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Abstract: The localization of a sensor in wireless sensor networks (WSNs) has now gained
considerable attention. Since the transmit power and path loss exponent (PLE) are two critical
parameters in the received signal strength (RSS) localization technique, many RSS-based location
methods, considering the case that both the transmit power and PLE are unknown, have been
proposed in the literature. However, these methods require a search process, and cannot give a
closed-form solution to sensor localization. In this paper, a novel RSS localization method with a
closed-form solution based on a two-step weighted least squares estimator is proposed for the case
with the unknown transmit power and uncertainty in PLE. Furthermore, the complete performance
analysis of the proposed method is given in the paper. Both the theoretical variance and Cramer-Rao
lower bound (CRLB) are derived. The relationships between the deterministic CRLB and the proposed
stochastic CRLB are presented. The paper also proves that the proposed method can reach the
stochastic CRLB.

Keywords: sensor localization; cramer-rao lower bound (CRLB); received signal strength (RSS);
transmit power; path loss exponent (PLE)

1. Introduction

Wireless sensor networks (WSNs) have been widely used for monitoring and control in military,
environmental, health and commercial systems [1–4]. A WSN usually consists of tens or hundreds of
wirelessly connected sensors. Sensor positioning becomes an important issue. Since the global
positioning system (GPS) is currently a costly solution, only a small percentage of sensors are
equipped with GPS receivers called reference devices (RDs), whereas the other sensors are blindfolded
devices (BDs).

Several geolocation techniques have been used to estimate sensor positions, including
the time-of-arrival (TOA)-, the time-difference-of-arrival (TDOA)-, the angle-of-arrival (AOA)-,
the received signal strength (RSS)-based methods or hybrid location methods [5–8]. Among these
location techniques, a method based on RSS has attracted much attention because of its low complexity
and low cost of devices [9]. For the RSS localization technique, the transmit power and path
loss exponent (PLE) are two critical parameters which have significant effects on the positioning
accuracy. Many RSS methods and performance analyses have been reported in the literature [10–15].
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These studies assumed that both the transmit power and PLE are perfectly known. However,
this assumption is not suitable for a practical channel environment. Since the transmit power of
a sensor in the WSNs depends on its battery, antenna gain, and scheduling algorithm, it is changing
with different sensors and times. The additional hardware and software caused by the transmission of
the transmit power between RDs and a BD make the WSNs more convoluted. Moreover, the transmit
power is usually unknown for non-cooperative applications such as sensor localization in military
areas. Compared with the transmit power, the PLE is not only a time-varying parameter but also a
function of the channel environment. It changes as the environment and time change. Subsequently,
various RSS-based location methods [16–22] have been proposed to consider the case where both
the transmit power and PLE are unknown. Different estimators such as maximum likelihood (ML)
and semidefinite programming (SDP) are devised in those algorithms. Although those algorithms
can provide the optimum or suboptimum performance, they require a search or alternating process,
and cannot give a closed-form solution to sensor localization. The inefficiency incurred by these
algorithms may not be feasible to be applied in a practical system. In addition, the performance of the
search methods may strongly rely on the initial solution. An improper selection of the initialization
may lead to a local minimum and cause a large estimation error. Besides the above localization
algorithms, some studies have been reported on performance analyses for sensor localization using
RSS measurements [16,23]. The authors in [16] derived the Cramer-Rao lower bound (CRLB) for
the RSS location technique considering the case with the unknown transmitted power and PLE.
Furthermore, a more practical CRLB was proposed in [23]. Besides the unknown transmitted power
and PLE, the derived CRLB in [23] considers both the antenna radiation pattern information and the
differences of PLE among RDs. There are deterministic and stochastic CRLBs for the RSS localization
technique. The former regards the PLE as a deterministic unknown parameter while the latter models
the PLE as a Gaussian random variable. Although the deterministic CRLBs for the RSS localization
technique have been addressed in the literature [16,23], the stochastic CRLB of RSS methods has not
been studied. This paper will try to derive the stochastic CRLB for RSS-based location methods.

