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Abstract: In this paper, we propose a unified framework to generate a pleasant and high-quality
street-view panorama by stitching multiple panoramic images captured from the cameras mounted
on the mobile platform. Our proposed framework is comprised of four major steps: image warping,
color correction, optimal seam line detection and image blending. Since the input images are captured
without a precisely common projection center from the scenes with the depth differences with respect
to the cameras to different extents, such images cannot be precisely aligned in geometry. Therefore,
an efficient image warping method based on the dense optical flow field is proposed to greatly
suppress the influence of large geometric misalignment at first. Then, to lessen the influence of
photometric inconsistencies caused by the illumination variations and different exposure settings,
we propose an efficient color correction algorithm via matching extreme points of histograms to
greatly decrease color differences between warped images. After that, the optimal seam lines between
adjacent input images are detected via the graph cut energy minimization framework. At last,
the Laplacian pyramid blending algorithm is applied to further eliminate the stitching artifacts along
the optimal seam lines. Experimental results on a large set of challenging street-view panoramic
images captured form the real world illustrate that the proposed system is capable of creating
high-quality panoramas.

Keywords: panorama stitching; seam line detection; image warping; graph cuts; image parallax;
image blending; color correction

1. Introduction

Nowadays, with the development of street-view panoramas, which provide 360◦ panoramic views
along streets in the real world, the demand for high-quality panoramic images gradually becomes
greater. Image stitching is the key technology to produce high-quality panoramic images, which is
also an important and classical problem in the fields of photogrammetry [1–5], remote sensing [6–9]
and computer vision [10–15], which is widely used to merge multiple aligned images into a single
wide-angle composite image as seamlessly as possible.

In an ideally static scene in which both the geometric misalignments and the photometric
inconsistencies do not exist or are not obviously visible in overlap regions, the stitched or mosaicked
image looks perfect only when the geometric distance criterion is used. However, as we know, most
of the street-view panoramic images are captured by a panoramic camera mounted on a mobile
platform. Generally, the panoramic camera is comprised of multiple wide-angle or fish-eye cameras
whose projection centers are slightly different. Therefore, those images cannot be precisely aligned in
geometry; namely, there exist the geometric deviations for corresponding pixels from different images
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to different extents. In addition, there also exist photometric inconsistencies to different extents in
overlap regions between adjacent images due to illumination variations and/or different exposure
settings. This paper focuses on creating a visually pleasant street-view panorama by stitching or
mosaicking multiple street-view panoramic images among which there may exist the severe geometric
misalignments and the strong photometric inconsistencies.

One traditional and efficient way to eliminate the stitching artifacts caused by the large geometric
misalignments existing in the input aligned panoramic images is to detect the optimal seam lines
that avoid crossing the majority of visually obvious objects and most of the overlap regions with low
image similarity and large object dislocation. The optimal seam line detection methods search for the
seam lines in overlap regions between images where their intensity or gradient differences are not
significant. Based on the optimally-detected seam lines, multiple aligned images can be mosaicked
into a single composite image in which the obvious image parallax caused by image misalignments
can be magnificently concealed. Many methods [2–6,16–19] regarded the optimal seam line detection
as an energy optimization problem and solved it by minimizing a specially-designed energy function
defined to represent the difference between the original images along the seam lines. For these methods,
the key ideas concentrate on how to define the effective energy functions and how to guarantee the
optimality of the solution. The energy functions are often defined by considering color, gradient and
texture and are optimized via different optimization algorithms, e.g., the snake model [20], Dijkstra’s
algorithm [21], dynamic programming [22] and graph cuts [23]. Nowadays, the optimal seam line
detected by many algorithms can avoid crossing the regions with low image similarity and high
object dislocation. In our previous work presented in [19], we proposed an efficient optimal seam
line detection algorithm for mosaicking aerial and panoramic images based on the graph cut energy
minimization framework. In this paper, we will apply this algorithm to detect the optimal seam lines.

However, when the geometric misalignments are very large, the stitching artifacts perhaps cannot
be completely avoided even though the optimal seam lines are detected, especially for street-view
panoramic images among which there always exist geometric misalignments to different extents due
to those images being captured from scenes with large depth differences by a panoramic camera
comprised of multiple wide-angle or fish-eye cameras without a precisely common projection center,
which means that the geometric misalignments are different at different positions. Therefore, the
large geometric misalignments existing in the input aligned panoramic images should be eliminated
as much as possible before finding the optimal seam lines. In this paper, we creatively propose an
image warping algorithm based on the optical flow field to reduce the geometric misalignments
between input panoramic images. Image warping is a transformation that maps all positions in one
image plane to the corresponding ones in another plane [24], which has been popularly applied in
many fields of computer vision, such as image morphing [25,26], image retargeting [27,28] and image
mosaicking [29,30]. The key technique of image warping is to find the appropriate transformation
functions based on the control conditions and then eliminate the distortions between input images.
One famous image warping algorithm worked based on thin-plate splines [31] that attempted to
minimize the amount of bending in the deformation. They used the radial basis functions with
thin-plate splines to find a space deformation defined by control points. However, local non-uniform
scaling and shearing possibly occurred in the deformed images. The work in [32] firstly introduced the
concept of as-rigid-as-possible transformations, which have the property that both local scaling and
shearing are very slight. To produce as-rigid-as-possible deformations, [33] proposed a point-based
image deformation technique, which firstly triangulated the input image and then geometrically
minimized the distortion associated with each triangle. However, this algorithm needs to triangulate
the input image at first, and the results may not be smooth across triangle boundaries. The work in [34]
provided an image deformation method based on moving least squares [35] using various classes of
linear functions including affine, similarity and rigid transformations. It first found the deformation
functions based on the control points or the line segments and then applied the deformation functions
on each grid instead of each pixel to reduce the transformation time. At last, it filled the resulting quads
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using the bilinear interpolation. The work in [36] proposed an image warping algorithm based on
radial basis functions, which formulated the image warping problem as the scattered data interpolation
problem and used the radial basis functions to construct the interpolation. It aimed at identifying
the best radial basis functions for image warping. Our image warping method is similar to this
algorithm, but we used the Multilevel B-splines Approximation (MBA) [37] to solve the scattered data
interpolation problem. Recently, the b-spline approximation technique has been widely used for image
registration [38,39], image morphing, image warping, curve/surface fitting and geometric modeling.

