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Abstract: Microfluidics-based single-cell study is an emerging approach in personalized treatment or
precision medicine studies. Single-cell gene expression holds a potential to provide treatment
selections with maximized efficacy to help cancer patients based on a genetic understanding
of their disease. This work presents a multi-layer microchip for single-cell multiplexed gene
expression profiling and genotoxicity detection. Treated by three drug reagents (i.e., methyl
methanesulfonate, docetaxel and colchicine) with varied concentrations and time lengths, individual
human cancer cells (MDA-MB-231) are lysed on-chip, and the released mRNA templates are captured
and reversely transcribed into single strand DNA. Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), cyclin-dependent kinase inhibitor 1A (CDKN1A), and aurora kinase A (AURKA) genes
from single cells are amplified and real-time quantified through multiplex polymerase chain reaction.
The microchip is capable of integrating all steps of single-cell multiplexed gene expression profiling,
and providing precision detection of drug induced genotoxic stress. Throughput has been set to be 18,
and can be further increased following the same approach. Numerical simulation of on-chip single
cell trapping and heat transfer has been employed to evaluate the chip design and operation.
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1. Introduction

As a leading cause of death worldwide, cancer has been widely recognized as a disease from
patient-specific mutations [1]. The transformation from normal cells into tumor cells is the result
of the interaction between personal genetic factors and external carcinogens [2]. Traditionally, cell
population or bulk tissue samples were used to investigate genetic variations and evaluate prognosis
in laboratories or clinical settings providing an averaged signal from a cell group [3,4] While cells
may appear morphologically identical, recent evidence reveals that genetic activity of individual
cells in a population can vary due to sample heterogeneity or clonal diversity [5,6]. Gene expression
measurement using groups of cells failed to reveal mechanisms by which heterogeneity affects the
therapeutic outcome [7]. Fueled by cutting-edge cellular and molecular technologies, the data of single
cancer cells has transformed from qualitative microscopic readouts to quantitative genomic datasets.
Particularly, single-cell gene expression profiling promises to address the issues in cancer research,
including unveiling intra-tumor heterogeneity [8], tracing cell lineages [9], interpreting rare tumor cell
populations [10], and quantifying mutation rates [11]. However, such assays have been technically
challenging due to the low quantity and degradation of messenger RNA (mRNA) from an individual
cell [12]. A typical mammalian cell contains about 10–30 pg RNA and mRNA accounts for 1%–5% of
the total cellular RNA depending on the cell type and physiological state [13].

Microfluidics or lab-on-a-chip technology, which is characterized by systems with dimensions of
500 µm to a few millimetres [14], presents a unique and powerful platform for working with living
cells. To date, microfluidics has been successfully employed to detect complex biological processes in
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human cancers [15]. Particularly, microchips for single-cell isolation [16,17], RNA sequencing [18,19],
DNA detection [20,21], and protein analysis [22,23] have been fabricated and tested. For cell isolation,
immunocapture [24,25], and label-free-based methods (identify cells by size, electrical polarizability,
and hydrodynamic properties) [26,27] have been incorporated in microfluidics for single cell isolation.
Generally, the immunocapture approach requires additional sample preparation steps and may
potentially compromise cell viability for accurate on-chip single-cell processing. Recently, there
has been interest in cell trapping methods which avoid the use of biochemical labels26. For on-chip
single-cell gene expression profiling, the main limitations in current microfluidic based single-cell
study are integration [20,28] and testing throughput [29]. In parallel, commercial systems have
been created for microfluidic single-cell gene expression profiling [30]. Particularly, the nCounter®

(NanoString Technology Inc., Seattle, WA, USA) system has been developed by NanoString Inc. for
direct quantitation of target transcripts. Although up to 800 genes from total RNA, cell lysate, or
whole-blood lysate can be detected simultaneously, the recommended amount of starting material
is 100 ng purified total RNA, or lysate from 10,000 cells (NanoString Technology Inc., Seattle, WA,
USA) with an assay volume of 30 µL limiting the application in single-cell processing and analysis.
Currently, for gene expression at the single-cell level, the most advanced commercial tools are C1TM and
BioMark HDTM developed by Fluidigm company (South San Francisco, CA, USA). By combining IFCs
(integrated fluidic circuits) with commercial systems, targeted genes can be amplified and real-time
quantified. While IFCs are well designed and operated, the testing throughput and experimental
cost per test are difficult to be custom-tailored. Additionally, for a whole RT-qPCR sample transfer
of preamplification was requested [31], indicating the test integrality can be further improved. Thus,
there is still a need for developing simple and economic methods for daily tests in laboratories.