In this paper, a novel RSS localization method based on a two-step weighted least squares
(WLS) estimator is proposed for the case with the unknown transmit power and uncertainty in
PLE. Furthermore, the complete performance analysis of the proposed method is given in the paper.
Since the mobile location is a nonlinear problem, some approximations are essential for the proposed
method to obtain the closed-form solution. The perturbation approach retaining only the linear
perturbation terms is used here to solve the nonlinear mobile location problem. Theoretical analysis
proves that the theoretical variance of the proposed method is equal to the CRLB. This means that
the effect of the approximations is extremely small. Compared with the previous research studies,
the main contributions of this paper are listed as follows:

(1) The proposed method can not only provide the closed-form solution but it can also attain the
CRLB which is verified by the theoretical analysis and simulations. The existing RSS methods
considering the unknown transmit power and uncertainty in PLE require a search process.

(2) Compared with the deterministic assumption of PLE in the literature [16–23], the stochastic
assumption used in this paper is more suitable for a real environment. The existing RSS methods
in [16–23] regarded the PLE as a deterministic unknown parameter and tried to estimate it.
These methods assumed that there is no prior knowledge on the PLE. Based on this assumption,
the deterministic CRLB is derived in [16,23]. Although it is very hard to obtain an exact value
of the PLE, approximate estimates of the PLE for typical channel environments can be obtained
through a field test which has been reported in the literature [24,25]. To describe the uncertainty
of the PLE, this paper models the PLE as a Gaussian random variable whose mean and variance
are treated as prior knowledge and can be obtained from experimental analysis.

(3) The performance analysis for the proposed method is presented in this paper. Both the
theoretical variance and stochastic CRLB for the proposed method are derived in the paper.
Moreover, some characteristics of the proposed stochastic CRLB for WSN localization are derived
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in this paper. The relationships between the deterministic CRLB [16] and the proposed stochastic
CRLB are presented in Propositions 1 and 2. The paper also proves that the proposed method can
reach the stochastic CRLB. These have not been addressed in the literature.

Section 2 briefly introduces the system model. A novel RSS method for the case with the
unknown transmit power and uncertainty in the PLE is proposed in Section 3. Section 4 derives
the stochastic CRLB. Some characteristics of the proposed methods are given in Section 5. In Section 6,
the performance of the proposed algorithm is simulated in terms of the root mean square error (RMSE).
The conclusions of this paper are given in Section 7.

2. System Model

The basic RSS model is briefly introduced in this section. Assume that (x, y) is the position of a
BD to be estimated and the known coordinate of the ith RD in a N-RDs system is (xi, yi). Without loss
of generality, the position of the first RD can be set to be (0, 0). Denote the measurement with noise of
{∗} as {>*}. The true distance between the ith RD and BD can be modeled as:

r2
i = (xi − x)2 + (yi − y)2 = ki − 2xix− 2yiy + k (1)

where ki = x2
i + y2

i and k = x2 + y2.
Since the measured received power

>
Pi at RD i (in decibel milliwatts) can be modeled as a

log-normal variable [10], the relation between
>
Pi and ri is:

>
Pi = P0 − 10βlog10

(
ri
r0

)
+ ni (2)

where β is the PLE, ni is a zero-mean Gaussian random process with variance σ2 in decibels, P0 is the
reference power at reference distance r0 and it depends on the transmit power. Typically, r0 = 1 m.
Note that Equation (2) is the most popular RSS model and has been widely used in the literature [10–25].
Moreover, the model has been validated by a variety of measurement results [10,21,25]. For several
non-cooperative applications such as mobile location in military areas, the transmit power is usually
unknown to RDs which leads to the unknown P0. The PLE β is a function of the environment and
varies typically between 2 (free space) and 4. For particular environments, β may be known from
experimental analysis. The earlier research [10–15] on mobile locations using RSS measurements
assumed that β can be exactly obtained. This assumption is not suitable for a real situation since
β changes as the channel environment and time change. To improve the positioning accuracy,
several studies [16–23] subsequently regarded the PLE as a deterministic unknown parameter and
tried to estimate it. Compared with the deterministic assumption in [16–23], this paper models the PLE
as a Gaussian random variable whose mean and variance can be obtained from experimental analysis.