In addition, due to the differences of both the image capturing viewpoints and the camera
exposure settings, there are large differences of color and brightness between the warped panoramic
images. The large color differences between those images also can cause the stitching artifacts in the last
stitched or mosaicked panorama. Furthermore, the large color differences may affect the quality of the
seam lines. Therefore, we also need to suppress the color differences between warped images before
we apply the optimal seam line detection. Generally, the color correction approaches can be divided
into two broad categories according to [40]: parametric and non-parametric. Panoramic approaches
assume that the color relationship between images can be described by a certain model. A few
noteworthy parametric approaches are described here. The work in [41] proposed a simple linear
model to transform the color of the source image to the target image. The transformation matrix
was estimated by using the histogram mapping over the overlap regions. The work in [12] applied
the gain compensation (i.e., the diagonal model) to reduce color differences between input images.
They computed all gains by minimizing an error function, which is the sum of gain normalized
intensity errors for all overlapping pixels. The work in [42] also employed the diagonal model for the
color and luminance compensation where the correction coefficients were computed as the ratio of
the sum of pixel values in the overlap regions. As stated in [43], the linear transformation models can
provide a simple yet effective way to transform colors, but they have clear limitations in explaining
the complicated nonlinear transformations in the imaging process. Non-parametric approaches can
handle this problem well. Non-parametric approaches do not follow any particular model for the color
mapping, and most of them use some form of a look-up table to record the mapping of the full range
of color levels. As stated in [40], parametric approaches are more effective in extending the color in
non-overlap regions without generating gain artifacts, while non-parametric approaches can provide
better color matching results. The work in [44] proposed to use the joint histogram of correspondences
matched using the SIFT features [45] to correct the color differences. The color mapping function was
estimated by using an energy minimization scheme. The work in [46] proposed a color correction
approach by using the cumulative color histogram. This method used the cumulative histogram-based
mapping to automatically adapt the color of all source images to the reference image. The work in [43]
presented a nonlinear and nonparametric color transfer framework that operates in a 3D color space.
Based on some control corresponding colors in a given image pair, this method used the probabilistic
moving least squares to interpolate the transformation functions for each color. We correct the color
differences between two images based on the matched extreme points, which are extracted from the
histograms over the overlap regions. Both the Probability Density Functions (PDFs) and Cumulative
Distribution Functions (CDFs) are used to find the reliably-matched extreme points. To reduce the
gain artifacts in non-overlap regions, we propose to apply the alpha correction method to smooth the
transition from non-overlapping regions to overlapping ones.

Although we propose efficient approaches to correct the color differences and detect the optimal
seam lines between warped panoramic images, there may also exist some color transitions along
the seam lines due to the color differences not being able to be eliminated completely. In order to
further conceal these artifacts, the image blending techniques can be further applied along the seam
lines. In the last several decades, many image blending algorithms have been proposed to smooth the
color differences along the seam lines, such as feathering [47], alpha blending [48], Laplacian pyramid
blending [49], Poisson blending [50] and the gradient domain image blending approach [51]. In this
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paper, we simply applied the Laplacian pyramid blending algorithm [49] to eliminate the stitching
artifacts and generate the last pleasant panorama.

In this paper, we propose a unified framework for our developed street-view panorama stitching
system, as described in Figure 1. First, multiple original images, which were captured from a single
panoramic camera comprised of multiple wide-angle or fish-eye cameras (usually digital SLR cameras)
without a precisely common projection center, are fed into our stitching system as the input. Therefore,
we will align these input images into a common spherical coordinate system based on the found
feature correspondences using the existing open-source library. After that, our proposed image
warping method based on the dense optical flow field approximately interpolated from the sparse
feature matches, which is detailed described in Section 2, is used to greatly reduce the geometric
misalignments. Then, an automatic contrast adjustment and an efficient histogram matching-based
color correction approach presented in Section 3 are used to reduce the color differences. Finally,
we adopt an efficient seam line detection approach based on the graph cut energy minimization
framework to find the optimal seam lines between two overlapped images followed by applying
the image blending to eliminate the color transitions along the seam lines. By our proposed unified
panorama stitching framework, our system can generate a pleasant street-view panorama as seamlessly
as possible by stitching multiple panoramic images from the cameras mounted on the mobile platform.
Experimental results on challenging street-view panoramic images are reported in Section 5 followed
by the conclusions drawn in Section 6.

Input Aligned 
Images

Image Warping Color Correction Image Mosaicking

Dense Optical Flows

Feature Matching

Laplacian Pyramid 

Image Blending

Finding and Matching  

Extreme Points in PDFs

Original Fisheye Images

Aligned Images Warped Images Color Corrected Images

Optimal Seamline 

Detection

Correcting Color 

Differences

Figure 1. Our proposed unified framework for the street-view panorama stitching system.

2. Image Warping

In our developed street-view panorama stitching system, we first check whether all input images
are geometrically aligned into a common spherical coordinate system. If not, we will align them by
using the open-source library PanoTools (available at http://www.panoramatools.com/), which also
serves as the underlying core engine for many image stitching software, such as PTGui (available at
http://www.ptgui.com/) and Hugin (available at http://hugin.sourceforge.net/). However, there
always exist large geometric misalignments between these aligned images to different extents because
those images were captured from scenes with large depth differences by a single panoramic camera
comprised of multiple wide-angle or fish-eye cameras without a precisely common projection center.

http://www.panoramatools.com/
http://www.ptgui.com/
http://hugin.sourceforge.net/
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Those geometric misalignments are so large that the stitching artifacts cannot be avoided completely
even though the optimal seam lines are detected for image stitching. To ensure the high quality of the
last stitched panorama, we propose to apply the image warping technique to eliminate those large
geometric misalignments as much as possible. To describe our proposed image warping algorithm
more clearly, we first consider a simple case of two aligned images I and I′ with an overlap. The process
of our proposed image warping algorithm is described as follows. Firstly, the corresponding points
between two images are found as the control points of image warping, and the sparse optical flows
are calculated for those control points. Secondly, the Multilevel B-splines Approximation (MBA)
algorithm [37] is used to approximately interpolate the dense optical flows for all integral pixels in the
warped image with respect to the original one from the sparse optical flows. Lastly, we warp the two
input images based on the dense optical flows, and thus, the geometric misalignments can be greatly
lessened. For the case of multiple images, a simple strategy is proposed to first handle the horizontal
images and then to deal with the vertical ones.

2.1. Feature Point Matching

To warp two images with large geometric misalignments, we need to find the control points at
first. The quality of the warped image mainly depends on the accuracy and densities of control points.
In this paper, we apply the feature matching algorithm to robustly find the sparse matching points,
namely the control points. The main ideal for feature matching is to first extract local invariant features
independently from two images and then characterize them by invariant descriptors. The distance
between two descriptor vectors is used to identify candidate matches. However, the nearest neighbors
is not always the best match due to occlusion and deformation derived from large viewpoint changes
and repeated structures in the scenes. Then, we applied the assumption presented in [52] and the
epipolar geometrical constraint to remove the outliers. The major steps of the feature matching include
initial matching and outlier detection, which are summarized in Algorithm 1. An example of finding
point correspondences between two panoramic images with an overlap is illustrated in Figure 2.

Algorithm 1 The proposed feature point matching algorithm.

1. Initial Matching

(a) Extract and describe two sets of local invariant features from two overlapped images I and

I′ by using the SURF algorithm, respectively;
(b) Find the initial point matchesMinitial between I and I′ according to the conditions listed in

Section 2.1.1.

2. Outlier Detection

(a) Find the neighboring inlier matches Ninlier(fp) for each match 〈fp, f′q〉 ∈ Minitial.
(b) Calculate the mean motion µµµ(fp) and the standard deviation σσσ(fp) of all matches in

Ninlier(fp);
(c) Identify the outliers according to the criterion defined in Equation (3);
(d) Further identify the outliers according to the epipolar geometric constraint.
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(a) (b) (c) (d)

Figure 2. An illustrative example for feature point matching between two aligned panoramic images:
(a) the point correspondences produced by initial matching; (b,c) several epipolar lines detected based
on the estimated fundamental matrix; (d) the last point correspondences after outlier detection. The red
circles denote the positions of the matched points in the current image points, and the yellow lines
represent the optical flows (i.e., motions) of the matched points in the current image with respect to
another image.

