ﬂ SCNSors m\py

Article

Markov Task Network: A Framework for Service
Composition under Uncertainty in
Cyber-Physical Systems

Abdul-Wahid Mohammed ?*, Yang Xu *%, Haixiao Hu ' and Brighter Agyemang !

1 School of Computer Science and Engineering, University of Electronic Science and Technology of China,

Chengdu 611731, China; abdulwahidmohammed@yahoo.co.uk (A.-W.M.);
201511060118@std.uestc.edu.cn (H.H.); brighteragyemang@gmail.com (B.A.)

School of Engineering, University for Development Studies, Tamale 00233, Northern Region, Ghana
Correspondence: xuyang@uestc.edu.cn

1t These authors contributed equally to this work.

2

*

Academic Editor: Albert M. K. Cheng
Received: 21 June 2016; Accepted: 13 September 2016; Published: 21 September 2016

Abstract: In novel collaborative systems, cooperative entities collaborate services to achieve
local and global objectives. With the growing pervasiveness of cyber-physical systems, however,
such collaboration is hampered by differences in the operations of the cyber and physical objects,
and the need for the dynamic formation of collaborative functionality given high-level system goals
has become practical. In this paper, we propose a cross-layer automation and management model
for cyber-physical systems. This models the dynamic formation of collaborative services pursuing
laid-down system goals as an ontology-oriented hierarchical task network. Ontological intelligence
provides the semantic technology of this model, and through semantic reasoning, primitive tasks
can be dynamically composed from high-level system goals. In dealing with uncertainty, we further
propose a novel bridge between hierarchical task networks and Markov logic networks, called the
Markov task network. This leverages the efficient inference algorithms of Markov logic networks
to reduce both computational and inferential loads in task decomposition. From the results of
our experiments, high-precision service composition under uncertainty can be achieved using
this approach.

Keywords: cyber-physical systems; Markov logic networks; hierarchical task networks; ontology;
uncertainty reasoning

1. Introduction

Cyber-physical systems (CPSs) [1,2] currently offer the gateway to achieving synergy between the
digital and physical worlds. With the integration of CPSs and Internet of Things (IoT) [3], the sea of
interconnected devices provides an avenue for the exchange of capabilities towards the attainment of
common goals. However, differences in the operations of the cyber and physical objects and the lack
of adequate techniques for the dynamic formation of new functionality given high-level cross-layer
services and their underlying criteria are fundamental challenges that need to be addressed. As such,
a cross-layer automation and management framework, which can represent both the cyber and physical
components with high fidelity, is urgently needed. It is against this background that researchers in
this field have made attempts towards new abstractions and architectures that can spur on novel
techniques in the development and implementation of CPSs.

Existing service-oriented architectures (SOAs) can achieve interoperable models that represent
both the cyber and physical components [4,5]. As the components of CPSs increasingly grow apart,

Sensors 2016, 16, 1542; d0i:10.3390/s16091542 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2016, 16, 1542 2 of 21

agent-based modeling techniques have been pursued to complement SOAs for autonomous
discovery and management of services [6]. To achieve interoperability and scalable information
management through context-awareness [7], semantic agent technology has also become apparent
in the development of CPSs [8]. Semantic agents represent heterogeneous computational platforms
executing complex algorithms and can encapsulate complex attributes to achieve real-time CPSs that
take into account the strong interdependencies between the cyber and physical components.

Even though an agent-based workflow modeling can address inter-enterprise collaboration
involving internal and ad hoc external processes [9], agent-based models for CPSs are yet to
integrate a mechanism that achieves multi-threading of physical entities by providing a dynamic
service composition procedure. However, the problem of composing services to achieve complex
systems tasks has become practical in CPSs [10], and other important enterprise integrations, such as
business-to-business processes [11,12]. Therefore, augmenting the agent-based interoperable models
for CPSs with a service composition strategy that is dynamic and adaptive to the changing evolutions
of systems is very crucial. Furthermore, since the dynamic evolutions of systems naturally pose partial
observability problems [13,14], CPSs must be designed and operated by incorporating uncertainty into
modeling for best performance in practice.

In this paper, we propose an uncertainty-based cross-layer automation and management model
for CPSs. This model uses an ontological abstraction to define a hierarchical task network (HTN) [15]
for dynamic service composition in CPSs. To support semantic reasoning on this model, we propose
an ontology that can efficiently integrate with existing standards in sensor networks. Because a task
represents any intended service with a structure in the ontology, services can be dynamically composed
into desired capabilities through HTN task decomposition. Furthermore, in dealing with uncertainty,
we propose a novel bridge between HTN and Markov logic networks (MLN) [16] called the Markov
task network (MTN). This new framework leverages the dynamic task decomposition of HTN and
the inferential power of MLN [17,18] to achieve dynamic service composition under uncertainty for
CPSs. A key advantage with this approach is the reduction of both inferential and computational
loads for optimal model performance. Finally, we validated the approach using a case study of
automated planning in a smart home, and the results of our experiments show that high-precision
service composition under uncertainty can be achieved using this approach.

2. Problem Description

An agent-based interoperable model for CPSs typically describes processes and interactions
amongst agents between the cyber and physical components. The problem of service composition on
this model can be formulated as:

SCq =<W,T,O,R, A >

where:

W: Denotes a workflow, which represents an ordering of a set of tasks to be performed.

T: Denotes a task, which represents a sequence of operations intended for a given service.

O: Denotes an operator, which represents resources that achieve specific tasks.

R: Denotes a role, which represents a placeholder for a service to achieve a task.

A: Denotes an agent, which represents complex algorithms executing on distributed environments.

Essentially, this model leverages the advantages of multi-agent coordination mechanisms, and
by specifying operators and their roles, efficient actuation control in CPSs can be achieved through
task assignment.

When the workflow is defined as a process, we achieve multi-level collaborative tasks in which
each task represents a logical entity contributing to the process. As shown in Figure 1, the workflow
process can be simplified by an abstraction to a service composition process of layered roles. This uses
a coordinated problem-solving approach to achieve workflow management in which a planner

Sensors 2016, 16, 1542 3of 21

composes primitive tasks from complex tasks in the workflow. In this way, utilities can be initiated to
activate operators based on their capabilities for the execution of planned services.

Workflow Process: defines ordered set of tasks

Planner: refines complex tasks into primitive tasks

T1 * Tz veus * Tn-l * Tn

Service Composition Layer: defines ordered set of primitive tasks

Resource Layer: defines operators in the physical domain

Figure 1. Layered view of the service composition process from a workflow process.

Because the task ordering in the workflow generally has a hierarchical structure, a key constraint
guiding the service composition process requires a planning scheme that can compose tasks into
subtasks, properties and relations. From this viewpoint, the intrinsic complexity coupled with the
timeliness requirement of CPSs demands a semantically-oriented approach that can specify tasks and
all of their operations. However, automatically composing adaptive primitive tasks from high-level
complex tasks becomes challenging when model complexity grows due to the changing evolutions of
CPSs. This is also the source of uncertainty in CPSs, and good model performance can be guaranteed
by pursuing novel techniques that can reduce considerably both inferential and computational loads
in practice whilst incorporating uncertainty in modeling.