Considering the uncertainty of PLE, β in this paper is modeled as:

β = β0 + nβ (3)

where β0 is the mean of β and can be obtained through the field test, and the disturbance nβ is used
to describe the uncertainty of the PLE, caused by the changes of environment and time, which is
assumed to be an independent zero-mean Gaussian distribution with variance σ2

β based on the law of
large numbers.

3. Closed-Form Solutions

From Equation (2), ri can be obtained:

ri = 10(P0−Pi)/10β (4)
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Substituting Equation (1) into Equation (4) gives:

2xix + 2yiy− k + 10P0/5β10−Pi/5β = ki

With the RSS noise and PLE disturbance, the error vector derived from Equations (2) and (4) is:

e = Y−GZ (5)

where G =


2x1 2y1 −1 10−

_
P1/5β

...
...

...
...

2xN 2yN −1 10−
_
P N /5β

, Y =

 k1
...

kN

, Z =


x
y
k

10P0/5β

.

The first step WLS estimator of Z can be obtained from Equation (5):

Z = argmin
{
(Y−GZ)T Ψ−1 (Y−GZ)

}
=
(

GTΨ−1G
)−1

GTΨ−1Y (6)

where ψ is the covariance matrix of e:

ψ = cov (e) = E
(

eeT
)

(7)

It should be noted that matrix G contains the unknown parameter β. To solve Equation (6),
the mean β0 of β is used in G. Matrix G becomes:

G =


2x1 2y1 −1 10−

_
P1/5β0

...
...

...
...

2xN 2yN −1 10−
_
P N /5β0


Ignoring the square error term derived from Equation (5), the element ei of e can be expressed as:

ei =
ln10
5β2

0
10

P0−Pi
5β0

(
β0ni + (P0 − Pi) nβ

)
(8)

From Equation (8), the expectations of eiej and e2
i can be obtained:

E
(
eiej
)

= E

[(
ln10
5β2

0
10

P0−Pi
5β0

)(
ln10
5β2

0
10

P0−Pj
5β0

) (
β0ni + (P0 − Pi) nβ

) (
β0nj +

(
P0 − Pj

)
nβ

)]

=

(
ln10
5β2

0
10

P0−Pi
5β0

)(
ln10
5β2

0
10

P0−Pj
5β0

)
(P0 − Pi)

(
P0 − Pj

)
σ2

β

(9)

E
(
e2

i
)
= E

[(
ln10
5β2

0
10

P0−Pi
5β0

)2 (
β0ni + (P0 − Pi) nβ

)2
]
=

(
ln10
5β2

0
10

P0−Pi
5β0

)2 (
β2

0σ2 + (P0 − Pi)
2 σ2

β

)
(10)

Substituting Equations (9) and (10) into Equation (7) gives:

ψ = cov (e) = E
(

eeT
)
= BQB (11)

where

B = diag
{[

ln10
5β2

0
10

P0−P1
5β0 · · · ln10

5β2
0

10
P0−PN

5β0

]}
(12)
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Q =


β2

0σ2 + (P0 − P1)
2 σ2

β (P0 − P1) (P0 − P2) σ2
β · · · (P0 − P1) (P0 − PN) σ2

β

(P0 − P2) (P0 − P1) σ2
β β2

0σ2 + (P0 − P2)
2 σ2

β · · · (P0 − P2) (P0 − PN) σ2
β

...
...

. . .
...

(P0 − PN) (P0 − P1) σ2
β (P0 − PN) (P0 − P2) σ2

β · · · β2
0σ2 + (P0 − PN)

2 σ2
β

 (13)

Since the covariance matrix ψ depends on the unknown Pi and P0, further approximation is
necessary to make the problem solvable. First, the approximate value

>
Pi can be used in ψ to replace Pi.

