fluid flow and the resonant frequency increases. For the
second mode, the centripetal force acts away from the position of equilibrium as a whole and it works
like a “negative” spring. Hence, the frequency of the second mode decreases with the increasing of the
flow velocity.

1 
 

(a) (b)

(c)

 

1 
 

(a) (b)

(c)

 
Figure 8. The frequency of the second mode as a function of the nondimensional voltage and the
nondimensional velocity (a) The effect of both applied voltage and fluid velocity on the resonant
frequency; (b) The effect of voltage on the frequency for different fluid velocities; and (c) The effect of
velocity on frequency for different applied voltages.
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The obtained frequency ω̂ in the above are nondimensional and the dimensional resonant
frequency ω can be given by:

ω =

√
EI

m + 2M
1
L2 ω̂ (17)

It is obvious that the frequency increases with both the increasing of stiffness and the decreasing
of length or mass. The precision of resonator is improved with the increasing of resonant frequency.
By using the parameters of the suspended microchannel resonator developed by Olcum et al. [14],
the resonant frequency of the first and second mode can be obtained as 41.32 kHz and 259.0 kHz from
the model while the experimental results are 40.48 kHz and 249.1 kHz.

The flowing particle can be regarded as added mass that can induce resonant frequency shift,
which underpins the application in measuring the mass of different particles [3,14]. As discussed in
the above, the applied voltage plays an important role in the frequency shift. To demonstrate the
effect of the voltage and the added mass, Figure 10 shows the frequency shift (∆ f ) with the position
of the particle for different applied voltages. Frequency shift ∆ f is defined as f − f0, where f0 is the
resonant frequency under the effect of the nondimensional voltage and f is the frequency influenced
by both the voltage and the added mass. The parameters are referred to [14]. It can be found that
as the applied voltage increases, the variation of the frequency induced by the particle decreases.
Because the frequency shift is used to determine the mass of the particle suspended in the fluid [3,14],
the decreasing of the frequency shift may reduce the mass resolution of the suspended microchannel
resonator. As a result, the applied voltage should not be very large. As listed in Table 3, the normalized
frequency shift (∆ f / f0) keeps almost constant as the nondimensional voltage changes. This is because
∆ f / f0 is related to the mode shape of the vibrating cantilever [45] and the electrostatic force has
no obvious effect on the mode shapes [46]. Consequently, it can be concluded that the normalized
frequency shift (∆ f / f0) can accurately characterize the variation of the added mass. For the second
mode, both ∆ f and ∆ f / f0 stay almost unchanged as the voltage varies which demonstrates the
negligible effect of the electrostatic force.

Table 3. The frequency shift of the first and second modes when the particle is located at the tip for
different nondimensional voltages.

β2
�f (10−6) �f/f0 (p.p.m)

The First Mode The Second Mode The First Mode The Second Mode

0 −23.58 −1.477 −6.705 −6.705
0.6 −22.15 −1.475 −6.708 −6.704
1.2 −19.49 −1.470 −6.720 −6.693
1.5 −16.36 −1.463 −6.742 −6.675
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3.3. Dynamic Characteristics

The dynamic pull-in can be defined as the collapse of the microbeam to the substrate under
the combined effects of potential and kinetic energies [23]. The kinetic energy can come from the
sudden step voltage [47]. In this section, the dynamic pull-in induced by the transient effect of applied
voltage is analyzed. The step voltage β2 is suddenly applied to the resonator at a certain time t = 0.
In addition, when the resonator is performed, the applied voltage usually includes two components,
the dc component βdc and the ac component βac. The former is the bias voltage while the latter is
the excitation voltage. The dynamic response of the suspended microchannel resonator under the
effects of βdc and βac is also investigated. To clarify the symbols, β is denoted as the step voltage, βdc is
denoted as the dc voltage and βac is the ac voltage.

Figure 11 shows the transient nondimensional tip deflection ηtip for different step voltages β when
the flow velocity is zero. It is observed that the amplitudes of vibrations increase with the increasing
of the applied voltage. When the applied voltage is lower than the dynamic pull-in value β2

DPI, the
microbeam performs a periodic motion. As the voltage exceeds the dynamic pull-in value, the system
loses stability and the nondimensional tip deflection reaches unity, which means that the microbeam
collapses to the substrate. The results for β2

DPI = 1.389 and β2
DPI = 1.39 demonstrate that when the

applied voltage is close to the dynamic pull-in value, a small variation in the voltage induces a change
in the response. It is noted that the dynamic pull-in voltage (β2

DPI = 1.389) is smaller than the static
pull-in voltage (β2

PI = 1.679).
In Section 3.1, the flutter boundary is studied by expanding the nonlinear electrostatic force in a

Taylor series expansion and retaining the first order. Now, the nonlinear ordinary differential equations
are solved to study the flutter instability. As shown in Figure 12a, when the nondimensional velocity
equals 4.0, the system is stable for β2 = 4.243 but becomes unstable for β2 = 4.244. When the
flutter occurs, the vibrational amplitude is below unity in the initial several periods but the amplitude
constantly increases to unity which means the resonator collapses onto the substrate. It is also noted
that the flutter voltage predicted by the dynamic method (β2 = 4.243) is less than the value predicted
in Section 3.1 (β2 = 7.484). Figure 13 shows the dynamic and static stability regions and it can be
found that the properties of the dynamic stability region are similar to the static one except the area
is smaller.
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It can be seen from Figure 14a that for a higher dc voltage the resonant frequency is decreased
while the displacement is increased, which has been discussed in the foregoing. Furthermore, as the
dc voltage increases, the softening effect becomes stronger. As illustrated in Figure 14b, when the
amplitude of the ac voltage βac increases from 0.01 to 0.1, the left and right parts of the frequency
response curve moves away from each other. For a certain frequency, the tip deflection increases with
the increasing of βac, which means that the ac voltage can enhance the vibrational amplitude of the
cantilever. In a word, the dc voltage can adjust the frequency while the ac voltage can modulate the
amplitude of vibration.
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Figure 14. Frequency response curves of suspended microchannel resonators for different (a) DC
voltages βdc with βac = 0.01; and (b) ac voltages βac with βdc = 1.0 when Û = 0.

Figure 15 shows the frequency response curves for different flow velocities. As the velocity increases,
both the resonant frequency and the maximum deflection of the tip increase. This demonstrates that
the flow velocity can not only modulate the frequency but also extend the dynamic stable range of the
suspended microchannel resonator, which is attributed to the centripetal force that works as a restoring
force as shown in Figure 9.Sensors 2017, 17, 114  15 of 17 
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4. Conclusions

A theoretical model is used to describe the pull-in effect and dynamics of the suspended
microchannel resonator subjected to electrostatic actuation. The internal fluid and the electrostatic field
are considered. The applied voltage affects the frequency shift ∆ f but has no obvious influence on the
normalized frequency shift ∆ f / f0, which is beneficial for measurement. The applied voltage can lead
to pull-in instability once the voltage exceeds the pull-in value, which can be enhanced by the steady
mean flow. The applied voltage is composed of the dc value and the ac value. The former can adjust
the frequency while the latter can modulate the vibrational amplitude of the resonator. The steady flow
not only leads to frequency shift but also extends the dynamic stable region of pull-in. Furthermore, as
the flow velocity reaches the critical one, the flutter occurs and the system loses stability. The results
indicate that the suspended microchannel resonator is subjected to both the pull-in instability and the
flutter instability. The dynamic and static stable regions are presented by comprehensively considering
the two forms of instability.
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