3. Hierarchical Semantic Collaborative Service Model

In this section, we present a model that provides the workflow requirements of our problem
description. As shown in Figure 2, this model derives its structure by extending the traditional
semantics of ontology to incorporate HTN [15]. A key advantage of this design is the structural
similarities between HTN and the workflow process, and the deterministic task decomposition of
HTN can be leveraged for dynamic service composition. Task is the central logical entity of this
model and represents anything that a service executes to deliver objectives, tactical results or strategy
realization. Additionally, operator and operation are defined to streamline operations towards optimal
performance of services. These three components, together with their extended properties, define the
semantics of our hierarchical semantic task (HST) model.

Sensors 2016, 16, 1542 4 of 21

— inCondition

f i

} } | \} | } PlanningProblem |

} { Capacity J | } {Capability} }‘ { Deployment J H }
I I |

I i \ — I

I k X f H / i } {InitialStateJ [InltlalTaskJ {Domain}."i

} hasCapacity } | hasCapability \} hasDeployment |, Network i
| | |

[| \ |

[W, A gt S]

requiresOperator

-

y ConstraintBlock

|
: |
|

hasConfiguration

invokesOperator
A

hasOperator
hasOperation

CompoundTask

containln

| |
| |
| |
| |

\ 1 1

partOf _l_b“ Input } J
|
Wt e !
hasRefinement —

sameAs

Figure 2. Hierarchical semantic task model.

3.1. Task

A task requires a structure that can encapsulate resources and some constraints. A resource can be
anything abstract or concrete required to accomplish a task. Three types of resources are defined in
this approach: simple resource; complex resource; and hybrid resource. Whilst a simple resource directly
achieves a task, a complex resource depends on other resources to execute a task. A resource that shares
properties of both simple and complex resources represents a hybrid resource. A typical example of a
hybrid resource is a human in a fire extinguishing process. When the human is viewed as a resource in
a fire tender, we can describe it as a simple resource required to move the fire tender to a fire scene.
However, a human using a hand-held fire extinguisher to put out the fire becomes a complex resource,
which requires a fire extinguisher as a complementing resource to perform this task.

The key property in resource modeling is configuration, which defines all sub-resources of
a resource and provides the distinction between simple and complex resources. As shown in Listing 1,
the complex resource, fire tender, consists of a fuel tank, which contains fuel as a resource for mobility,
and a water tank, which also contains water as a resource for extinguishing the fire. Transporting the
water to a fire scene also requires a specialized driver, which is another resource. Because some of
these sub-resources can be replenished, a high frequency of replenishing resources can be avoided
through capacity modeling. A capacity property defines the capability range of a resource.

<Vehicle rdf:ID="&res ;#FireTendder">
<hasConfiguration rdf:resource="&res;#FireTenderDriver"/>
<hasConfiguration rdf:resource="&res;#Fuel"/>
<hasConfiguration rdf:resource="&res;#Water"/>
<hasCapacity rdf:resource="&res;#2,500Litres"/>
</Vehicle>

Listing 1. Example of resource modeling.

Sensors 2016, 16, 1542 5of 21

Once resources are defined, the semantics of a task requires the assignment of resources to
properties of tasks, as shown in Listing 2. Task operation is adopted as the sole property of every task,
and this compactly represents all aspects of task planning. This representation can achieve total or
partial ordering of operations and other tasks.

<Task rdf:ID="&hstm ;#rescueTask">
<hasOperation rdf:resource="&hstm;#rescueOperation"/>
</Task>

Listing 2. Example of task modeling.

3.2. Operation

A task operation defines a planning domain of an HTN planning problem P. Specifications for
both methods and operators of the planning domain are provided, and P with formal arguments ¢ is
defined as the atomic formula p(P) = P(¢), where ¢ encapsulates the domain description, initial state
and initial task network. For a given task instance t and operation o, the semantics of P is defined as
p(P) = {P(¢) < o(Operation) A {t;(Task) A ... A t,(Task)} }. Clearly, from this definition, the initial
state is implicitly buried in the task operation.

The representations for operator and method instances in operation are used to disambiguate
between primitive and complex tasks. To specify operator and method instances, constraints and
action effects are modeled as input and output requirements of operations (Listings 3 and 4). Actions of
operators leave effects, which can be modeled as the output property of a task operation in CPSs.
For each operation, only one method instance is applicable, and the decomposition criteria are specified
by a method refinement property.

<Operation rdf:ID="&hstm;#dialOperation">
<hasInput rdf:resource="&hstm;#serviceAvailable"/>
<hasOperator rdf:resource="&hstm;#phone"/>
</Operation>

Listing 3. Task operation of an operator.

<Operation rdf:ID="&hstm;#callOperation">
<hasInput rdf:resource="&hstm;#fireSpreading"/>
<hasMethod rdf:resource="&hstm;#callMethod"/>
<subTask>
<rdf:Description>
<hasRefinement rdf:resource="&hstm;#call911"/>
</rdf:Description>
</subTask>

</Operation>

Listing 4. Task operation of a method.

3.3. Operator

An operator represents a resource augmented with capability and deployment properties.
This augmentation encodes capacity, capability, configuration and deployment as the intrinsic
properties of operators.

The capability property describes the ability of an operator to execute a specific set of
tasks. In Figure 3, control and monitoring form the core of the capability model and simplify the

Sensors 2016, 16, 1542 6 of 21

capability-based search by providing enriched semantic information for efficient reasoning. With the
control capability, operators can act on environments, and this is modeled in terms of properties:
access control; motion control; and mechanism control. Whilst access control defines operations that
can be performed on operators, motion control applies to all operators with a movement property.
Mechanism control is also used to specify the autonomous capability of operators, such as unmanned
vehicles. The monitoring capability designates the sensing properties of operators. This is liberally
inclusive of anything that can monitor or convey information and can be seen from both observation
and signal perspectives.

Deployment

LifeCycle
[f _________ |
[]
2 I
2 I
|
|

'
!\ S _y WorkCycle
Specification “°‘

7/ AN
Property

hasCapability

Location

| monitors

LT 0 AN\ N

Measurement

Figure 3. Capability and deployment modeling.

The deployment property describes the environment perspective of operators. The semantics
focuses on describing an operator with respect to time, space and the projection of its status following
a change in variables, such as time, or the occurrence of a predetermined event. As shown in
Figure 3, complementing the deployment property are two properties: location; and specification.
The location property encapsulates physical address, geographic coordinates and reference points to form
a single descriptor denoting both absolute and relative addressing. This coordinate system uses
measures of latitude, longitude and elevation to determine the deployments of operators. Together
with physical addressing, an alternative consideration for error checking in the coordinate system is
provided. In the physical address, planet is the top level and can be extended to include domain-specific
needs. Furthermore, reference points provide relative proximities between operators in distributed
deployments. This leverages the geographic coordinates to integrate different deployments. Work cycle
and life cycle are two properties that define the specification property. Work cycle models the sequence
of states from the start to the end of a task operation in a given deployment. The life cycle provides
estimates of time required to complete a particular operation.

3.4. HSS Ontology

To automatically reason and interpret workflow dynamically based on the HST model, we propose
a hierarchical semantic service ontology (HSS ontology). This ontology formally describes the
vocabulary of the semantics of the HST model and represents an upper level conceptualization
of an HTN planning problem that can integrate with existing standards in sensor networks, such as
the SSN ontology [19]. The full ontology consists of 28 classes and 28 properties.