Second, the approximate estimate of P0 can be obtained using the least square (LS) estimator:

Z =
(

GTG
)−1

GTY (14)

>
P0 = 5βlog10Z4 (15)

The covariance matrix of Z can be calculated by using the perturbation approach. Further, ∆ is
denoted as error perturbation. In the presence of noise and disturbance,

G = G0 + ∆G (16)

Z = Z0 + ∆Z (17)

Y = Y0 (18)

Equation (6) can be rewritten as:(
GTΨ−1G

)
Z = GTΨ−1Y (19)

Substituting Equations (16)–(18) into Equation (19) gives:((
GT

0 + ∆GT
)

Ψ−1 (G0 + ∆G)
)
(Z0 + ∆Z) =

(
GT

0 + ∆GT
)

Ψ−1Y0 (20)

Ignoring the square error term, Equation (20) can be simplified as:

GT
0 Ψ−1G0Z0 + GT

0 Ψ−1∆GZ0 + ∆GTΨ−1G0Z0 + GT
0 Ψ−1G0∆Z = GT

0 Ψ−1Y0 + ∆GTΨ−1Y0 (21)

Without the noise of
>
Pi and the disturbance of the PLE,

G0Z0 = Y0 (22)

Substituting Equation (22) into Equation (21) gives:

GT
0 Ψ−1∆GZ0 = −GT

0 Ψ−1G0∆Z

∆Z = −
(
GT

0 Ψ−1G0
)−1 GT

0 Ψ−1∆GZ0

(23)

Since G0Z0 = Y0, Equation (5) implies that:

e = Y0 − (G0 + ∆G)Z0 = Y0 −G0Z0 − ∆GZ0 = −∆GZ0 (24)

Substituting Equation (24) into Equation (23) gives:

∆Z =
(

GT
0 Ψ−1G0

)−1
GT

0 Ψ−1e (25)

Substituting Equation (25) into cov (Z), the covariance matrix of Z can be obtained:
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cov (Z) = E
[
∆Z∆ZT] = (GTΨ−1G

)−1 GTΨ−1E
[
eeT]Ψ−1G

(
GTΨ−1G

)−1

=
(
GTΨ−1G

)−1 GTΨ−1ΨΨ−1G
(
GTΨ−1G

)−1
=
(
GTΨ−1G

)−1
(26)

The estimation accuracy can be further improved using the relationship between x, y and k.
The first step of the solution of Z in Equation (6) is based on the assumption of independent x, y and k.
However, those parameters are correlated by Equation (1). The results can be revised as follows using
the relation of Equation (1):

e′ = Y′ −G′Z′ (27)

where Y′ =


Z2

1

Z2
2

Z3

, G′ =

 1 0
0 1
1 1

, Z′ =

[
x2

y2

]
.

Let the estimation errors of x, y and k be µ1, µ2, and µ3. Then the elements of Z become:

Z1 = x + µ1, Z2 = y + µ2, Z3 = k + µ3 (28)

Substituting Equation (28) into Equation (27) and ignoring the square error term, the entries of e′

can be expressed as:

e′1 = 2xµ1, e′2 = 2yµ2, e′3 = µ3 (29)

Subsequently, the covariance matrix of e′ is:

Ψ′ = E
(

e′e′T
)
= B′ {cov (Z)}(1:3)×(1:3) B′ (30)

where B′ = diag {[2x, 2y, 1]}. In fact, B′ is unknown as B′ contains the true BD position x and y. As in
Equation (11), B′ can be approximated as B′ = diag {[2Z1, 2Z2, 1]}.

The second step of the WLS solution is:

Z′ =
(

G′TΨ′−1G′
)−1

G′TΨ′−1Y′ (31)

Similarly, the covariance matrix of Z′ can be obtained by using the perturbation approach:

cov
(
Z′
)
=
(

G′TΨ′−1G′
)−1

(32)

The position estimation Z′′:

Z′′ = sign (Z)
√

Z′ (33)

In summary, the steps of the proposed method can be listed as follows:

(1) Estimate ψ through substituting Equations (14) and (15) into Equation (11).
(2) The first weight solution of BD can be obtained through substituting Equation (11) into

Equation (6).
(3) The final solution of BD can be obtained from Equation (33).