2.1.1. Initial Matching

Given two adjacent images I and I′ with an overlap, the local invariant features are extracted and
described by the SURF algorithm [53]. Let f = (x, d) be a feature point where x = (x, y)> denotes
the 2D coordinate of this feature point, and d representing its corresponding invariant descriptor
vector, and F = {fi|fi = (xi, di)}M

i=1 and F ′ = {f′j|f′j = (x′j, d′j)}N
j=1 be the feature point sets extracted

from I and I′, respectively, where M and N denote the numbers of the feature points extracted from
I and I′, respectively. Generally, for one feature point fp in F , the feature point f′q with the nearest
Euclidean distance d(fp, f′q) = min

f′j∈F ′
||dp − d′j||, which is not larger than a predefined threshold Td,

can be regarded as the corresponding matching point of fp. However, this simple strategy has some
drawbacks in the context of feature matching. This mainly because that the distance values between
different corresponding pairs may vary in a relatively large range, so any permissive distance threshold
Td cannot avoid the appearance of high rate outliers when covering most of the good correspondences.
Thus, we propose to modify the matching strategy as follows. In this paper, we accept two feature
points fp and f′q as a potential match only when they satisfy the following conditions:

• The feature points fp ∈ F and f′q ∈ F ′ are the nearest neighbors of each other. Namely, for the
feature point fp, f′q is its nearest neighbor in F ′. At the same time, for the feature point f′q, fp is its
nearest neighbor in F .

• The Euclidean descriptor vector distance d(fp, f′q) between two feature points fp and f′q is not
larger than Td, i.e., d(fp, f′q) = ‖dp − d′q‖ ≤ Td.

• We represent the nearest distance between fp and F ′ as d1(fp,F ′) = d(fp, f′q) = min
f′j∈F ′

||dp − d′j||

and the next distance as d2(fp,F ′) = min
f′j∈F ′ ,f

′
j 6=f′q
||dp − d′j||, respectively. The distance ratio

r(fp,F ′) = d1(fp,F ′)/d2(fp,F ′) should be smaller than the predefined threshold Tr. Similarly,
for the feature point f′q, the distance ratio r(f′q,F ) = d1(f′q,F )/d2(f′q,F ) should be smaller than
Tr as well.

By this matching strategy, we obtain a set of initial matches denoted asMinitial = {〈fp, f′q〉|fp ∈
F , f′q ∈ F ′}.
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2.1.2. Outlier Detection

After initial matching, there may still exist a few outliers in Minitial. Of course, we need to
filter out those outliers. According to the assumption proposed by [52] that the matches in a small
neighborhood tend to have the consistent location changes (i.e., motions), in this paper, we firstly
apply this assumption to identify the outliers. Then, we applied the widely-used constraint of the
epipolar geometric to further identify the outliers.

Given a match 〈fp, f′q〉, the motions from fp to f′q along the horizontal direction and the vertical
one are calculated, respectively, as follows:m(x)

p = x′q − xp,

m(y)
p = y′q − yp,

(1)

where fp = (xp, yp)> and f′q = (x′q, y′q)>. Thus, the magnitude value of the motion vector (m(x)
p , m(y)

p )>

can be calculated as:

m(x,y)
p =

√(
m(x)

p

)2
+
(

m(y)
p

)2
. (2)

Here, we use m(fp) =
(

m(x)
p , m(y)

p , m(x,y)
p

)>
to represent all the three motion components of the

match 〈fp, f′q〉.
At first, we assign the labels of all matches as Inlier, namely, for each match 〈fp, f′q〉 ∈ Minitial,

the label L(〈fp, f′q〉) = Inlier, and then we iteratively find the outliers. For each match 〈fp, f′q〉 ∈ Minitial,
we find Kn (Kn = 60 was used in this paper) neighboring match points of fp from F denoted as the
set N (fp). Then, we collect all matches whose labels are Inlier from N (fp) as a new set Ninlier(fp).
If the number of inliers in N (fp), namely, the size of Ninlier(fp), is less than Ki (Ki = 10 was used
in this paper), we directly label this match as an Outlier, namely, L(〈fp, f′q〉) = Outlier, otherwise,
we determine whether this match is an inlier by checking whether it has the consistent motion with
its neighbors Ninlier(fp). For each match 〈fm, f′n〉 ∈ Ninlier(fp), the motion m(fm) from fm to f′n can be

calculated according to both Equations (1) and (2). Then, the mean motion µµµ(fp) =
(

µ
(x)
p , µ

(y)
p , µ

(x,y)
p

)>
and the standard deviation of all the motions σσσ(fp) =

(
σ
(x)
k , σ

(y)
k , σ

(x,y)
k

)>
of all match points in

Ninlier(fp) can be determined easily. According to the following measurement proposed by [52],
the label of the match 〈fp, f′q〉 can be determined as follows:

L(〈fp, f′q〉) =
{

Inlier, dist(m(fp), µµµ(fp)) ≤ λ× σσσ(fp),

Outlier, Otherwise,
(3)

where dist(m(fp), µµµ(fp)) = |m(fp) − µµµ(fp)| denotes the absolute distances in three components
between the motion m(fp) of the match 〈fp, f′q〉 and the mean motion µµµ(fp) of its neighbor matches.
λ is a predefined parameter, and we set as λ = 3.

After that, we applied the epipolar geometric constraint based on the estimated fundamental
matrix to further detect the outliers. The fundamental matrix is estimated by using the RANSAC
algorithm. As we known, we cannot estimate the fundamental matrix between two panoramic
images which have been projected into the spherical coordinate at first. Therefore, we first project the
panoramic images into the perspective plane, and the fundamental matrix is estimated in this plane
by using the RANSAC algorithm. The epipolar lines are calculated in the perspective plane at first,
and then we re-project them into the spherical coordinate to identify the outliers. At last, we can find
all the inliers fromMinitial denoted as of the setMinlier = {〈fm, f′n〉|fm ∈ F , f′n ∈ F ′}.
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2.2. Approximate Interpolation of Dense Optical Flows

Let Ī and Ī′ be the warped images of two adjacent images I and I′, respectively. The aim of our
proposed image warping algorithm is to ensure that the geometric alignments between the warped
images Ī and Ī′ become smaller. To achieve this objective, we propose to approximately interpolate the
optical flows of all of the integral pixels in Ī with respect to I and all of the integral pixels in Ī′ with
respect to I′ based on the disparity vectors of the reliable point matches with respect to each other as
the control points. Firstly, we calculate the disparity vectors d(xm) and d(x′n) of each reliable point
match 〈xm, x′n〉 inMinlier from the warped images to the original ones as follows:

d(xm) =
1
2
(xm − x′n) =

1
2
(xm − x′n, ym − y′n)

>,

d(x′n) =
1
2
(x′n − xm) =

1
2
(x′n − xm, y′n − ym)

>,
(4)

where xm = (xm, ym)> and x′n = (x′n, y′n)>. In this way, we expect to warp the images I and I′ based
on the half offsets of real disparity vectors to reduce the warping distortion.

Secondly, we propose to approximately interpolate the optical flows of all integral pixels in
the warped images Ī and Ī′ based on the disparity vectors {d(xm)}xm∈Minlier

and {d(x′n)}x′n∈Minlier
of the control points {xm − d(xm)}xm∈Minlier

and {x′n − d(x′n)}x′n∈Minlier
, respectively. This problem

can be formulated as the scattered data interpolation problem. Due to the sparsity of the control
points, in this paper, we adapt to apply the Multilevel B-Splines Approximation (MBA) [37] to solve
this problem, which has been widely used for image registration, image morphing, image warping,
curve/surface fitting and geometric modeling. By this MBA interpolation, we separately interpolate
the horizontal and vertical components of optical flows (i.e., disparity vectors) of all the integral pixels
in Ī and Ī′, respectively. In this way, we finally obtain the dense optical flows D(Ī) = {d̃(p)}p∈Ī and
D(Ī′) = {d̃(p′)}p′∈Ī′ of all of the integral pixels {p}p∈I and {p′}p′∈I′ in the warped images Ī and Ī′

with respect to the original images I and I′, respectively.