In the HSS ontology, semantic concepts describing task, operation, operator, capability,
deployment, input, method and output are of the thing type. The concepts of deployment consist
of location and specification. Whilst the concepts of location describe the address, geocoordinates
and reference point, the concepts of specification include life cycle and work cycle. The concepts
of the address begin at the level of a continent and can be extended to meet domain-specific needs.
Furthermore, the capability class describes the concepts of control and monitoring. The concepts of

Sensors 2016, 16, 1542 7 of 21

the control class include access, mechanism and motion. The only concept under the monitoring class
is measurement.

The relation between task and operation, i.e., hasOperation, the relation between operation
and operator, i.e., hasOperator, the relation between operation and input, i.e., haslnput, the relation
between operation and method, i.e., hasMethod, and the relation between operation and output,
i.e., hasOutput, are modeled as object properties. Other object properties, such as hasCapability,
which describes the relation between operator and capability, exist at the range of these relations.
Data type properties are used to describe relations between address elements and range values,
the relation between life cycle and range values and the relation between work cycle and range value.

A key advantage with this ontology lies in the flexibility and reusability of concepts with minimum
redesign and re-development efforts. As shown in Figure 4, the oneM2M [20] base ontology proposed
for generic inter-working with area networks can incorporate task processing by integrating with our
HSS ontology.

oneM2MBase

oneM2M:
InterworkingPro
xyEntity

oneM2M:
AN_Technology
oneM2M:
Function
oneM2M:
Operation

oneM2M:
AreaNetwork

hss:Operator

oneM2M:
Interface
oneM2M:
Method
oneM2M:
DataField
oneM2M:State

Figure 4. Mapping between hierarchical semantic service (HSS) ontology and oneM2Mbase ontology
for generic inter-working.

As we can see, this mapping establishes equivalence between the two ontologies using a minimum
set of concepts in the HSS ontology. Two concepts are deemed equivalent in two ways. First, we can
establish correspondence between two concepts if they share some commonalities. Second, one concept
exists in the definition of the other. For example, the correspondence between task and service is
achieved because a service is required to execute a task.

4. Markov Task Network

We present an equivalence-preserving translation of HTN into an MLN called a Markov task
network (MTN). This framework specifies a template for the ground Markov network (MN) based
on our HSS ontology and leverages the inferential power of MLN to achieve non-deterministic HTN

Sensors 2016, 16, 1542 8 of 21

task decomposition towards dynamic service composition in CPSs. MLN models complexity using
first-order logic (FOL), and models uncertainty using numerical constants attached to formulae.
Following this ability of MLN to efficiently handle both complexity and uncertainty, this approach
eases the difficulty of getting CPSs to function in complex and uncertain environments.

MTN can be derived from the HSS ontology by translating concepts and properties into weighted
FOL formulae. This is an Interlingua-based semantics [21] involving a base language and a procedure
for translating the base language into the Interlingua. Markov logic is the base language, and the
translation accomplishes a combination of FOL and probabilistic graphical models to produce weighted
FOL formulae according to Definition 1.

Definition 1. Given a Web Ontology Language (OWL) and Markov logic (ML) as its Interlingua language,
the pair < TRANSL(OWL, ML), Towr. > represents the Markov logic-based semantics for OWL when for
every set T(OWL) of top-level forms in OWL, there exists a set T(ML) of top-level forms in Markov logic, such
that: VT; € T(OWL), 3T, € T(ML), <TRANSL(OWL,ML(Ty, Tp))>; and VT, € T(ML), 3Ty € T(OWL),
<TRANSL(OWL,ML(Ty, T;))>; where TRANSL(OWL,ML) specifies translations between top-level forms of
OWL and Markov logic and Towr, is the set of top-level forms in Markov logic.

The OWL ontology in context denotes the HSS ontology. By specifying the semantics of OWL
based on <TRANSL(OWL,ML), Towr.>, the underlining theories of T(OWL) and T(ML) U Tow are
equivalent. This allows the OWL concepts to be converted into MLN using FOL, and the MLN formulae
can be axiomatized similar to the OWL statements. Essentially, constraints on logical interpretations of
classes and properties in OWL can also be expressed as axioms in MLN.

In the conversion process, specifications are provided for both translation TRANSL(OWL, ML)
and the MLN Towr. First, ontological statements are translated into FOL functions and predicates.
This assumes a predicate-based ontology in which classes denote unary predicates and properties
represent binary predicates. In this way, all ontological statements exist as a pair < Class, Property >
and can be translated as either a class or axiom of a class. Thus, an OWL class can be translated into FOL
as C(X), where X denotes all instances of C. As we can see in Table 1, FOL translations are provided
for all crisp set properties, OWL properties and the value constraints of the property restrictions of an
OWL class. For instance, an OWL property is translated into an FOL as Vx, yP(x,y) = C1(x) A Ca(y),
where x and y respectively specify the domain and range of the property. This representation best
suits an object property and can be extended to data type properties by fictionalizing range classes to
represent data values.

Table 1. Translation of OWL concepts into first-order logic (FOL).

Concept OWL Syntax FOL
Class owl:Class C(x)
Special class owl:Thing X=x
Empty class owl:Nothing —(x =x)
Intersection of concepts owl:intersectionOf Ci(x) A Ca(x)
Union of concepts owl:unionOf C1(x) V Ca(x)
Complement of concepts ~ owl:complementOf -C(x)
Property rdf:Property P(x,y) = C(x) ANC(y)
Universal restriction owl:allValuesFrom Yy, P(x,y) = C(y)
Existential restriction owl:someValuesFrom Yy, P(x,y) AC(y)

The OWL ontology also contains additional sequence of axioms, which define logical assertions
about classes, individuals and properties. In this regard, translations of some relevant axioms are
also provided in Table 2. For complex formulae in rules, individual translations can be aggregated
using logical connectives. The capability model is a typical case, and its subclasses can be combined

Sensors 2016, 16, 1542 9 of 21

into a single composite formula as Vx, y, Access(x) A Motion(y) = Control(x) A Control(y), where
x, Yy represent respectively individuals of the access and motion concepts of control capability.

Table 2. Translation of OWL axioms to FOL.

Axiom OWL Syntax FOL
type rdf:type C(Xy)
subClassOf rdfs:subClassOf Vx, C1(x) = Co(x)
. VX,Cl(X) = CZ(x)
sameClassAs owl:sameClassAs Vx, Co(X) = Cy(X)
subPropertyOf rdfs:subPropertyOf Vx,y, P1(x,y) = Pa(x,y)
Property domain rdfs:domain Vx,y,P(x,y) = C(x)
Property range rdfs:range vx,y,P(x,y) = C(y)
. . Vx,y, P(x,y) = Pl(y,x)
inverseOf owl:iinverseOf Wy, PL(y, %) = P(x,y)
SymmetricProperty owl:SymmetricProperty :i’ z ’II;E;"Z g z ig ’;g
.) . Vx,y,zP(x,y) = P(x,z)
FunctionalProperty owl:FunctionalProperty Vx,y,zP(x,2) = P(x,y)

Vx,y,zP(x,y) = pl (z,y)

InverseFunctionalProperty = owl:InverseFunctionalProperty Vx,y,2PL(z,y) = P(x,y)

TransitiveProperty owl:TransitiveProperty Vx,y,z,P(x,y) ANP(y,z) = P(x,z)

Next, TRANSL(OWL, ML) provides a correspondence between the first-order knowledge base
constructed from these FOL formulae and MLN, and it is defined as:

TRANSL(< Class, Property >, ML) := (F;, w;)

where F; is a formula in FOL and w; denotes the weight of each formula. Thus, for any
ontology-oriented HTN, we can achieve MTN based on the following proposition:

Proposition 1. Given a set of ontological axioms of ontology-oriented HIN and its equivalent set of first-order
weighted formulae pairs (F;, w;), then there exists a set of weighted horn logic formulae equivalent to the semantic
Markov task network (MTN) of the ontology.