From the definition of Z′ in Equation (28) and by ignoring the square error term, Z′ can be
rewritten as:

Z′1 − x2 = 2xex, Z′2 − y2 = 2yey (34)

where ex and ey are the estimation errors of x, y respectively. The covariance matrix of Z′′ can be
obtained from Equation (34):
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cov
(
Z′′
)
= B′′−1cov(Z′)B′′−1 (35)

where B′′ = diag
{[

2x 2y
]}

.

From Equations (26), (30), (32) and (35), the covariance matrix of Z′′ can be finally obtained:

cov (Z′′) =
(

B′′cov(Z′)−1B′′
)−1

=
(
B′′G′TΨ′−1G′B′′

)−1
=

(
B′′G′TB′−1

{
cov (Z)(1:3)×(1:3)

}−1
B′−1G′B′′

)−1
(36)

4. Cramer-Rao Lower Bound

It is well known that the CRLB sets a lower limit for the variance or covariance matrix of any
unbiased estimate of unknown parameters [26].

There are deterministic and stochastic CRLBs for RSS location methods. The deterministic CRLB
is based on the assumption that the PLE is a deterministic unknown process and was derived in [16,23].
However, the stochastic CRLB for the RSS location technique has not been studied in the literature
to the best of our knowledge. The subsection derives the stochastic CRLB for RSS-based algorithms
where the PLE is modeled as a temporal Gaussian process whose mean and variance can be obtained
from experimental analysis. Studies in [24,25] show that the typical values and variation range of PLEs
for different channel environments can be estimated through field tests.

Let
_
P =

[
_
P1 · · ·

_
P N

]T
be a RSS measurement vector and a parameter vector θ to be

estimated, where θ is
[

x y P0 β
]T

. The CRLB matrix is defined as the inverse of the Fisher
information matrix (FIM) Jθ:

E

((
_
θ − θ

)(
_
θ − θ

)T
)
≥ J−1

θ (37)

where
_
θ is an estimate of θ.

The FIM is determined by [26]:

Jθ = E


∂ln f

(
_
P ;θ

)
∂θ

∂ln f
(
_
P ;θ

)
∂θ


T (38)

Using the Bayes’ theorem,

f
(
_
P ;θ

)
= f

(
_
P |θ

)
f (θ) (39)

Substituting Equation (39) into Equation (38) gives

Jθ = E

 ∂ln f
(
_
P |θ

)
∂θ

 ∂ln f
(
_
P |θ

)
∂θ

T+ E

 ∂ln f
(
_
P |θ

)
∂θ

(
∂ln f (θ)

∂θ

)T


+E

 ∂ln f (θ)
∂θ

 ∂ln f
(
_
P |θ

)
∂θ

T+ E
[

∂ln f (θ)
∂θ

(
∂ln f (θ)

∂θ

)T
] (40)

From Equation (2), the probability density function (PDF) f
(
_
P |θ

)
can be written as:

f
(
_
P |θ

)
=

N

∏
i=1

f
(
_
P i|θ

)
(41)
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where

f
(
_
P i|θ

)
=

1√
2πσ

exp

−
(
_
P i − P0 + 10βlog10 (ri)

)2

2σ2


The log of f

(
_
P |θ

)
is:

ln f
(
_
P |θ

)
=

N

∑
i=1

ln f
(
_
P i|θ

)
(42)

Substituting Equation (42) into ∂ln f
(
_
P |θ

)
/∂θi gives:

∂ln f
(
_
P |θ

)
∂x

=
N

∑
i=1

−_
P i − P0 + 10βlog10ri

σ2

 10β

riln10
xi − x

ri

∂ln f
(
_
P |θ

)
∂y

=
N

∑
i=1

−_
P i − P0 + 10βlog10ri

σ2

 10β

riln10
yi − y

ri

∂ln f
(
_
P |θ

)
∂P0

=
N

∑
i=1

−_
P i − P0 + 10βlog10ri

σ2

 (−1)