In our previous work, we proposed microchips for single-cell gene expression profiling [32–34].
Here, we present a microchip for multiplexed single-cell analysis. Following cell immobilization, single
human cancer cells were treated by methyl methanesulfonate (MMS), docetaxel (TXT), and colchicine
(COL), with different doses and time lengths. Then, in the same chip, six treated individual cells
were lysed and mRNA templates in cell lysate were captured by a solid-phase method. Consequently,
reverse transcription and multiplex PCR were performed in a single chamber. The modification in
expression levels of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), cyclin-dependent kinase
inhibitor 1A (CDKN1A), and serine/threonine-protein kinase aurora-A (AURKA) by drug treatment
have been studied. The microchip can integrate all steps of single-cell gene expression analysis
with a tripled throughput (18 readouts per run) by employing identical time lengths and amounts
of micro-chambers reported previously. To evaluate the chip design and operation, fluid-structure
interaction of on-chip single cells with surrounding microflow has been studied by a fluid-structure
interaction simulation.

2. Principle, Materials, and Experimental Setup

2.1. Principle

The cultured individual human cancer cells were isolated and immobilized on the microchip.
Then, the cells were chemically lysed and the released mRNA templates were captured and purified
by magnetic microbeads. In a same reaction zones, reverse transcription (RT) and multiplex qPCR
were performed in sequence. During the RT process, mRNA templates from cell lysis were bound
to the surface of the beads via the oligo dT primers. During multiplex qPCR, three targeted genes
(GAPDH, CDKN1A, AURKA) were amplified in a single reaction chamber. The amplification of three
targets were real-time detected using sequence-specific probe/primer sets. By the selected filters,
signals from three reporter dyes (FAM, HEX, CY3) can be acquired and the grey values of images
were measured in Image-J software (National Institutes of Health, Bethesda, MD, USA). To correct
for fluorescent fluctuations due to batch-to-batch changes in cavity volume and PCR component
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concentrations, a passive reference dye (ROX) was employed to normalize the reporter signal during
real-time measurements.

Furthermore, based on the hypothesis that gene expression profiles can be used to interpret
mechanisms of genotoxicity [35,36], drug treatments were employed to study the dose-dependent and
time-dependent patterns of gene expression. By treating human cancer cells with three drugs (MMS,
TXT, and COL) at varied concentrations for different time lengths, GAPDH, CDKN1A, and AURKA
genes were leveraged for assessing the genotoxicity at the single-cell level. All steps of single-cell
isolation, immobilization and lysis, mRNA capture, cDNA synthesis, target gene amplification, and
detection were fully integrated on the microchip. The cultured cells, the working principle, and the
corresponding experimental setup are demonstrated in Figure 1.
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Figure 1. Principle of microfluidic integrated single-cell gene expression profiling. The human cancer
cells were isolated and immobilized in the microchip. Then, the cells were chemically lysed and the
released mRNA templates were captured and purified by magnetic microbeads followed by RT and
multiplex qPCR. The amplification of three targets (GAPDH, CDKN1A, AURKA) were detected in
real-time using sequence-specific probe/primer sets.