Proof. Let K represent an ontology-oriented HTN and (F;, w;) denote the weighted first-order logical
semantics of K, then Markov logic equivalence is achieved if for each formula f; translated from
K; inference based on this semantics is sound and complete, and as such, adheres to Markov logic
inference rules. [

When (F;, w;) is defined together with a finite set of constants, we obtain a ground MN in which
each node represents a predicate appearing in the MTN, and there exists a feature for each grounding
of F;. Each weight w; is used to compute a log-probability, which shows the extent to which a world
satisfies a formula.

The choice of weights for formulae is crucial for efficient inference in MLN since weights define
the probability distribution over variables of MLN. In CPSs however, the distributed infrastructure
allows the possibility of merging formulae from different distributed environments, which determines
the weights of formulae. Essentially, weights of formulae can be refined by leveraging available data
to automatically adjust weights through learning. Weight learning is one of the strengths of MLN
and can be done either generatively or discriminatively [22].

Sensors 2016, 16, 1542 10 of 21

4.1. Dynamic Service Composition under Uncertainty

Using HTN task decomposition, MTN can facilitate the uncertainty-based dynamic discovery and
composition of capabilities of entities to achieve desired tasks. To ensure the adaptability, efficiency
and flexibility of this process, this paper adopts a rule-based knowledge restructuring to provide
a very tight correspondence between a subset of MN instantiated by an MLN and its relevance to
reasoning requirements. As a principle and standard, all rules must be consistent with standard HTN
task decomposition algorithms based on MTN.

We define a partial order planning problem as P =< s,t,0, M >, where s is the initial state,
t is the partially ordered task network, O is a set of operator instances and M is a set of method
instances. Because our approach holds both operator and method instances in a task operation
Opr, we can reformulate this planning problem as P =< s, t,Op; > where O, defines the planning
domain. This simplifies task decomposition based on rules, and Algorithm 1 provides a framework for
formulation of rules for task decomposition on MTN.

Algorithm 1: Algorithm for the partial-order Markov task network (MTN).

Input: initial state s, initial task network ¢, set of task operations Oy,
Output: 7, set of operator instances

1: function PFD(s, t, Opy)

2: if w = @ then

3: _return empty plan
4: else
5. nondeterministically select any u € t without predecessors in ¢
6: if operation of ¢, has operator instance then
7: active <— {%, o)}
8: if active = @ thén
9: return failure
10: end if o .
11: nondetermlrustlcall;l select arg a,0) € active
12: T <—PFD(7(s,aL, o(t—{u}),Opr
13: if © = failure then
14: return failure
15: else
16: return a.7t
17: end if
18: else
19: active < {(m,o
20: if active :{ED the):r}l
21: return failure
22: end if o .
23 nondeterministically select any (m, o) € active
24: nondeterministically select any task network t' € 6(t, u, m, o)
25: return PFD(s, t/, Opr)
26: end if
27: end if

28: end function

Algorithm 1 consists of a partial order of concepts represented by a nested concept graph [23].
Concepts denote tasks, and the partial ordering of tasks depicts a method ordering based on nested
ordering of subtask relations in an ontology. Thus, task decomposition methods can be invoked on
the fly upon satisfying some constraints, and the nested ordering of subtasks in a decomposition
hierarchy is related by t; < t; to indicate that task t; decomposes into task ;. By this relation, methods
applicable to the decomposition of subtasks become valid only after a task is substituted by a network
of its subtasks.

This algorithm provides three cases of plans for a given planning problem P. A plan,
m=<ay,..a; >, represents a sequence of operator instances of a task operation. The first case
of a plan represented by Line 3 denotes an empty plan whenever no initial task network is given.
Beyond this stage, tasks in the initial task network are chosen nondeterministically, and two different

Sensors 2016, 16, 1542 11 of 21

plans are also possible depending on the type of task selected. From Lines 6-17, a primitive task ¢, that
has no predecessors in t corresponds to a task, which has an operator instance, and gives the second
case of planning. With an assignment of a pair (a4,), any ground instance a of an operator applies to
the initial state if only the substitution name(a) = o(t,) holds. From Lines 11 and 12, any chosen pair
(a,0) produces a transformed planning problem in which 4 is executed, and the task node of a in f is
removed from the network. In this case, if the plan for the problem P is 7w =< ay,...,a, >, then the
plan for the transformed problem P’ is t =< aj, ...,a, > when a is executed, and a = a;.

With the third case of planning, a non-primitive task ¢, without predecessors in t is chosen.
On Line 19, a given method instance m requires an assignment of the pair (m,0), such that m is
applicable to s and the substitution name(m) = ¢ holds. Failure in the assignment automatically
terminates the planning process, as Line 21 indicates. Therefore, the plan for P’ exists if there is a task
network t' € 6(t,1, m, o) such that the plan is a solution for (s, ', Opr).

4.2. Construction of Rules

The model theory-based set semantics of nested concept graphs motivates using a rule-based
framework to provide a firm interface between Algorithm 1 and MLN. To that end, logical rules based
on FOL translation of OWL statements can provide another view of knowledge constructs that can be
used to construct an MLN for MTN task decomposition.

Based on Algorithm 1, Figure 5 represents tasks as external information of a concept graph,
and a task operation internalizes all applicable decompositions of the task. On this premise, we can
build a mapping from nested concept graphs to OWL rules based on the following proposition:

Proposition 2. Regardless of the number of steps of a given task decomposition, the primitive task(s) attained
is (are) invariant for a given set of criteria.

Proof. Let m, a ground instance of method M, use a state decomposition function decompose(x, y) to
decompose three given tasks A, B and C as follows:

A(x) Adecompose(x,y) = B(y)
B(y) A decompose(y,z) = C(z)

When we combine the decompositions of A and B using the logical and operator, the composite
function obtained is:

decompose(x,y) A decompose(y,z) = decompose(x,z)

Clearly, this is a transitive relation denoting a direct decomposition from A to C, and hence,
the two decompositions involving A, B, C can be represented by:

A(x) N decompose(x,z) = C(z)
O

With this mapping, Figure 5 presents each internal structure as a specific task decomposition, and
it symbolizes a state function in which primitive tasks depend only on the desired objective instead of
the length of decomposition.

Sensors 2016, 16, 1542 12 of 21

Operation: notifyOperation

,,,,,,, ———— ————

Task: A } Internal structure i
fireNotification P } ‘
|
|

Task:
activateFireAlarm

Task:
callFireService

hasOperation

Operation: alarmOperation Operation: callOperation

T
I'Internal structure

1
|
|
Method: Task:
i |
makeCall hasRefinement)| .aio11 !

'
I'Internal structure

|

|

|

Method: X Task: |
hasRefinement startSounder }
1

Figure 5. An example of a nested conceptual graph of task decomposition.

4.3. MTN Task Decomposition

First, MLN binary predicates are composed into rules based on our framework of concept
graphs. These predicates are FOL translations of OWL properties: hasOperation; hasInput; hasMethod;
hasRefinement; and requiresOperator. Thus, these properties form the skeleton of the rules for task
decomposition and the assignment of operators to primitive tasks based on our HSS ontology.