2.3. Two Image Warping

Here, we demonstrate how to generate the warped image Ī from the original image I based
on the dense optical flows D(Ī) of Ī with respect to I, and the generation of the warped image Ī′ is
similar. For each pixel p ∈ Ī, we can easily calculate its corresponding 2D position in I based on its
approximately interpolated optical flow (i.e., disparity vector) d̃(p) as p + d̃(p). Then, we use the
bilinear interpolation algorithm to interpolate the intensity of the corresponding point p + d̃(p) in I as
the intensity of the integral pixel p ∈ Ī.

According to the above image warping procedure, we can obtain two warped images from two
input panoramic images with the overlap. The geometric misalignments between warped images
become smaller than those between the original images after warping correction.

2.4. Multiple Image Warping

Until now, we have introduced how to warp two images based on the optical flows. However,
we need to warp multiple input images to generate the last panorama. In the experimental results
presented in this paper, the input images are comprised of five horizontal ones and one vertical one,
which are represented as (I1, I2, I3, I4, I5, I6), whose correspondingly warped images are represented
as (Ī1, Ī2, Ī3, Ī4, Ī5, Ī6), and the overlap relationship of those images is shown in Figure 3. For this
particular case, here we will in detail introduce how to warp these six images for producing the
last panorama before color correction. Other cases of multiple images can be handled in a similar
way. For multiple input panoramic images, we first collect all image pairs according to their overlap
relationship, as shown in Figure 3. Obviously, there are five image pairs along the horizontal direction,
and one image pair along the vertical direction. We first handle the horizontal image pairs and then
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deal with the vertical image pair. For each horizontal image pair, we match them one by one by the
method presented in Section 2.1, as an illustrative example shown in Figure 4, from which we can
find that one horizontal image is overlapped with two adjacent images in the horizontal direction.
For example, for the image I1, it overlaps with I2 and I5, respectively, so we need to collect all matching
points from these two overlap regions as the control points for warping I1. The dense optical flow
field of the warped image Ī1 with respect to the original image I1 can be approximately interpolated
based on those control points via the MBA algorithm. Therefore, five horizontal warped images Ī1,
Ī2, Ī3, Ī4 and Ī5 can be generated by warping their corresponding original images according to the
method presented in Section 2.3, respectively. Figure 5 shows an example for warping one horizontal
image. After that, we generate the bottom blended image IH by blending all horizontal warped images
according to the proposed color correction method presented in Section 3 and the adopted image
mosaicking strategy described in Section 4. Finally, to produce the last panorama, the top image
I6 and the horizontal blended image IH will be warped according to those matching points as the
control ones.

Figure 3. The image overlap regions of six geometrically aligned and warped images in the 360◦

street-view panoramic view where the black, the green and the red stand for the no-overlapped,
two-overlapped, multi-overlapped image regions, respectively.

   

  

Figure 4. The feature matching results of all five horizontal image pairs in the overlap regions.
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(a) (b) (c)

Figure 5. An illustrative example of image warping: (a) the original aligned image; (b) the dense
optical flows approximately interpolated by the Multilevel B-splines Approximation (MBA) algorithm;
(c) the last warped image. In (b), the deeper orange means larger disparity.

2.5. Summary

In this section, we proposed a new image warping method to eliminate the large geometrical
misalignments between adjacent aligned images. This method includes three stages: feature point
matching, approximate interpolation of dense optical flows and image warping. In the first stage,
we first used the SURF algorithm [53] to find the initial matching points between two images and then
applied the assumption presented in [52] and the epipolar constraint to eliminate outliers. The sparse
optical flows can be calculated between two matched feature points. In the second stage, we proposed
to apply the dense optical flows to simulate the non-rigid deformations between aligned images.
The dense optical flows will be interpolated via the MBA algorithm [37] from sparse ones. In the last
stage, we proposed to warp the initially aligned images based on the dense optical fields, and we
also proposed a strategy to handle multiple image warping. The key contribution of this section is
that we proposed to use the optical flows to simulate and eliminate the large non-rigid geometrical
misalignments between input aligned street-view images. This method is simple and completed by
combining some conventional algorithms, such as SURF, MBA, and so on. However, to the best of
the authors’ knowledge, no one has applied this efficient strategy to handle the large geometrical
misalignments between street-view panoramic images before color correction and image mosaicking.

3. Color Correction

The large geometric misalignments can be efficiently eliminated by our proposed image warping
algorithm, but there also exist the color differences between the warped images, so the stitching
artifacts are still visible. Generally, the image blending technique can solve this easily by smoothing
the color along the seam lines. However, it does not work well for input images with very large color
differences. The simple image blending may not be able to efficiently conceal the artifacts if we don
not magnificently correct color differences between images in advance, which results in low-quality
panoramic images, as the illustrative example shown in Figure 6. In addition, the large color differences
maybe also affect the quality of the detected seam lines. Thus, in this paper, we propose to reduce
the color differences between warped images before the optimal seam lines are detected. Generally,
the color differences should be also corrected before the image warping step to ensure the quality of
feature matching results. However, our adopted SURF feature matching algorithm is robust enough to
the large photometric inconsistencies, so there is no obvious influence on our algorithm if we apply
the color correction after image warping.
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(a) (b) (c)

Figure 6. An example of our proposed color correction strategy used to improve the panorama stitching
quality before applying the image blending. (a) The initial stitched image; (b) Only image blending
used; (c) Image blending after color correction.

In this paper, we first apply the automatic contrast adjustment to reduce the brightness differences
between images and then propose a novel and efficient color correction algorithm via matching extreme
points of intensity histograms to further reduce the color differences. For the overlap image regions
between two images, we construct their own Probability Density Functions (PDFs) and Cumulative
Distribution Functions (CDFs) with respect to the intensity histograms in the three HSV channels,
respectively. One way to eliminate color differences is to ensure that the three CDFs of the overlap
regions in the first image in the three HSV channels are approximately the same as those CDFs of
the overlap regions in the second image, respectively. Obviously, we can correct the CDFs based on
several uniformly-spaced knots, as [54] did. However, due to the existence of geometric misalignments,
the scenes presented by two images in the overlap regions are not completely consistent. To solve
this problem, we replace the knots by the matched extreme points extracted from the two PDFs. If the
number of matched extreme points is not sufficient, we will suitably introduce those uniformly-space
knots. At last, the intensities of all of the pixels in the two images are modified afterwards based on
the matched extreme points extracted from the PDFs, not only for the pixels in the overlap regions,
but also in the non-overlap regions.

3.1. Automatic Contrast Adjustment

At first, in order to make sure that multiple images have the similar contrast, which can produce
satisfactory blending results, the three RGB channels of individual images are automatically adjusted
in contrast. The histograms of a color image are calculated firstly in each of the three RGB channels,
respectively. Let I be a single-channel image and I = {Ik}N

k=1 be a set of one-dimensional sorted
intensities of all valid pixels in I in the ascending order, where N denotes the total number of valid
pixels in I and Ik represents the intensity of the k-th sorted pixel in I. The minimal and maximal
intensities Imin and Imax in I are defined, respectively, as follows:

Imin = IdN×c%e and Imax = IdN×(1−c%)e, (5)

where d∆e denotes the upper integer of a real value ∆ and c is a small percentage value in the
range of (0, 50) (c = 0.1 was empirically used in this paper), which can be used to skip over a
part of the real minimal and maximal intensities due to the fact that these pixels may be caused
by noises and information lacking in most cases. The minimal and maximal intensity values of
the R, G and B channels of a color image are denoted as Rmin, Gmin, Bmin, Rmax, Gmax, and Bmax,
respectively. The minimal and maximal intensity values of the whole color image are defined as
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Vmin = min(Rmin, Gmin, Bmin) and Vmax = max(Rmax, Gmax, Bmax), respectively. Therefore, any intensity
I of the R, G and B channels of a color image will be modified as:

I′ =


0, I ≤ Vmin,
255× I−Vmin

Vmax−Vmin
, Vmin < I < Vmax,

255, I ≥ Vmax.
(6)

In the same way, all of the images to be used for creating a panorama will be automatically adjusted in
contrast, which will slightly reduce the brightness differences between images.