2.2. Materials and Experimental Set-up

The MDA-MB-231 cell line was obtained from the American Type Culture Collection® (Manassas,
VA, USA). Leibovitz's L-15 Medium, fetal bovine serum (FBS), penicillin-streptomycin (P/S, penicillin
104 unit/mL, streptomycin 104 mg/mL), 0.25% trypsin-ethylenediaminetetraacetic acid (EDTA),
Dulbecco’s phosphate-buffered saline (D-PBS), cell lysis buffer, Vybrant multicolor cell-labeling kit (DiI,
DiO and DiD), Dynabeads® (61005) mRNA Kit, TaqMan® reverse transcription reagents (4304134),
XenoRNA control (105 copies/µL), TaqMan® Gene Expression master mix (4369016), thin-walled
RNase-free PCR Tubes (0.2 mL), RNase-free water, RNaseZap Wipes, and MicroAmp® optical adhesive
film (4311971) for the evaporation barrier were purchased from Thermo Fisher Scientific Inc. (Grand
Island, NY, USA). The target-specific primer sets of GAPDH (forward: aatcccatcaccatcttccag, reverse:
aaatgagccccagccttc), CDKN1A (forward: cccttgtcctttccctt cag, reverse: cttgccctgaggttag aactag) and
AURKA (forward: gtacatgctccatcttc cagg, reverse: aaagaactccaaggctccag) were designed on-line by
the RealTime PCR Tool from Integrated DNA Technologies (IDT, Coralville, IA, USA). Additionally,
the probe sets of GAPDH (ccagcatcgccccacttgatttt, HEX/BHQ-2), CDKN1A (ttccccttcccagtccattgagc,
FAM/BHQ-1) and AURKA (caccttctcatc atgcatccgacctt, CY3/BHQ-2) were acquired by the IDT
software, and synthesized by SBS Genetech Co., Ltd (Beijing, China). MMS (99%) and bovine serum
albumin (BSA, 98%, V900933) were obtained from Sigma-Aldrich (St. Louis, MO, USA). Docetaxel
(2 mg, 98%) and colchicine (2 mg 95%) were ordered from Topscience Co., Ltd. (Shanghai, China).
Polydimethylsiloxane (PDMS, SYLGARD184) was purchased from Dow Corning Corporation (Auburn,
MI, USA). SU-8 photoepoxy GM 1075 (1000 mL) was from Gersteltec Sarl (Pully, Switzerland). AZ4620
(500 mL) and Shipley S1805 (1000 mL) were from MicroChemicals Inc. (Ulm, Germany).

Closed-loop temperature control of the device chambers was achieved using the integrated
temperature sensor and heater with a proportional-integral-derivative (PID) algorithm implemented
in a LabVIEW (National Instruments Corp., Austin, TX, USA) program on a personal computer.
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The resistance of the sensor was measured by a digital multimeter (34420A, Agilent Technologies
Inc., Santa Clara, CA, USA), and the heater was connected to a DC power supply (E3631, Agilent
Technologies). The microfluidic valves of the device were controlled by individual gas pressure
regulators (Concoa, Virginia Beach, VA, USA) interfaced via 20 gauge stainless steel tubing (Becton
Dickinson, Franklin Lakes, NJ, USA) and Tygon tubing (ID: 0.79 mm, OD: 2.38 mm, Saint-Gobain,
Grand Island, NY, USA). The inlets and outlets of the device were sealed off by polycarbonate plugs
(diameter: 1 mm). The fluorescent intensity of the reaction was measured from images acquired by an
inverted epifluorescence microscope (IX81, Olympus, Center Valley, PA, USA) with a CCD camera
(c8484, Hamamatsu, Boston, MA, USA) of the reaction chamber. The schematic of the experimental
setup is shown in Figure 2a.
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Figure 2. (a) Schematic of the experimental setup (arrow symbol means ‘input’); (b) Schematic of the
multilayer microchip; (c) 3-D transient simulation results of on-chip single cell trapping in COMSOL
software; (d) A fabricated microchip prototype; (e) An on-chip immobilized single cell; and (f) Details
of the trapping zone and the single cell.