For a single-stage task decomposition, the OWL rule in FOL is:

Vx,y, Task(x) A hasOperation(x,y) = Operation(y)
Vx,y, Operation(x) A hasInput(x,y) = Input(y)
Vx,y, Operation(x) A hasMethod(x,y) = Method(y)
Vx,y, Method(x) A hasRefinement(x,y) = SubTask(y)

This rule is a direct manifestation of Proposition 2 and can support both forward and backward
chaining of tasks. However, disambiguating between complex and primitive tasks requires amending
the above rules as shown below:

Vx,y, Task(x) A hasOperation(x,y) = Operation(y)
vx,y, Operation(x) A\ hasInput(x,y) = Input(y)
Vx,y, Task(x) A requiresOperator(x,y) = Operator(y)

Obviously, these two rules use method and operator instances to distinguish between primitive
and non-primitive tasks.

The second decomposition process extends above rules to achieve recursive decompositions.
We provide the following formula as an augmentation:

decompose(x,y) A decompose(y,z) = decompose(x,z)

For a two-stage decomposition, this augmentation is a direct provision of Proposition 2. The route
to addressing recursive decomposition of tasks beyond a two-stage process is a viewpoint of
Algorithm 2. As shown on Line 4, proceeding beyond a two-stage decomposition provides that
every decomposition stage maps directly to the initial task. For instance, if we consider a sequence
of decomposition pairs < (x,y), (y,z), (z,k) >, this algorithm first provides a mapping from x to z if
(x,y) A (y,z) = (x,z) is valid. When this condition is satisfied, the algorithm proceeds by using (x, z)

Sensors 2016, 16, 1542 13 of 21

to replace (x,y), (y,z) and forms a new sequence < (x,z), (z,k) >. This new sequence can also be
transformed into (x, k), and the process terminates depending on the recursivity of the decomposition.

Algorithm 2: Algorithm for recursive decomposition on MTN.

Input: sequence of task decompositions
Output: mapping from initial task to primitive task
1: while successive decompositions exist do

select first successive decomposition pair: (x,y) and (v, z
if (x,y) AN (y,z) = (x,2) the1}1) pair: (x,y) v:2)

replace {(x,y), (y,z) } with (x, z)
end if

6: end while
7: return (x,z)

When weights are attached to the predicates of these rules, an MLN is defined, which together
with a set of ground atoms defines a ground MN for MTN task decomposition. In Figure 6, an example
of a ground MN obtained by applying MTN for task decomposition is given. In this example,
the task, fireNotification(FN) is related to notifyOperation(NO) through the property hasOperation.
Because these three ground atoms appear together in the same formula in the MLN, they form a clique
in the ground MN. This representation gives a triangular maximum clique, which achieves an HTN
task decomposition for a given task and a set of criteria whilst addressing both domain complexity
and uncertainty. Therefore, reasoning about the subtask SubTask(AFA) on this ground MN using
Most Probable Explanation (MPE) [16,24] to denote the probability that a decomposition achieves this
subtask for a given criteria is given by:

arg maxg,prask P(SubTask|Task, Input) = argmaxs,prask % exp {¥_; win;(Task, Input, SubTask)}
arg maxg,prask 2 Wini(Task, Input, SubTask)

)

where n;(Task, Input, SubTask) is the number of true grounding of all formulae, w; is the weight of each
formula and Z is the normalization constant. This can also be used to answer conditional probability
queries that the formula containing the subtask SubTask(AFA) holds for a given evidence Task(FN) and
Input(FD) as follows:

P(SubTask(x)|Task(x), Input(x),C) = P(SubTask(AFA)|Task(FN), Input(FD), M|c)
P(SubTask(AFA)ATask(FN)AInput(FD)|Mc)
P(Task(FN) Alnput (FD)[M))
weOSleTﬂskmOTuskaInput P(lX:w‘MLc)
LweO O P(@=wIMiC)

where Qgyprusk, Qusk and Qpypyy denote that the worlds the three formulae hold, respectively, C
denotes the set of constants, M| ¢ is the ground Markov network defined by the formulae and the set
of constants and P(a = w|M|¢) is computed as:

Pla =w) = %exp {Zwini(“)} = %H@(“{i})"i(Q) 3)

This is similar to conditional probabilities in graphical models, and all predicates in the formulae
and the MLN are zero-arity.

Sensors 2016, 16, 1542 14 of 21

HasOperation(FN,NO) Haslnput(NO,FD)

‘

Operati
HasMethod(NO,FNY)

HasRefinement(FNY,AFA)

™

SubTask(AFA) Method(FNY)

Figure 6. Ground Markov network (MN) obtained by applying MTN for the decomposition of task
fireNotification Task(FN) into subtask activateFireAlarm SubTask(AFA).

5. Experimental Design

We provide details of our experimental design in this section. A use case of automatic fire control
in a smart home is presented, and an algorithm for the generation of datasets for our experiments
is discussed.

5.1. Use Case

Increasingly, the need for reliable automatic fire control systems inspires the use of automated
HTN planning in smart homes. With the myriad of interconnected devices and agents, these systems
generally function in domains that are inherently complex and uncertain. Even though the adoption of
ontological modeling as a semantic technology can efficiently address domain complexity to achieve
interoperability, a major difficulty is that ontology in its classical form does not support uncertainty
reasoning. Therefore, leveraging CPSs that automatically compose services to solve complex tasks
must be designed and operated under uncertainty to increase robustness and adaptability to context.

HTN planning under uncertainty provides a novel extension of deterministic planning in which
a smart home’s activities can be monitored, planned and executed non-deterministically. The main
difference with traditional HTN planning is that the decomposition of tasks, such as fireNotification,
represents a ground MN of rules rather than a detailed sequence of subtasks. Intuitively, this network
softens the classical decomposition criteria of HTN and represents how likely it is that a given task
results into a subtask for a given criterion.

As shown in Figure 7, a use case of an automatic fire control application is described.
Through ontological modeling, this system has knowledge about all structural elements and equipment
installed in the home. This means devices in the home can easily be discovered using their deployment
information, and safety conditions related to automatic fire control can be effectively monitored in
the home.

As can be seen in this use case, distributed sensor networks underpin the semantic capabilities of
this design, and through semantic reasoning, high-level system goals can be inferred from low-level
contextual information. The high-level goals automatically generate a plan of services that achieve
such goals by issuing commands to controllers. These services can represent complex tasks that,
in order to be executed, are recursively decomposed on-the-fly into commands that control processes.
As a CPS, this is an integrated process, which works in a closed loop with underlying semantic agents
that directly control the home’s devices, e.g., the actuators that dial emergency services’ numbers and
those that control fire alarms.

Sensors 2016, 16, 1542 15 of 21

M2M Application

M2M System X
Uncertainty e et ittt

Reasoning Automatic Fire Control System

i
! |

Engine } }
! |
} (Service Index) ;
! |
! |
! |
! |
! |
! |
! |
|

Temperature CO, Level Humidity Level VOC Level
Level

C W e

I
|
Physical |
Devices |
|

I

|

|

- Temp Humidity Smart
Temp‘ Humidity Cco, ’ voc ‘ ’ Sensor Sensor Strobe Bell Dialler
Sensors AC Sounder Call Point

Figure 7. Use case of an automatic fire control system.