3.2. Finding Extreme Points

After applying the automatic contrast adjustment on the multiple panoramic images, we propose
to further reduce the color differences between panoramic images by matching extreme points of
histograms. For the statistic analysis, only valid pixels in the overlap regions between two images are
considered. Let A and B be the overlap image regions in two images, respectively. To make a better
description of the information hidden behind the image, we convert A and B from the original RGB
color space to the HSV color space, respectively. For each channel of A and B, we calculate their PDFs
and CDFs, which are denoted as PDFA, PDFB, CDFA and CDFB, respectively.

To robustly find extreme points in both PDFA and PDFB, these two PDFs are smoothed first by a
Gaussian function to suppress possible noise. The initial local extreme points can be easily obtained
from the smoothed PDFA and PDFB. In an ideal situation, the extreme points should be uniformly
distributed in the color space. However, most of the extreme points are relatively centralized in some
cases, which will lead to the information redundancy due to that multiple extreme points being selected
out to represent the similar image statistical information. To avoid the situation mentioned above,
we further checkout all initial extreme points by the local window suppression. Let {Li

A}K
i=1 be the

intensities of K extreme points {Pi
A}K

i=1 in PDFA, which are sorted in the ascending order. Given an
extreme point Pi

A, we generate a neighborhood range [Li
A − w, Li

A + w] centered on the corresponding
intensity Li

A with the size of (2w + 1). We set w = 2 if not specifically stated in this paper. If there
exists more than one extreme points located in this neighborhood range, the extreme point with the
highest frequency in PDFA will be retained, and other extreme points will be removed. All initial
extreme points are checked in this way, and the retained extreme points are used for the following
matching. The final extreme points extracted from PDFA and PDFB are represented as {Pi

A}
NA
i=1

and {Pj
B}

NB
j=1, where NA and NB are the numbers of extreme points in PDFA and PDFB, respectively.

For each extreme point P, it consists of 4 components according to P = {F, L, Ĉ, Č}, where F denotes
the frequency of this point in PDF, L represents the corresponding intensity and Ĉ and Č mean the
cumulative values of the intensities (L + ε) and (L− ε) in CDF (we set ε = 2 if not specifically stated
in this paper).

3.3. Matching Extreme Points

The extreme points can sufficiently reflect image statistical characteristics. To efficiently adjust
the color differences, one way is to ensure that the intensities of corresponding extreme points are
the same. Thus, we should match the extreme points firstly. To reliably match these extreme points
{Pi

A}
NA
i=1 and {Pj

B}
NB
j=1, we define a cost function to measure the matching similarity of two extreme

points Pi
A and Pj

B as:
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Cost(Pi
A, Pj

B) =
Fi

A + Fj
B

2Fmax
×

min(Fi
A, Fj

B)

max(Fi
A, Fj

B)
×

max(Ĉi
A − Či

A, Ĉj
B − Čj

B)

max(Ĉi
A, Ĉj

B)−min(Či
A, Čj

B)
, (7)

where Fmax is the maximal frequency of all of the extreme points in both PDFA and PDFB. The above

cost function judges the two extreme points from the view of both PDF and CDF. The first term Fi
A+Fj

B
2Fmax

indicates that those possibly matched extreme points with the higher frequencies generate higher
costs, which may be peak out first in the following matching selection strategy. The second term
min(Fi

A ,Fj
B)

max(Fi
A ,Fj

B)
indicates that there are the similar frequencies for two possibly matched extreme points

Pi
A and Pi

B. The last term is applied to ensure that the accumulative values of two possibly matched
extreme points Pi

A and Pi
B are approximate. From this term, we can find that if the small ranges of

cumulative values of two extreme points are similar, the numerator max(Ĉi
A − Či

A, Ĉj
B − Čj

B) is close

to the denominator max(Ĉi
A, Ĉj

B)−min(Či
A, Čj

B), which results in that this term being close to one.
In contrast, if the numerator is smaller and the denominator is larger, this term will approach to zero.
In summary, if the frequencies of two extreme points are larger and more similar and the accumulative
values of those points are more approximate, their matching cost is bigger. In contrast, it is smaller.
The higher the cost function value is, the more likely these two extreme points are matched. Based on
this cost definition, a NA × NB matching cost matrix M = [Mij]NA×NB is created. In order to efficiently
eliminate the impossibly matched extreme points, we empirically designed three hard conditions from
the view of both PDF and CDF to check whether two extreme points Pi

A and Pj
B are possibly matched

as follows: 

min(Fi
A, Fj

B)

max(Fi
A, Fj

B)
< θ f ,

Či
A > Ĉj

B + θc × Cmax,

Čj
B > Ĉi

A + θc × Cmax,

(8)

where θ f and θc are two empirical thresholds (θ f = 0.25 and θc = 0.02 were used in this paper) Cmax

is the maximal value of CDF, namely the valid pixel number of overlap regions. The matching cost
Cost(Pi

A, Pj
B) is set to zero, i.e., Mij = Cost(Pi

A, Pj
B) = 0, if at least one of the above three conditions

is not met, namely Pi
A and Pj

B are not possibly matched. From the view of PDF, the first condition

indicates that the frequencies of the two possibly matched extreme points Pi
A and Pj

B should be a
relatively small difference. From the view of CDF, the second and third conditions indicate that Pi

A

and Pj
B are possibly matched if their corresponding CDF values are approximate. According to the

above three hard conditions, the matching cost matrix M will be updated, in which all of the zero
elements indicate that they are not possibly matched.

Based on the computed matching cost matrix M, we propose an efficient iterative strategy to find
the matched extreme points as the following steps:

• Step 1: Finding the highest non-zero cost element Mij from the matrix M and its corresponding

extreme points Pi
A and Pj

B is selected out as a reliable extreme point match.
• Step 2: Updating the matrix M by removing the i-th row and the j-th column due to that Pi

A and

Pj
B have been successfully matched.

• Step 3: Performing the above two steps iteratively until the updated matrix M is empty or there
exists no non-zero element in M.

By the above iterative strategy, a set of reliable extreme point matches will be found. In Figure 7,
we have shown a visual example of our proposed color correction approach. The two input images
have large color differences in overlap regions, as shown in Figure 7a,b. We find 5 matched extreme
points in the PDF of one channel. Based on those correspondences, the large color differences can be
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eliminated, as shown in Figure 7e,f. From this example, we can find that our proposed approach can
handle the images with large color differences very well.
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Figure 7. A visual example of our proposed color correction approach: (a,b) the overlap image regions
of the input left and right images, respectively; (c,d) the curves of PDF and CDF in one channel where
the red curves stand for the left image and the blue ones stand for the right image, and the matched
peaks are marked by the same number and connected by the black dotted lines; (e,f) the corrected left
and right images, respectively.