3. Chip Design, Simulation, and Fabrication

3.1. Design

In L-edit software (Tanner Research, Inc., Monrovia, CA, USA), a multi-layer microchip with
six testing units and one inlet and outlet pair was designed (Section 1 in Supplementary Materials).
The architecture of the multi-layer microchip is shown in Figure 2b. SiO2 substrate, serpentine-shape
Au/Cr microheater and temperature sensor, SU-8 passivation thin film, flow layer, evaporation
resist film, and pneumatic control layer were packaged from the bottom, up. Within each testing
unit of the flow layer, a cell processing component (for cell isolation and immobilization) and a
‘vesica piscis’ shaped reaction chamber (265/153 in length/width) were connected by microchannels,
which can be partitioned by pneumatically controlled valves (1 × 0.7 mm). In the ceiling of the
reaction components, an evaporation resist film (4 × 0.5 cm) was embedded, which serves as a
barrier to minimize evaporation and associated reagent loss during thermal cycling. In the control
layer, eight individually pressurized elastomeric binary valves are arranged in a combinatorial array.
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The hole diameter of inlets and outlets were designed to be 0.8 mm identically. Compared with existing
commercial chips (IFCs, Fluidigm), the design employed only one chamber and five valves for each
working unit, which is more simplified than IFCs’ (six chambers and seven valves). Therefore, the
design can assemble more channels and units on an identical substrate, and holds a potential for
accessing higher throughputs of qPCR tests. The microfluidic operating procedures of the chip are
similar to previous work.

3.2. Cell Trapping Simulation

Theoretical analysis of single-cell trapping process can be used to verify microchip design,
optimize microfluidic control strategy, and evaluate cell viability. Once introduced to the chip, the
interaction (fluid-structure interaction, FSI) of the deformable cell with the surrounding fluid flow
occurs. Fluid flow causes deformation of the structure which, in turn, changes the fluid flow boundary
conditions (BCs). As FSI problems in general are often too complex to solve analytically, numerical
simulation has been employed here. This FSI coupling appears on the interface of fluid and cell, and the
fluid defines the load on the solid surface while the displacement and velocity of solid is transmitted to
fluid. The theoretical fundamentals are included in Section 2 in Supplementary Materials. In Comsol
Multiphysics software (Burlington, MA, USA), a 3-D Finite Element model was setup and solved by
the transient method. With an inlet flow velocity at 3 × 10−5 m/s, the magnitude of flow velocity and
von Mises stress on cell surface at 10 second were presented in Figure 2c. The results verified that with
an inlet velocity below 12 × 10−5 m/s, the equivalent von Mises stress was 19.8 dyn/cm2, which was
found to be around the stress acting on normal human vascular endothelial cells [37]. For inlet flow
with higher velocity, the stress would impair cell viability [38].

3.3. Device Fabrication

Microchip fabrication followed the standard multi-layer soft lithography techniques [39]. Chrome
(20 nm) and gold (110 nm) thin films were deposited and patterned onto a glass slide (Fisher HealthCare,
Houston, TX, USA) followed by SU-8/PDMS passivation. AZ 4620 photoresist was first spin-coated
and patterned. Once developed, the photoresist was heated up to 200 ◦C for 1 h at which temperature
the reflowing of the photoresist formed flow channels with a rounded cross-section. Then, on the same
wafer, SU-8 photoresist was spin-coated and patterned to define the other parts of the flow channel.
Then, PDMS was poured over the molds twice and an additional vapor barrier was embedded in the
flow layer PDMS. Sheets bearing the microfluidic features were then peeled off the mold followed by
inlet and outlet hole punching. Additionally, uncured PDMS was spun on a wafer to form a featureless
membrane (20 µm in thickness). The membrane was then sandwiched between the flow and control
layer by oxygen plasma. Finally, the PDMS device was bonded to the heater and sensor by oxygen
plasma resulting in a packaged device. The details of the fabrication process are included in Section 3
in Supplementary Materials, and a microchip prototype is shown in Figure 2d.