Given the criticality of preventing fire disasters in smart homes, it is important to understand the
phenomenon of uncertainty in this use case. To this end, sensitivity to timing and the nature of inputs
are two sources of uncertainty that can affect the reliability of these systems. For instance, an agent
detecting smoke from a nearby kitchen, coupled with a high temperature at its deployment, can trigger
a false fire alarm. This could be disastrous when a false negative is encountered, and leveraging
MTN in this regard can address both domain uncertainty and complexity towards efficient system
calibration with desired precision. Thus, automated planning under uncertainty can essentially make
us realize the full benefits of this innovative technology towards dynamic service composition in CPSs.

Service composition on this use case requires that contextual information is reasoned upon
to attain high-level system goals for further processing in the reasoning engine. Owing to the
heterogeneity of the data acquired from the environment, semantic modeling of non-actuator devices
is adopted to describe those devices in terms of their measurement capability, measured value
and location in a context ontology. This ontology models a Device class as a thing type and key
properties include hasDeployment, hasCapability and hasValue to respectively specify the environment,
capability and output perspectives of devices. Low-level contextual information after semantic
annotation is aggregated with the context ontology to form a coherent model that leverages domain
knowledge to infer implicit knowledge. This implicit knowledge denotes the high-level system goals,
which are central in initiating fire control activities in the use case through service composition based
on MTN. These services can specify the real-time demand responsiveness of systems’ components
in terms of interfaces and observations [25], and it is therefore important composing services of
predefined operations, which are desirable to both systems and users of CPSs.

The basic idea serving as a point of departure in MTN on this use case lies in the fact that logic rules
for composing MLN can be generated by semantically modeling the use case based on the HSS ontology.
Properties and concepts of this ontology provide relations between tasks and their decomposition
criteria and define binary MLN predicates, which constitute the task decomposition rules of MTN.
Whilst a primitive task represents an operator instance in the HSS ontology, complex tasks can be

Sensors 2016, 16, 1542 16 of 21

refined into primitive tasks using these rules. For example, the logic rules for decomposing a high-level
task fireNotification into its subtasks are shown below:

Task(fireNotification) A hasOperation(fireNotification, noti fyOperation) = Operation(notifyOperation)
Operation(notifyOperation) A hasInput(noti fyOperation, powerSupply) = Input(powerSupply)
Operation(notifyOperation) A hasMethod(notifyOperation, fireNotify) = Method(fireNotify)
Method(fireNotify) A\ hasRefinement(fireNotify, activateFire Alarm) = Task(activateFire Alarm)

With associated weights; these are ground MLN predicates of concepts and properties of the HSS
ontology, and each rule defines the relation between concepts appearing together in the same MLN
formula. As we can see, these rules specify task decomposition constraints using the input property
that requires a constant power supply before a subtask for fire alarm activation can be achieved.
The weighted ground rules define a ground MN, and reasoning about the subtask on the MN denotes
the probability that the MLN achieves this subtask for the given rules. This probability is a measure of
the precision of service composition under uncertainty, and proper calibration of systems is an inherent
property of the training dataset of the MLN.

5.2. Task Generation

By formulating task decomposition rules based on MTN, training and test datasets are required
to validate the model’s performance. As shown in Algorithm 3, synthetic datasets are possible in
the absence of real data to meet the requirements of the underlying ontology of MTN. All datasets
generated contain the decomposition structure and constraints of tasks. Note that we avoid human
biases in the generation process by employing a randomized task generation approach in which the
number of subtasks at each level of decomposition is not predefined.

Algorithm 3: Algorithm for task generation for MTN.

Input: taskNumber, recursion)
Output: Decomposition structure and constraints of tasks
1: while taskNumber # @ do

Task < generate: Task(taskNumber)
if recursion > 1 then

recursion <— Random (1, recursion)
end if .
while recursion > 0 do

generate: Operation(Task(taskNumber))
generate: Input(Task(taskNumber))
generate: Method(Task(taskNumber)

10: enerate: SubTask(Task(taskNumbet))
11: ask < SubTask(Task(taskNumber))

12: recursion < recursion — 1

13: end while

14: taskNumber < taskNumber — 1

15: end while

16: return task and constraints

The initial task network and maximum allowed number of decompositions at each stage are
inputs to the algorithm. When the initial task network is specified, generate a task and proceed to
determine the number of associated subtasks (Line 2). For each task, the number of associated subtasks
is a random number generated between one and the maximum allowed number of decompositions
(Line 4). This is a strategy adopted to avoid human biases in the number of decompositions for a given
task. Until the maximum number of decompositions, generate constraints and subtasks (Lines 6-13).
A special case in this regard involves a maximum allowed decompositions of one, and it is the case
of a single-stage decomposition. This requires the algorithm to terminate after generating the first
subtasks and their constraints for every task. Datasets for recursive decomposition are also generated
when the number of decompositions exceeds one, and the length of decompositions are arbitrary for

Sensors 2016, 16, 1542 17 of 21

tasks in the network. In both cases, independent training and test datasets can be generated based on
this algorithm.

6. Results and Discussion

This section discusses the results of experiments performed to evaluate the feasibility of our
approach. Task decomposition rules were formulated, and different synthetic datasets were generated
to train and test the performance of the underlying MLN towards evaluating the feasibility of task
decomposition on MTN. These datasets varied in the number of ground terms and described tasks
and their methods for single-stage and recursive decompositions. Note that the training and test
datasets were generated independent of each other without any fixed relationship in their patterns.
In dealing with uncertainty in the datasets, we assumed a lack of certainty about the timing and nature
of contexts from which high-level system goals are elicited. As such, these goals are also uncertain,
and knowledge about future outcomes based on the same becomes unpredictable.

In the experiments, weights of formulae in the underlying MLN were learned using the training
datasets and the accuracy of decomposition validated using the test datasets. To measure the accuracy
of each decomposition strategy, we used the marginal probabilities of subtasks given high-level tasks
as evidence. As shown in Figure 8, the probability that a subtask is correct after MTN single-stage
decomposition is presented. This probability represents the precision of decomposition, and values
for different single-stage training and test sets were measured. From Figure 8a, the precision exceeds
94% for a fixed input task irrespective of the number of constants in the MLN training set. Typical of
MLN, the performance of the MTN-based single-stage task decomposition improves as more constants
are considered in the training set. In this case, optimal performance was obtained for training sets
with at least 1000 constants. However, when the training set is fixed for a varying number of input
tasks, the performance is steady. We see in Figure 8b that varying the number of input tasks between
10 and 1000 in the training set gave an average precision above 95% in all cases. This clearly shows
that task decomposition based on MTN scales very well with the amount of input task with the
best performance.

i Fixed input with varying training set . Varying input with fixed training set 1000
1.00 1 0.99 7 —loo
0.98 -
0.999 | —m—10 |
1| e 100 ° 0.97
—A— 500 |
c 0.98 1000 < 0.96—_
2 1 L=#=1500 @ 095
‘5 0.97 4 3 |
(0] et
& 1 o 0.94—_
0.96 | 0.93
0.95 0.92 -
0.91 1
0.94 L ANELELA B L BN L DR B EENLE B R | T T T T T T T
Task Task

(a) (b)

Figure 8. Single-stage task decomposition with single-stage training sets. (a) Fixed input with varying
training set; (b) Varying input with fixed training set.