Sometimes, no match or too few matches can be reliably found via the above matching strategy
in the whole CDF range or some relatively large CDF range. In this case, we will introduce more
matches with the help of both CDFA and CDFB, which are selected from H uniformly distributed
points {Ck

A}H
k=1 and {Ck

B}H
k=1 from CDFA and CDFB, respectively, but not from the previously found

extreme points. The same number of sampling points in CDFA and CDFB are uniformly selected
in accordance with the cumulative density values. In our experiments, the percentages of sampling
intervals were used as [0.1, 0.3, 0.5, 0.7, 0.9]. If there exists no extreme point match found in the ranges
[Ck

A − κCmax, Ck
A + κCmax] and [Ck

B − κCmax, Ck
B + κCmax], the current sampling points Ck

A and Ck
B will

be added into the matching set as a new point match, where κ is a given threshold in advance (κ = 0.1
was used in this paper).

3.4. Correcting Color Difference

The extracted matching points in the overlap image regions are then applied to correct the
intensities of two adjacent images, including the pixels in non-overlap regions. Let {Qk

A}N
k=1 and

{Qk
B}N

k=1 be the final matching points in CDFs in the overlap regions A and B with N point matches.
Based on the matching results, the intensities of the matching points Qk

A and Qk
B are modified to

(Lk
A + Lk

B)/2 where Lk
A and Lk

B denote the intensities of k-th match (Qk
A, Qk

B) in CDFs, respectively.
In this way, the intensities of {(Qk

A, Qk
B)}N

k=1 are corrected to {(L̂k
A, L̂k

B)}N
k=1, respectively, where

L̂k
A = L̂k

B = (Lk
A + Lk

B)/2. Based on these corrections, the intensity of any pixel in both A and B will be
adjusted linearly. For example, given a pixel p ∈ A whose intensity LA(p) will be linearly corrected as:
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L̂A(p) = L̂l
A + (LA(p)− Ll

A)
L̂u

A − L̂l
A

Lu
A − Ll

A
, (9)

where LA(p) ∈ [Lu
A, Ll

A], Lu
A and Ll

A denote the intensities of two matching points in A that are closest
to LA(p), and the L̂u

A and L̂l
A are the corresponding corrected intensities. In order to produce a smooth

and gradual transition from non-overlaping regions to overlaping ones, the alpha correction method is
conducted as:

L′A(p) = (1− α(p))LA(p) + α(p)L̂A(p), (10)

where L′A(p) denotes the finally fused intensity of the pixel p, LA(p) is the original intensity of the
pixel p while L̂A(p) is the corrected intensity of the corresponding pixel based on the above-mentioned
correction method, and α(p) is a function that related to the distance between the pixel p and the
center line of the overlap image region, which ranges between zero and one as shown in Figure 8,
where the smaller the distance to the center line, the larger the α is. All the pixels in other images will
be processed in the same way.

(a) (b)

Figure 8. An illustration of the alpha weighting fusion map of two adjacently warped images:
(a) two overlapped images represented by the blue and green regions, respectively, with the overlap
image region marked in red and the center line marked in yellow; (b) the normalized alpha weighting
fusion map for two images where the brighter regions indicate higher values.

3.5. Summary

In this section, we proposed a new color correction method to reduce the color differences between
warped images. This method also includes three stages: automatic contrast adjustment, histogram
extreme point detection and matching and color difference correction. In the first stage, we applied
the traditional method to adjust the image contrast. This stage can be regarded as the pre-processing.
The second stage is the key contribution of the proposed color correction method. In this stage,
we proposed a new cost function to evaluate the similarity between two extreme points extracted from
two PDFs and then find all matched extreme points iteratively. In the last stage, based on the matched
histogram extreme points, the color differences can be corrected easily. The key contribution of this
section is that we proposed a new color correction method via matching extreme points of histograms.
This method is effective and efficient, which can handle large color differences between two images.

4. Image Mosaicking

Although the large geometric misalignments and photometric inconsistencies have been
greatly reduced through our proposed image warping and color correction algorithms, respectively,
there always exist small geometric misalignments and color differences between adjacent images.
To stitch the color corrected panoramic images into the single composite panorama, we also need to find
the optimal seam lines in the overlap image regions between warped images to magnificently conceal
the parallax. In this paper, the optimal seam lines between color corrected images will be efficiently
extracted using the graph cuts-based seam line detection algorithm presented in [19]. For multiple
images, we apply the traditional frame-to-frame optimization strategy to efficiently find all optimal seam
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lines. The details of this strategy are described in Section 3.1 of [19]. Furthermore, the Laplacian
pyramid blending [49] algorithm will be further applied to eliminate the stitching artifacts caused by
small color differences along the seam lines.

5. Experimental Results

Extensive experiments on representative street-view panoramic images were conducted to
comprehensively evaluate the performance of our proposed unified framework for street-view
panorama stitching. In this paper, all used street-view panoramic images were captured from the real
world scenes by an integrated multi-camera equipment with six Nikon D7100 cameras of 24 million
pixels with wide-angle lenses mounted on a mobile vehicle platform. Six camera images were aligned
into a common spherical coordinate system with the image size of 12, 000× 6000 pixels. Due to that the
projection centers of these six cameras are not precisely the same, there always exist large geometrical
misalignments at different extents between the adjacently aligned images, especially in the image
regions close to the camera centers. The overlap relationship of those six panoramic images is shown
in Figure 3. Our algorithms in this paper were implemented with C++ under Windows and tested
in a computer with an Intel Core i7-4770 at 3.4 GHz and the 16 GB RAM memory. Due to the limit
of pages, more experimental results and analysis are presented at http://cvrs.whu.edu.cn/projects/
PanoStitching/. In addition, the stitching framework provided by this paper has been adopted by
IShowChina(http://www.ishowchina.com/) to product the street-view panoramas for many cities
in China. Nowadays, the street-view maps of some cities are already available on IShowChina,
such as Beijing(http://map.ishowchina.com/index.html#c=110000&s=005200-0-201308190236430390&
heading=127&pitch=-3&zoom=0) and Macao(http://map.ishowchina.com/index.html#c=440400&s=
005223-0-201401210342400290&heading=353&pitch=10&zoom=0). The large set of panoramic images
generated by our proposed framework have proved that our framework is robust and effective.

5.1. Image Warping

In this section, we conducted the experiments on two groups of panoramic images to prove
the effectiveness and superiority of our proposed image warping algorithm described in Section 2.
The panorama stitching results without and with the use of our proposed image warping algorithm
in the first group of six panoramic images are shown in Figure 9a,b, respectively. We can find
that the whole seamlines in two panoramas cross the similar regions with the high image similarity.
However, from the whole stitching results and especially the detailed local regions shown in Figure 9a,b,
we observed that the stitching artifacts caused by the geometric dislocation in the panorama, as shown
in Figure 9a, stitched without the use of image warping algorithm are more obvious than the panorama,
as shown in Figure 9b, stitched with its use. Noticeably, the stitching artifacts caused by geometric
dislocation become smaller as expected when the image warping algorithm was applied, as shown
in Figure 9b. While not using the image warping algorithm, the geometric dislocation is very large,
as shown in Figure 9a. For example, in the first enlarged local region, the seamline crossed the text
without the used of image warping, and it avoided crossing the text when the image warping was used.
In the second enlarged local region, although two seamlines crossed the road with pavement stairs,
we can find that the dislocation is almost invisible in the pavement stairs when the image warping was
used, but it is so obvious without the use of the image warping. In the aspect of computational cost,
without the use of image warping, our algorithm took around 17.89 s in the above experiment, only the
elapsed time in six optimal seamlines detection is included. However, with its use, our algorithm
took around 70.93 s consisting of all the elapsed times in the image warping and the optimal seamline
detection. From this comparison, we observed that the seamline detection is efficient, but the image
warping is relatively time-consuming. This is mainly because that we need to find the inlier matches
for all image pairs at first and then interpolate the dense optical flows by MBA for each image, which
is time-consuming. But our proposed image warping algorithm can significantly improve the quality
of the last stitched panorama.