∂ln f
(
_
P |θ

)
∂β

=
N

∑
i=1

−_
P i − P0 + 10βlog10ri

σ2

(10log10 (ri)
)

Since E
[
_
P i − P0 + 10βlog10 (ri)

]
= 0, the expectation of ∂ln f

(
_
P |θ

)
/∂θi is:

E
[

∂ln f
(
_
P |θ

)
/∂θi

]
= 0 (43)

In the presence of the uncertainty of the PLE, the PDF of the PLE can be obtained from Equation (3):

f (θ) =
1√

2πσβ

exp

−
(
_
β − β

)2

2σ2
β

 (44)

Substituting Equation (44) into ∂ln f (θ)/∂θi gives:

∂ln f (θ)
∂θi

=


0 θi 6= β

− β− β0

σ2
β

θi = β
(45)

It can be easily derived from Equation (45) that:

E [∂ln f (θ) /∂θi] = 0 (46)
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Substituting Equations (43) and (46) into Equation (40) gives:

Jθ = E


∂ln f

(
_
P |θ

)
∂θ

∂ln f
(
_
P |θ

)
∂θ


T+ E

[
∂ln f (θ)

∂θ

(
∂ln f (θ)

∂θ

)T
]

(47)

Substituting Equations (42) and (45) into Equation (47) gives:

Jθ = HQ−1
s HT + Qθ (48)

where H =


10β

r1ln10
x1−x

r1

10β
r2ln10

x2−x
r2

· · · 10β
rN ln10

xN−x
rN

10β
r1ln10

y1−y
r1

10β
r2ln10

y2−y
r2

· · · 10β
rN ln10

yN−y
rN

−1 −1 · · · −1
10log10 (r1) 10log10 (r2) · · · 10log10 (rN)

, Qs = diag
{[

σ2 · · · σ2
]}

,

Qθ = diag
{[

0 0 0 1/σ2
β

]}
.

It should be noted that HQ−1
s HT is the FIM of the deterministic CRLB in [16].

Finally, the proposed CRLB is derived as:

CRLBx,y =

[(
HQ−1

s HT + Qθ

)−1
]

2×2
(49)

The analytical formula of the CRLB can help to reduce the computational complexity and assist
the performance analysis. It can be observed from Appendix A that the analytical formula of the
derived CRLB is expressed as:[(

HQ−1
s HT + Qθ

)−1
]

2×2
=

(
ln10
10β

)2
[

a b
c d

]−1

=

(
ln10
10β

)2 1
ad− bc

[
d −b
−c a

]
(50)

where a, b, c and d can be obtained from Equations (A14)–(A17) respectively.

5. Performance Analysis

The relationships between the deterministic and stochastic CRLBs are provided in the
following propositions.

Proposition 1. In the RSS localization technique, the deterministic CRLB is higher than the proposed
stochastic CRLB.

tr
{

J−1
s

}
= tr

{(
HQ−1

s HT + Qθ

)−1
}
≤ tr

{
J−1

d

}
= tr

{(
HQ−1

s HT
)−1

}
(51)

where Js and Jd are the FIMs for stochastic and deterministic CRLBs, respectively.

Proof. Since Qθ is a positive semi-definite matrix, Equation (51) holds.�

This proposition shows that the prior knowledge σ2
β of the PLE can help to improve the

positioning accuracy.

Proposition 2. The proposed stochastic CRLB reduces to the deterministic CRLB if no prior information on the
PLE is given.
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Proof. For the case without prior information on the PLE, the variance σ2
β of the PLE will approach

infinity. This means 1/σ2
β → 0 and Qθ → 0 . Substituting Qθ = 0 into Equation (48), Js = HQ−1

s HT +

Qθ = HQ−1
s HT = Jd.�

This gives a sanity check for the proposed CRLB.