4. Results and Discussion

4.1. Single Cell Trapping Test

Cell suspension (106 cells/mL) was treated with Vybrant dye at a volume ratio of 1:200. Then,
with different carrier flow velocities corresponding to the simulation results (3~12 × 10−5 m/s),
cells were dispensed at a fixed cell density (104 cells/mL) and transported to the trapping region.
Repeated experiments were conducted, in each of which a dilute cell suspension was introduced into
the device for cell trapping (Figure 2e,f). The ratio of the number of experiments in which a single
cell was successfully trapped to the total number of experiments provided a measure of cell trapping
probability. Higher flow rates were found to cause a lower trapping probability as cells tended to pass
through the trap because of the increased cell deformation caused by the flow. However, a lower flow
rate would require a longer trapping time. Practically, in this work, the total cell trapping time ranged
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from ~1 min to tens of minutes with the inlet flow velocity changed from 30 to 120 µm/s. Undesirable
fluctuations in the microenvironmental temperature and CO2 concentration can impair cell viability
(affecting gene expression results eventually) when cells are exposed outside the incubator [40,41] and,
thus, it is necessary to optimize the cell trapping process. Here, we defined a normalized trapping
efficiency by ε = (ρ/ρmax)/(t/tmax), where ρ is the trapping probability, and t is the trapping time. This
parameter was found to increase with the flow rate until reaching the 100% maximum at 90 µm/s,
and then decreased as the inlet flow rate further increased (Figure 3a). The optimum flow rate of
90 µm/s for cell suspensions of 104 cells/mL in concentration was used in all subsequent single-cell
gene expression analysis experiments.
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Figure 3. (a) Cell trapping efficiency with different inlet flow rate; (b) Temperature sensor calibration;
(c) On-chip temperature control evaluation; (d) Detailed temperature history of a 35-cycle on-chip PCR;
(e) On-chip RT-PCR validation; (f) On-chip RT-qPCR validation (‘0, 30, 40’ indicates cycle number);
and (g) Standard curve of on-chip XenoRNA amplification.

4.2. Temperature Sensor Calibration

The chip was fixed in a temperature-controlled environmental chamber (Delta 9023, Delta Design
Inc., Poway, CA, USA). Using platinum resistance temperature detector probes, the temperature
of the chamber and the corresponding on-chip resistance was determined by digital multimeter.
The measured resistance (R) of the gold temperature sensor was observed to vary linearly with
temperature (T). The dependence could be represented by R = R0 [1 + α (T − T0)], where R0 (221.9 Ω)
is the sensor resistance at a reference temperature T0 (25.1 ◦C), and α (1.352 × 10−3 1/◦C) is the
temperature coefficient of resistance of the sensor. Fitting this relationship to the measurement data
determined the values of the parameters, which were used to determine the chamber temperature
from the measured sensor resistance during single-cell RT-qPCR experiments. The temperature sensor
calibration curve is shown in Figure 3b.

4.3. Temperature Control Evaluation

In LabVIEW software, a graphical program designed for automatic on-chip temperature control is
presented in Section 4 in Supplementary Materials. The accuracy and precision of the on-chip heating
system over the course of RT and 35 consecutive cycles PCR were evaluated based on Figure 3c,d.
The accuracy was defined by the difference between the set point and measured average temperature.
The precision was defined as the average of the measured standard deviation of the temperature
variation at the set point. For the RT step, with set points of 25 ◦C and 42 ◦C, we measured the
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temperature accuracy as 0.11 ◦C and 0.16 ◦C, and the precision was 0.08 ◦C and 0.1 ◦C, respectively.
For the PCR step, the accuracy of the two set points (denaturing at 95 ◦C, annealing/ extension at
60 ◦C) was 0.53 and 0.21, and the precision was 0.16 ◦C and 0.14 ◦C, respectively. The chip achieved
target temperatures with minimal overshoot (<10 s). All of these results indicate that the chamber
temperature can be controlled to produce accurate and rapid amplification reactions.

4.4. Microfluidic RT-qPCR Validation using XenoRNA

A XenoRNA hydrolysis primer/probe set and 2 × 104 copies XenoRNA templates were used to
validate the feasibility of on-chip RT-PCR. XenoRNA templates were reverse transcribed by RT and
amplified via 35 cycles of PCR. The amplification was compared with the NTC (no template control).
The fluorescent images and background subtracted fluorescent intensity of the reaction product are
shown in Figure 3e and the protocol of the test is shown in Section 5 in Supplementary Materials.
For the on-chip RT-PCR of 1 × 104 copies of XenoRNA, the fluorescent image of reporter showed
much greater fluorescent intensity (1.71 ± 0.2) than the NTC sample (0 ± 0.05) as shown in Figure S9.