http://cvrs.whu.edu.cn/projects/PanoStitching/
http://cvrs.whu.edu.cn/projects/PanoStitching/
http://www.ishowchina.com/
http://map.ishowchina.com/index.html#c=110000&s=005200-0-201308190236430390&heading=127&pitch=-3&zoom=0
http://map.ishowchina.com/index.html#c=110000&s=005200-0-201308190236430390&heading=127&pitch=-3&zoom=0
http://map.ishowchina.com/index.html#c=440400&s=005223-0-201401210342400290&heading=353&pitch=10&zoom=0
http://map.ishowchina.com/index.html#c=440400&s=005223-0-201401210342400290&heading=353&pitch=10&zoom=0
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(a) (b)

(c) (d)

Figure 9. Visual comparison of the stitching results with the optimal seamlines in two groups of
six panoramic images when our proposed image warping algorithm was used (Right: (b,d)) or not
(Left: (a,c), namely, the stitching results of [19]). The red lines stand for the detected optimal seamlines
between images.

The comparative experimental results on another group of panoramic images are presented in
Figure 9c,d, respectively, and the similar conclusions can be drawn. The computational times of our
algorithm without the use of image warping and with its use are 13.19 s and 56.77 s, respectively.

From the above experimental results on two groups of panoramic images, we observed that
our proposed image warping algorithm can effectively eliminate the stitching artifacts caused by the
geometrical dislocations and can also slightly improve the quality of the found optimal seamlines to
some extent.

5.2. Color Correction and Image Blending

In this section, we conducted the experiments in two group panoramic images to prove that our
proposed color correction algorithm can magnificently reduce the large color differences between the
warped images. In addition, we also presented the last panoramas generated by our proposed system
and compared them with the open-source software Enblend (Available at http://enblend.sourceforge.
net/.) which are popularly used to generate the street-view panorama by stitching the registered
panoramic images.

Figure 10 shows the experimental results on the first group of panoramic images. The panorama
stitching results without and with the use of color correction are shown in Figure 10a,b, respectively.
From the whole stitching results and especially the detailed local regions shown in Figure 10a,b,
we can find that color differences between the warped images were significantly reduced and are
almost invisible. In addition, the quality of the detected optimal seamlines was improved as expected
when the color correction algorithm was used due to that the color differences were greatly reduced
before the seamlines were found. For example, the seamline rounded the advertising board instead of
crossing it when the color correction algorithm was used, as shown in the detailed image regions in
Figure 10a,b. In the aspect of computational cost, without the use of the color correction, our algorithm
took around 18.01 s to find all six optimal seamlines. With its use, our algorithm took around 33.52 s to

http://enblend.sourceforge.net/
http://enblend.sourceforge.net/
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correct the color differences and find the optimal seamlines, means that the color correction algorithm
took around 15.51 s. To generate the last panorama, the Laplacian pyramid blending algorithm was
further applied, whose generated result is shown in Figure 10d. And in Figure 10c, we also present the
last panorama generated by Enblend. From the visual comparison, we can observe that our proposed
stitching system with image warping and color correction obviously outperforms Enblend. Noticeably,
the stitching artifacts caused by geometric misalignments and photometric inconsistencies still exist
in the panorama generated by Enblend, as shown in Figure 10c but they almost disappeared in our
produced panorama, as shown in Figure 10d. In the aspect of computational cost, the Laplacian
pyramid blending algorithm took 35.56 s.

(a) (b)

(c) (d)

Figure 10. Visual comparison in the first group of six panoramic images: (a,b) the stitching results with
the optimal seamlines when the our proposed color correction was used (b) or not (a); (c,d) the last
panoramas generated by Enblend (c) and our proposed stitching system (d).

The experimental results on another group of panoramic images are presented in Figure 11 and
the similar conclusion can be drawn. The large color differences were greatly reduced by our proposed
color correction algorithm, especially in the regions of sky and the tall buildings, and the quality of the
detected seamlines was slightly improved to some extent. The seamlines bypass the buildings and the
white lane when the color differences were corrected for the warped images. Likewise, the stitching
artifacts existed in the panorama produced by Enblend disappeared in the panorama generated by
our proposed system. The elapsed times in color correction, optimal seamline detection and image
blending are 17.33, 13.77 and 35.61 s, respectively.
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(a) (b)

(c) (d)

Figure 11. Visual comparison in the second group of six panoramic images: (a,b) the stitching results
with the optimal seamlines when the our proposed color correction was used (b) or not (a); (c,d) the
last panoramas generated by Enblend (c) and our proposed stitching system (d).

5.3. Image Stitching

To illustrate the effectiveness of our proposed framework for street-view panorama stitching,
we presented the last panoramas stitched by different combination of optimal seamline detection
(S), image warping (W), color correction (C) and image blending (B) algorithms in Figure 12.
At first, Figure 12a shows the panorama generated by the optimal seamline detection algorithm
presented by [19], from which we can find that there are many stitching artifacts caused by geometric
misalignments and photometric inconsistencies in the last stitching image, especially obvious in
the detailed local regions. For example, the white lanes on the road were broken due to the
large geometric dislocations. In addition, there also exist large color differences along the optimal
seamlines. Our proposed image warping and color correction algorithm can eliminate large geometric
misalignments and photometric inconsistencies, as shown in Figure 12b,c, respectively. The last
blended panorama generated by our proposed system is shown in Figure 12d from which we can
observe that the last stitched panoramic image is pleasant and high-quality, which can meet the
application requirement of the street-view map.
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(a) (b)

(c) (d)

Figure 12. The stitching results with different combination of optimal seamline detection (S), image
warping (W), color correction (C) and image blending (B) algorithms: (a) S (the result generated
by [19]); (b) W + S; (c) W + C + S; (d) W + C + S + B. The computational times of (a–d) are 18.00 s,
69.08 s, 86.63 s and 123.68 s, respectively.

5.4. Comparative Results

At last, to prove that our approach is superior and can generate high-quality panoramas, we
compared our proposed approach with another algorithm, the open source library and the open
tools. At first, we compared our proposed framework with the Xiong and Pulli’s approach [42] step
by step. We used two representative groups of panoramic images for visual comparison. The color
differences in the first group of images are relatively small but large in the second group. Because the
Xiong and Pulli’s approach has not eliminated the influence of large geometric misalignments between
aligned images, so we used the warped images generated by our image warping algorithm as the
input ones for comparing two approaches. In addition, their approach applied the Poisson blending
algorithm to generate the last blended image, however, our approach used the Laplacian pyramid
blending algorithm. To evaluate the last blended panoramas generated by two approaches more
fair, we replaced the Poisson blending algorithm in the tested Xiong and Pulli’s approach with the
Laplacian pyramid blending algorithm.