Because a task operation internalizes all decompositions of a given task, the precision is an internal
structure, which is fairly constant for all stages of recursive decomposition. As shown in Figure 9a,
the propagation of precision in a recursive decomposition of a 10-task input is presented. Each task
was constrained to a maximum of ten subtasks, and we measured the precision of all decompositions

Sensors 2016, 16, 1542 18 of 21

between the initial and final tasks. Tasks T1, T7, T8 and T9 attained primitive tasks after the first stage
of decomposition. For T6, this went through nine successive decompositions, and the precision at
each stage was fairly constant. This observation cuts across all tasks with recursive decompositions,
and a precision of 99% was achieved at all levels of decomposition.

Each nesting of a recursive decomposition represents a single-stage decomposition and provides
a single view of multiple task inputs in a recursive decomposition as a unit with an approximately
high constant precision value. In this view, the performance of this approach does not depend on the
category of training set considered. As we can see in Figure 9b,c, when a recursive decomposition
training set is adopted for a single-stage decomposition and vice versa, the performance only depends
on the number of ground terms considered. In the cross-training recursive decomposition for instance,
the set Cross contained 3000 constants and expectedly outperformed the other sets with a lesser number
of constants.

1.0
1 I First
0.8 I second
| I Third
s 064 I Fourth
@ I Fifth
3 Hl Sixth
a 044 I seventh
1 Bl Eigth
0.2+ I Ninth
0.0 T T T T T T T T T T T
T T2 T3 T4 5 T6 7 T8 T9 T10
Task

(a) Recursive task decompostion using recursive decomposition training set

1.004 4 1.000 gyt ey, Fag,gwtea
. 0.995
0.994 —a— Cross
e 10 0.990
—4— 100
0.98 i
c — %500 c 0985 —=— Cross
o 0974 / \ —+-1000| g 0980 |—®—58
8 [N o —4+—1500 8 —A— 644
& / {) & 09754 . .\./.
0.96 “ s \ / . 0 [/
907 \ [\ / R . /
\ e 09707 .\‘ \ / \/ \Lo\././
\ / \ / \
0.95- “\‘/A\ / . 0.965+ \
. \
0.960 o/
094 T 1 T 1
Task Task
(b) Single-stage task decomposition using cross-training set (c) Recursive task decomposition using cross-training set

Figure 9. Recursive decomposition and cross-validation of single-stage decomposition and recursive
decomposition. (a) Recursive task decompostion using recursive decomposition training set;
(b) Single-stage task decomposition using cross-training set; (c¢) Recursive task decomposition using
cross-training set.

Further, we evaluated the performance of task decomposition on MTN using three MLN
propositional and lazy probabilistic inference algorithms [16,24]. As shown in Figure 10, whilst it takes
the algorithm which combines Markov chain Monte Carlo and satisfiability (MC-SAT) about 1 s to
decompose up to 1000 input tasks, both Gibbs sampling and simulated tempering (SIMTP) require
over 5 min to achieve the same results. However, the frequency spectrum of the precision involving
Gibbs sampling and SIMTP is smoother than that of MC-SAT. Clearly, these two algorithms represent
a good fit for the average precision of MC-SAT, and thus, this statistically makes MC-SAT suitable for
CPSs where demand responsiveness is key.

Sensors 2016, 16, 1542 19 of 21

—=— MC-SAT
—e— Gibbs
—A— SIMTP
—v— Average

1200 0.975

1000 0.970

800 0.965

c
2 600 S 0960
= 8
400 & 0955+
200 - 0.950 -
0+ 0.945 4
T T T T T T T T T T T T T T T T 1
0 200 400 600 800 1000 TT T2 T3 T4 T5 T6 T7 T8 T9 T10
Task Task
(a) Time complexity as a measure of performance (b) Precision as a measure of performance

Figure 10. Performance of propositional and lazy probabilistic inference algorithms. (a) Time
complexity as a measure of performance; (b) Precision as a measure of performance.

From the above analyses, it is clear that different task decomposition strategies are possible with
our approach. The overall precision of above 90% for decomposing large task inputs in seconds
manifests the feasibility in reducing both computational and inferential load in service composition
under uncertainty for CPSs. Overall, this approach is ideal for automated reasoning techniques that
can dynamically interpret workflow to achieve demand responsiveness in CPSs.

7. Related Work

Using computation, communication and control to expand capabilities that can interact with
physical objects drives the advancement of CPSs. Research challenges include the design and
development of uncertainty-based interoperable models that can represent both the cyber and
physical components with high fidelity. However, the growing complexity of CPSs often restricts
most approaches to component-based modeling [26,27]. Typically, it becomes very challenging
to assess component-to-component physical and behavioral interactions at the system level when
component-based modeling is adopted [28]. Salient techniques that address the requirements of both
the cyber and physical components using SOA include [4]. Using only the SOA, however, is not ideal
for modeling real-time distributed CPSs, whilst agent-based techniques are possible [6].

Because of the complex dynamics of CPSs, the use of semantics and distributed agents in CPSs
motivates this approach. A typical semantic multi-agent architecture for CPSs is used to model
both the structure and behavior of an intelligent water distribution system in [29]. This model,
however, provides no mechanism for task allocation and dynamic service composition in CPSs.
However, the problem of composing services to achieve complex system tasks has become practical in
CPSs [10] and other important enterprise integration, such as business-to-business processes [11,12].
In addition, partial observation and limited domain knowledge are practical in CPSs, and using
certain-based techniques to control these uncertain environments will not lead to the maximum benefit
of CPSs [13,14].

In our approach, therefore, we adopt an artificial intelligence planning technique to dynamically
form collaborative services in CPSs. In dealing with the inherent domain complexity and uncertainty,
we further propose a technique that leverages the inferential power of MLN into the dynamic task
decomposition of HTN. This novel integration can reduce both computational and inferential loads in
service composition in CPSs.

Sensors 2016, 16, 1542 20 of 21

8. Conclusions

In this paper, we proposed a cross-layer automation and management model towards the dynamic
composition of services in CPSs. Using ontological intelligence, we further proposed a novel bridge
between HTN and MLN to achieve a dynamic service composition under uncertainty. Essentially,
this bridge leverages the efficient inference algorithms of MLN to define an HTN task decomposition
strategy that can achieve reliable functioning of CPSs in complex and uncertain physical domains.
From the results of our experiments, this approach can reduce both inferential and computational
loads in automated planning towards the efficient composition of services in CPSs. We recognize that
since all of our results were obtained from synthetic data, future work of our research shall consider
a case study of a real domain.

Acknowledgments: This research was sponsored by NSFC 61370151, the National Science and Technology
Major Project of China 20152X03003012, the Central University Basic Research Funds Foundation of China
ZYGX2014J055, the Huawei Technology Foundation YB2013120141 and YB2015070068 and the Science and
Technology on Electronic Information Control Laboratory Project.

Author Contributions: The work was realized with the collaboration of all of the authors. A.-W.M. and
Y.X.conceived of and designed the research. A.-W.M. and H.H. designed and performed all simulations. A.-W.M.,
H.H. and B.A. prepared all figures and wrote the main manuscript text. All work in the manuscript was supervised
by Y.X. All authors reviewed and approved the final version.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lee, E. Cyber physical systems: Design challenges. In Proceedings of the 2008 11th IEEE International
Symposium on Object Oriented Real-Time Distributed Computing (ISORC), Orlando, FL, USA, 5-7 May 2008;
IEEE: Piscataway, NJ, USA, 2008; pp. 363-369.