Then, we validated the on-chip RT-qPCR by this approach. In five analysis units of the microchip,
we introduced 2 × 104 copies of XenoRNA and 4 × 106 beads. In the sixth analysis unit the same
procedures and reagents were used except XenoRNA was not introduced. Fluorescent intensities of
reaction chambers were acquired at the end of each PCR cycle. Of these, at the end of cycles 0, 30,
and 35, corresponding intensity images from one unit are shown in Figure 3f. All of these results
indicate there was a significant amplification of XenoRNA templates and negligible amplification of
the NTC in the reaction chamber.

In addition, we tested on-chip amplification efficiency using XenoRNA templates. Generally, the
quantification cycle, Cq, was set as the cycle number at which the measured fluorescence crosses a
threshold of 20 σ, where σ is the standard deviation of the fluorescence intensity for the first fifteen PCR
cycles [42]. Using dilutions of known XenoRNA templates (10–10,000), we constructed the standard
curve by linear fitting of Cq values as shown in Figure 3g. Additionally, PCR efficiency is defined
by E = (10 − 1/k − 1) × 100%, where k is the slope of the Cq as a function of the logarithm of the
template copy number. Thus, we determined that the on-chip amplification efficiency of the XenoRNA
template was 99.76%. Furthermore, the standard deviation of the Cq value decreased gently from
0.33 to 0.17 with XenoRNA copy number climbing from 10 to 10,000. This phenomenon indicated
there was an acceptable higher fluctuation of fluorescence signals in a lower abundance sample testing.
In addition, the dynamic range of this on-chip approach was suitable for single-cell genetic analysis as
the total amount of a targeted gene within an individual cell was commonly single-digit [43]. More
details about the procedures of on-chip RT-qPCR and DNA amplification are discussed in Section 6 in
Supplementary Materials.

4.5. Repeatability and Reproducibility Test Using XenoRNA

To further investigate the repeatability (i.e., intra-assay variation), we introduced 2 × 104 copies
of XenoRNA and 4 × 106 beads to perform parallelized on-chip RT-qPCR. In Figure 4a, the value of
∆Rn, indicating the magnitude of the fluorescent signals and therefore amplification generated by
PCR, demonstrates an exponential increase in the amounts of the XenoRNA copies with the cycle
number. In this scenario, the threshold value was calculated to be 0.14 and, accordingly, Cq ranged
from 25.2 to 25.5 using 2 × 104 copies XenoRNA. The results in Figure 4a demonstrate that with the
same amount of homogenized starting templates, the Cq difference for getting significant amplification
in all five analysis units was below 0.3.
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Similarly, the reproducibility (inter-assay variation) of the on-chip reaction was studied following
identical procedures in three separate chips. The results in Figure 4b demonstrate that with the
same amount of homogenized starting templates, the cycle number difference for getting significant
amplification in 14 units of three microchips was below 0.4. These results served to verify the proper
function of the device for integrated RT-qPCR and to the consistency among the individual units.

4.6. Multiplex Amplification

In the reaction chamber, the amplification of the less efficient or less abundant target can be
inhibited by the more-efficient or more-abundant target. By comparing the amplification curve
of multiplex reaction to the singleplex reaction, the inhibitory effect can be quantified. Thus,
to optimize the amplification of GAPDH, CDKN1A, and AURKA, we sequentially increased the
concentrations of deoxynucleotides (dNTPs) in PCR master mix while keeping DNA polymerase
and MgCl2 concentration constant. On-chip 35-cycle qPCR amplification plots of singleplex tests and
multiplex tests are shown in Figure 4c–e. For GAPDH (Figure 4c), the mean Cq values of singleplex
reaction (26.95) and multiplex reaction with different dNTPs concentrations (26.97, 26.98, 26.99 for 200,
300, and 400 µM) were very close, while for CDKN1A (Figure 4d), the mean Cq values of singleplex
(29.94) was smaller than multiplex reactions with different dNTPs concentrations (31.98, 31.01, 29.96 for
200, 300, and 400 µM). This trend can be also found in AURKA testing (Figure 4e), in which singleplex
reaction had a Cq value of 30.32, while multiplex had values of 32.28, 31.29, and 30.87 for 200–400µM
dNTPs. These results indicate there was a competition of amplification for different targeted genes
in the multiple testing. To minimize the impact of dNTP concentration in PCR master mix, we used
400 µM in subsequent on-chip multiplex tests. Typical images of the CDKN1A reporter signal during
a 35-cycle multiplex qPCR has been recorded in Figure 4f.