Figure 13 shows the stitching results of the first group of images with relatively small color
differences. Figure 13a,b illustrate the stitching results just with the detected seamlines of the Xiong
and Pulli’s approach and our approach without the use of color correction, respectively. Figure 13c,d
illustrate the stitching results of two approaches with the use of color correction, respectively,
from which we observed that both of two approaches can eliminate the small color differences
effectively. Figure 13e,f show the last blended panoramas generated by two approaches, respectively,
from which we found that there is some petty ghost on the top of the tallest building in the second
enlarged region shown in Figure 13e, which disappeared in the panorama generated by our approach,
as shown in Figure 13f. This is mainly because the horizontal seamline between bottom and top input
images detected by the Xiong and Pulli’s approach is close to this building, as shown in Figure 13c.
In conclusion, if the color differences between input images are small, both of two approaches can
generate high-quality panoramas.
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(a) (b)

(c) (d)

(e) (f)
Figure 13. Visual comparison between our approach in the left column and the Xiong and Pulli’s
approach in the right column on the first group of images with relatively small color differences:
(a,b) the results without the use of color correction; (c,d) the results with the use of color correction;
(e,f) the last generated panoramas.

Figure 14 shows the stitching results of the second group of images with very large color
differences. Figure 13a,b show the stitching results of the Xiong and Pulli’s approach and our approach
without the use of color correction, respectively. Figure 13c,d present the stitching results of two
approaches with the use of color correction, respectively. From the visual comparison, we observed
that our proposed color correction algorithm obviously outperformed than the algorithm presented
in [42], especially obvious in two locally enlarged regions. For example, in the first enlarged region
(from left to right), the detected seamline divides the building into two parts, one comes from the
top input image which is dark, and another comes from the bottom input image which is relatively
lighter. After color correction, the top image is also very dark in the result generated by the Xiong and
Pulli’s approach and the color differences along the seamline are also very large. In addition, due to
that the top image is too dark, many detailed informations cannot be pleasantly observed. But, in our
result, the color of the top image is similar with the bottom one, and more detailed informations of
this region can be clearly observed. Figure 13e,f show the last blended panoramas generated by two
approaches, respectively. In the second enlarged region of Figure 14e, we found that there are some
very obvious ghosts on the top of the building, which disappeared in the panorama generated by our
approach, as shown in Figure 14f. In addition, in Figure 14e, the color of top sky regions almost is
white, which is not pleasant. However, in the last panorama generated by our approach, the color
of those regions is slightly bluish, which is more reasonable and pleasant, as shown in Figure 14f.
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In conclusion, if the color differences between input images are large, our approach can also generate
high-quality panoramas, but the results generated by the Xiong and Pulli’s approach are not so good.

(a) (b)

(c) (d)

(e) (f)

Figure 14. Visual comparison between our approach in the left column and the Xiong and Pulli’s
approach in the right column on the second group of images with large color differences: (a,b) the
results without the use of color correction; (c,d) the results with the use of color correction; (e,f) the last
generated panoramas.

In the aspect of computational times of two approaches, the average times on two groups of images
are presented in Table 1, from which we can find that our approach is a litter bit more time-consuming
than their approach. This is mainly because their approach applied dynamic programming to detect the
optimal seamlines but we used graph cuts, which is more time-consuming than dynamic programming.
We also observed that the computation times of our proposed color correction algorithm and their
algorithm are 16.83 s and 16.08 s, respectively, which are almost the same. But our color correction
algorithm is more effective than their algorithm.

Table 1. The computational times of our proposed approach and the approach proposed in [42].

Optimal Seamline
Detection

Color
Correction

Image
Blending #Total

Our Proposed
Approach (s) 16.92 16.83 36.60 70.36

Xiong and Pulli’s
Approach (s) 13.77 16.08 36.72 66.5815
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In addition, we presented more comparative results in Figure 15. We also compared our proposed
approach with two widely used open tools Enblend and Smartblend (Available at http://wiki.panotools.
org/SmartBlend), and also with the stitching functions provided by OpenCV (Available at http:
//opencv.org/). Similar with the experiments presented in Figures 13 and 14, we also used the warped
images generated by our image warping algorithm as the input images. From those more visually
comparative results, we also can find that our proposed system can generate the best high-quality
street-view panoramas.

Figure 15. Six groups of panoramic images generated by five different tools or approaches. Form left to
right: Smartblend, Enblend, OpenCV stitching functions, Xiong and Pulli’s approach and our proposed
approach. The faces in the first group of images were blurred due to privacy protection.

At last, to strongly prove the superiority of our proposed approach, we applied the Oriented
Gradients Image Assessment (OG-IQA) algorithm [55] to quantitatively evaluate the qualities of the
final panoramic images stitched by different tools and approaches. Here, we evaluated the panoramic
images presented in Figures 13 and 14, and six groups of panoramic images presented in Figure 15.

http://wiki.panotools.org/SmartBlend
http://wiki.panotools.org/SmartBlend
http://opencv.org/
http://opencv.org/
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The results of quality assessment are presented in Table 2. In Table 2, we used the Group 1 to Group 6
to represent the panoramic images in the first row to the last row of Figure 15 . From these results,
we observed that our approach performed best in most of cases, except of Group 4. But, in Group 4,
the quality score of our approach is only litter less than the score of Enblend.

Table 2. The quantitative quality assessments of five tested tools and approaches.

Figure 13 Figure 14 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Smartblend - - 0.6517 0.6576 0.6011 0.6887 0.6022 0.6498
Enblend - - 0.7207 0.6773 0.7076 0.7511 0.7359 0.7341

OpenCV - - 0.6371 0.6279 0.5880 0.6026 0.5522 0.6203
Xiong and

Pulli’s
Approach

0.5469 0.4693 0.5527 0.4283 0.5306 0.5265 0.6173 0.6075

Our Proposed
Approach 0.7055 0.6817 0.7248 0.7585 0.7144 0.7333 0.7481 0.7469

6. Conclusions

In this paper, we proposed a unified framework for street-view panorama stitching system which
is comprised of image warping, color correction, optimal seamline detection and image blending
for stitching or mosaicking a set of geometrically aligned street-view panoramic images with large
geometric misalignments and photometric inconsistencies into a visual-appealing and informative
wide-angle composite image. The contributions in this paper are summarized as follows:

• We creatively proposed a novel image warping method based on the dense optical flows to
greatly reduce the large geometric misalignment existed in the input images as much as possible.
Experimental results have demonstrated the superiority of our proposed image warping method,
which can efficiently and greatly eliminate the influence of the large geometric misalignment.

• We proposed a novel color correction and image blending method to further reduce the color
differences between panoramic images based on extreme point matching of histograms of the
overlapped image regions of two involved images via both probability density functions and
cumulative distribution functions. Experimental results on representative street-view panoramic
images have proved that our proposed color correction method is capable of eliminating the large
color differences between adjacent images captured in different illumination conditions and/or
different exposure settings.

• We proposed a unified framework for street-view panorama stitching system. Even thought there
are large geometrical misalignments and photometric inconsistencies in the input aligned images,
our system can also generate pleasant and high-quality panoramas. Our proposed framework
outperforms the open-source tools Enblend, Smartblend, OpenCV stitching functions and the
approach proposed by [42].

Nevertheless, the proposed system may be improved in the future in the following ways.
First, when detecting the optimal seamlines, the superpixel segmentation can be introduced to greatly
improve the optimization efficiency by decreasing the number of elements in graph cuts, and the scene
understanding or parsing can also be applied in some particular image data. For example, the roads
can be detected out for guiding the seamlines. Second, the whole image mosaicking method can be
improved to handle more different types of images, not only street-view panoramic ones, but also
aerial and oblique ones. At last, the parallel optimization strategy is expected to be developed to more
efficiently generate the last panorama.
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