2. Rajkumar, R.R.; Lee, I; Sha, L.; Stankovic, J. Cyber-physical systems: The next computing revolution.
In Proceedings of the 47th Design Automation Conference, Anaheim, CA, USA, 13-18 June 2010; ACM:
New York, NY, USA, 2010; pp. 731-736.

3. Atzori, L.; lera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787-2805.

4. Tariq, M.U.; Grijalva, S.; Wolf, M. A Service-Oriented, Cyber-Physical Reference Model for Smart Grid.
In Cyber Physical Systems Approach to Smart Electric Power Grid; Springer: Heidelberg, Germany, 2015;
pp- 25-42.

5. Hoang, D.D.; Paik, H.Y.; Kim, C.K. Service-oriented middleware architectures for cyber-physical systems.
Int. J. Comput. Sci. Netw. Secur. 2012, 12, 79-87.

6. Pederson, P.; Dudenhoeffer, D.; Hartley, S.; Permann, M. Critical Infrastructure Interdependency Modeling:
A Survey of US and International Research; Idaho National Laboratory: Idaho Falls, ID, USA, 2006; pp. 1-20.

7. Liu,].; Zhao, F. Towards semantic services for sensor-rich information systems. In Proceedings of the 2005
2nd International Conference onBroadband Networks, BroadNets 2005, Boston, MA, USA, 3-7 October 2005;
IEEE: Piscataway, NJ, USA, 2005; pp. 967-974.

8. Jiang, G.; Chung, W.W.; Cybenko, G. Semantic agent technologies for tactical sensor networks. In Proceedings
of the AeroSense 2003 International Society for Optics and Photonics, 2003; pp. 311-320.

9. Wang, S.; Shen, W.; Hao, Q. An agent-based Web service workflow model for inter-enterprise collaboration.
Expert Syst. Appl. 2006, 31, 787-799.

10. Huang, J.; Bastani, EB.; Yen, I.; Zhang, W. A framework for efficient service composition in cyber-physical
systems. In Proceedings of the 2010 5th IEEE International Symposium on Service Oriented System
Engineering (SOSE), Nanjing, China, 4-5 Jun 2010; IEEE: New York, NY, USA, 2010; pp. 291-298.

11. Ko, RK,; Lee, EW,; Lee, S. Business-OWL (BOWL)—A Hierarchical task network ontology for dynamic
business process decomposition and formulation. IEEE Trans. Serv. Comput. 2012, 5, 246-259.

12. Hoang, VM., Hoang, H.H. An ontological approach for dynamic cross-enterprise collaboration.
In Proceedings of the 2012 26th International Conference on Advanced Information Networking and
Applications Workshops (WAINA), Fukuoka, Japan, 26-29 March 2012; IEEE: New York, NY, USA, 2012;
pp- 1355-1360.

Sensors 2016, 16, 1542 21 of 21

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Song, Z.; Chen, Y.; Sastry, C.R.; Tas, N.C. Optimal Observation for Cyber-Physical Systems: A Fisher-Information-
Matrix-Based Approach; Springer Science & Business Media: Berlin, Germany, 2009.

Tang, L.A.; Yu, X,; Kim, S.; Gu, Q.; Han, J.; Leung, A.; La Porta, T. Trustworthiness analysis of sensor data in
cyber-physical systems. J. Comput. Syst. Sci. 2013, 79, 383-401.

Ghallab, M.; Nau, D.; Traverso, P. Hierarchical task network planning. In Automated Planning: Theory and
Practice; Morgan Kaufmann: San Francisco, CA, USA, 2004; pp. 229-259.

Domingos, P.; Richardson, M. 12 Markov Logic: A Unifying Framework for Statistical Relational Learning.
In Statistical Relational Learning; The MIT Press: Cambridge, MA, USA, 2007; p. 339.

Zhang, W.; Li, X.; He, H.; Wang, X. Identifying network public opinion leaders based on markov logic
networks. Sci. World]. 2014, 2014, 268592.

He, H.; Li, Z,; Yao, C.; Zhang, W. Sentiment classification technology based on Markov logic networks.
New Rev. Hypermedia Multimedia 2016, 22, 1-15.

Compton, M.; Barnaghi, P.; Bermudez, L.; GarciA-Castro, R.; Corcho, O.; Cox, S.; Graybeal, J.; Hauswirth, M.;
Henson, C.; Herzog, A.; et al. The SSN ontology of the W3C semantic sensor network incubator group.
Web Semant. Sci. Serv. Agents World Wide Web 2012, 17, 25-32.

Swetina, J.; Lu, G.; Jacobs, P.; Ennesser, F; Song, J. Toward a standardized common M2M service layer
platform: Introduction to oneM2M. IEEE Wirel. Commun. 2014, 21, 20-26.

Fikes, R.; McGuinness, D.; Waldinger, R. A First-Order Logic Semantics for Semantic Web Markup Languages;
Knowledge Systems Laboratory, Stanford University: Stanford, CA, USA, 2002.

Lowd, D.; Domingos, P. Efficient weight learning for Markov logic networks. In Knowledge Discovery in
Databases: PKDD 2007; Springer: Heidelberg, Germany, 2007; pp. 200-211.

Chein, M.; Mugnier, M.L. Graph-Based Knowledge Representation: Computational Foundations of Conceptual
Graphs; Springer Science & Business Media: Berlin-Heidelberg, Germany, 2008.

Domingos, P.; Kok, S.; Lowd, D.; Poon, H.; Richardson, M.; Singla, P. Markov logic. In Probabilistic Inductive
Logic Programming; Springer: Heidelberg, Germany, 2008; pp. 92-117.

Schutte, N.S.; Malouff, JM.; Hall, L.E.; Haggerty, D.J.; Cooper,].T.; Golden, CJ.; Dornheim, L.
Development and validation of a measure of emotional intelligence. Pers. Individ. Differ. 1998, 25, 167-177.
Quan, G. An integrated simulation environment for cyber-physical system co-simulation. In Proceedings
of the National Workshop on High-Confidence Automotive Cyber-Physical Systems, Troy, MI, USA,
3-4 April 2008.

Hnat, TW.; Sookoor, T.I.; Hooimeijer, P.; Weimer, W.; Whitehouse, K. Macrolab: A vector-based
macroprogramming framework for cyber-physical systems. In Proceedings of the 6th ACM Conference on
Embedded Network Sensor Systems, Raleigh, NC, USA, 4-7 November 2008; ACM: New York, NY, USA,
2008; pp. 225-238.

Rajhans, A.; Cheng, S.W.; Schmerl, B.; Garlan, D.; Krogh, B.H.; Agbi, C.; Bhave, A. An architectural approach
to the design and analysis of cyber-physical systems. Electron. Commun. EASST 2009, 21, 1-10.

Lin, J.; Sedigh, S.; Miller, A. Modeling cyber-physical systems with semantic agents. In Proceedings of the
2010 IEEE 34th Annual Computer Software and Applications Conference Workshops (COMPSACW), Seoul,
Korea, 19-23 July 2010; IEEE: New York, NY, USA, 2010; pp. 13-18.

@ (© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC-BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Description
	Hierarchical Semantic Collaborative Service Model
	Task
	Operation
	Operator
	HSS Ontology

	Markov Task Network
	Dynamic Service Composition under Uncertainty
	Construction of Rules
	MTN Task Decomposition

	Experimental Design
	Use Case
	Task Generation

	Results and Discussion
	Related Work
	Conclusions