4.7. Drug Dose Assay on Single Cells

Delivering drug reagents with different concentrations to the on-chip immobilized individual
cells and incubating for 1 h (37 ◦C, 5% CO2) followed by cell lysis and downstream RT-qPCR, then the
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drug dose effect on single-cell genotoxicity, was quantified as shown in Figure 5a,b. All of these results
were based on five repeated on-chip multiplex RT-qPCR tests.Sensors 2016, 16, 1489 9 of 13 
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Figure 5. On-chip drug-induced single-cell genotoxicity analysis. (a) Cq values of single-cell multiplex
RT-qPCR for drug dose analysis; (b) Expression levels of GAPDH, CDKN1A, and AURKA genes for
drug dose analysis; (c) Cq values of single-cell multiplex RT-qPCR for drug treating time analysis; and
(d) Expression levels of GAPDH, CDKN1A, and AURKA genes for drug treating time analysis. (NDC
means ‘no drug treated control’).

First, for GAPDH from single cells treated by MMS with concentrations ranging from 10 to
100 µg/mL, the Cq values were 26.97 ± 0.32 (Figure 5a). Similar results can be found in TXT (10 to
100 nM) and COL (10 to 100 µM) concentration-related tests. As a housekeeping gene in human,
GAPDH is expressed at relatively constant levels in most non-pathological situations. These data
demonstrated a consistency in GAPDH gene expression levels with different chemical stimuli.

Next, for CDKN1A, Cq values with MMS concentration increasing from 10 to 100 µg/mL are shown
in Figure 5a. MMS can methylate DNA predominantly on N7-deoxyguanosine and N3-deoxyadenosine
causing DNA strand damage [44]. While the cells were stimulated by this chemical, as a regulator
gene of cell cycle progression at G1 and S phase, CDKN1A encodes cyclin-dependent kinase inhibitor
protein for binding to and inhibiting the activity of cyclin-CDK2, -CDK1, and -CDK4/6 complexes [45].
This regulation effect in gene expression has been quantified in Figure 5b. Here, the expression
levels was defined as E = ∆Rne /Cq, in which ∆Rne meant the endpoint ∆Rn value of a 35-cycle
qPCR indicating the amplification yield. Expression levels of CDKN1A increased monotonously
with dosage in MMS tests. However, in TXT tests, expression levels of CDKN1A decreased with
greater drug concentrations (10 to 100 nM). This phenomenon can be interpreted by the theory that
the exposure of MDA-MB-231 cells to TXT induces up-regulation of p53-related genes (including
CDKN1A) [46,47]. With a higher concentration, the drug effect is more associated with G2/M related
transcripts. Finally, treated by COL with different concentrations (10 to 100 µM), the Cq values of
CDKN1A were close to the data in Figure 4d indicating the stimulus induced alterations in gene
expression level of CDKN1A was undetectable. As a tubulin targeting compound which inhibits
microtubule formation [48], COL-induced DNA damage in a less efficient way than MMS treatment
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when time length was below 1 h. As the abundance of housekeeping genes are commonly higher
than functional genes, the expression levels of CDKN1A in this scenario were lower than GAPDH
(Figure 5b).

Finally, for AURKA, Cq values with MMS concentration increased from 10 to 100 µg/mL are
shown in Figure 5a. Similar to CDKN1A, AURKA regulates the cell cycle by encoding the mitotic
serine/threonine kinases. Then, MMS-induced DNA damage regulated AURKA expression levels,
in turn. While exposing to TXT with increased dosage (10 to 100 nM), expression level of this gene was
also upregulated and surpassed housekeeping gene expression levels (Figure 5b). The results verified
that by induction of both apoptosis and G2/M cell cycle arrest in a dose-dependent manner, TXT
can affect AURKA expression levels to suppress cell growth [49]. Finally, the 1-hour COL treatment
induced DNA damage and related gene expression regulation were not significant. The principle of
this phenomenon was similar to the discussion of CDKN1A analysis above.

4.8. Drug Treat Time Length Assay on Single Cells

Pipetting drug reagents with fixed concentrations (MMS at 10 µg/mL, TXT at 10 nM, and COL at
10 µM) to in vitro cultured MDA-MB-231 cells, and incubating for varied time lengths, followed by
on-chip cell trapping, lysis, and downstream RT-qPCR, the effect of treating time length on single-cell
genotoxicity was quantified as shown in Figure 5c,d. All of these results were based on five on-chip
multiplex RT-qPCR tests.

First, for the housekeeping gene GAPDH, with varying time length (0.5 to 4 h), the expression
levels of treated single MDA-MB-231 cells were constant (26.97 ± 0.32), demonstrating no significant
alteration in GAPDH gene expression after MMS, TXT, or COL treatment. Next, for CDKN1A, Cq values
with MMS treating time were increased from 0.5 to 4 h are shown in Figure 5c. The corresponding
expression levels increased with time length growing (Figure 5d). Furthermore, based on these
data, it can be concluded that 0.5 h treatment of MMS drug was virtually unable to affect CDKN1A
expression. After in-culture treating for over 1 h, the expression levels of the functional gene was
higher than housekeeping gene, which was consistent with data in Figure 5b. In TXT related tests,
CDKN1A reached higher expression levels with increased time length. In particular, compared with an
on-chip one-hour assay (Section 4.7), the differential value of expression level between CDKN1A and
GAPDH was lower. Since treating dosages and time lengths were identical in this scenario, the data
indicated that on-chip single-cell drug treatment caused much more DNA damage than treatment in
culture. This phenomenon verified that intercellular interactions in bulk population may affect the
response of an individual cell to stimuli which can be refrained by assays at the single-cell level [29].
More microfluidic-based cancer heterogeneity studies at the single-cell level will be investigated at the
next stage. Similarly, in COL-related tests, Cq values and expression levels were constant with treating
time length variation.

Finally, for AURKA, Cq values with MMS treating time increased from 0.5 to 4 h are shown
in Figure 5c, and the corresponding expression levels increased with treating time length growing
(Figure 5d). This trend can also be found in TXT testing. In the COL test, Cq values and expression
levels were stable with varied treating time length.

5. Conclusions

Single-cell analysis in microfluidics holds the potential for improving fundamental biomedical
research and clinical settings. This work presents a microchip for fully-integrated single-cell gene
expression analysis and genotoxicity detection. Treated by methyl methanesulfonate, docetaxel, and
colchicine, the dose-dependent and time-dependent gene expression levels of CDKN1A and AURKA
from individual MDA-MB-231 cells have been measured using multiplex RT-qPCR. Throughput was
set to be 18, and can be further improved following the same approach. Results from microchip
characterization and drug-induced single-cell genotoxicity assays demonstrated the utility of this
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approach and device for potentially enabling precision single-cell gene expression profiling and
cancer research.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/16/9/1489/s1.
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temperature sensor. Figure S3: (a) 3-D modeling of the microchip in COMSOL; and (b) FEM discretization of the
microchip. Figure S4: (a) A microchip prototype; (b) A unit is activated for cell trapping; and (c) Simulation results
of the single-cell trapping process. Figure S5: Simulation results of the single-cell trapping process with parametric
inlet flow velocity. Figure S6: Fabrication process of the microchip following standard soft photolithography.
Figure S7: LabVIEW graphical program and the corresponding front panel for on-chip temperature control of
RT-qPCR. Figure S8: Protocol of the on-chip RT-qPCR validation test. Figure S9: End-point fluorescent intensity
value of 35-cycle PCR. Figure S10: Corresponding filters and excitation/emission spectra for reporter and reference
dyes. Table S1: Properties and classification of the materials.
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