Proposition 3. The proposed method can attain its stochastic CRLB:

cov (Z′′) =
(

B′′G′TB′−1
{

cov (Z)(1:3)×(1:3)

}−1
B′−1G′B′′

)−1
=
[(

HQ−1
s HT + Qθ

)−1
]

2×2
=
[
J−1
θ

]
2×2

(52)

Proof. It can be proved from Appendix B. �

Proposition 3 shows that the proposed method can provide an optimum performance.

6. Simulation Results

A square region of dimensions 40 m × 40 m is considered for the simulations, where the positions
of the BD and RDs are randomly distributed in the square space 0 ≤ x, y ≤ 40 m.

The RMSEs are defined as
√

E
[
(x−>x)2 + (y−>y)2

]
in the units of m, and are obtained from the

average of 5000 independent runs. To compare with the proposed method, the LS localization method
Equation (14) is used here due to its closed-form solution. Two search algorithms (ML and SDP) are
selected for comparisons. The joint ML estimation of x, y, P0 and β can be formulated as [21]:

min
x,y,P0,β

N

∑
i=1

(>
Pi − P0 + 10βlog10 (ri)

)2
(53)

The ML estimator is solved by the MATLAB routine lsqnonlin using the Levenberg-Marquardt
method. Obviously, Equation (53) is non-convex which may lead to multiple local minima. This implies
that the performance of the ML estimator strongly relies on the initial solution. Besides the ML-LM
method, an SDP algorithm given in [15] is also included in the simulations since its object function
is convex which means its global minima can be obtained. The MATLAB package CVX [27] is used
to solve the SDP algorithm. The solver of CVX is SeDuMi [28]. It should be noted that SDP [15] is
generally based on the fact that both the transmit power and PLE are available. A summary of the
considered algorithms is given in Table 1.

Table 1. The summary of the considered algorithms.

Algorithm Description

LS The LS estimator in Equation (14) with the closed-form solution

ML-TRUE The ML estimator in Equation (53) initialized with the true values of the positions
of BD, transmit power and PLE

ML-LS The ML estimator in Equation (53) initialized with the solution of LS
SDP-TRUE The SDP estimator in [15] initialized with the true transmit powers and PLE

SDP-P5 The SDP estimator in [15] initialized with 5% uncertainty about the transmit
power and PLE

The proposed method The proposed method in Equation (33) with unknown transmit power and PLE

Comparisons among the deterministic CRLB [16], the proposed stochastic CRLB and the
theoretical variance of the proposed method are also given in the simulations.

Figure 1 shows the RMSEs versus standard deviations (stds) σ of the RSS measurements when
the PLE is equal to 4; then number of RDs is six and the std σβ of PLE uncertainty is 0.2. It can be
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seen from the figure that all three methods (the proposed method, ML-TRUE and SDP-TRUE) provide
much better performances than the others (LS method, ML-LS and SDP-P5). The performance of the
proposed method is similar to those of the ML-TRUE and SDP-TRUE algorithms. It can be observed
from Figure 1 that ML-LS performs worse than ML-TRUE. This verifies that the ML estimator depends
heavily on its initial solution. Performance comparisons between SDP-P5 and SDP-TRUE in Figure 1
show that a little uncertainty on the transmit power and PLE (5% in simulations) will greatly degrade
the performance of the SDP algorithm. It should be noted that both the ML-TRUE and SDP-TRUE
algorithms require the true values of the transmit power and PLE, which is not suitable for a real
channel situation. Figure 1 also shows that the proposed method can reach its CRLB.
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Figure 1. Performance comparison under different RSS noises.

The average running time is compared in Table 2. In the simulation, the PLE is equal to 4, σβ = 0.2,
σ = 4 dB, the number of RDs is six, and the CPU is i7-2600 3.4 GHZ. It can be seen from Table 2 that
the average running times of the ML-LS and SDP-P5 are approximately 60 and 412 times longer than
the proposed method. The ML-TRUE has half the running time of the ML-LS since the true initial
point may help the ML estimator reach the local minima faster, whereas SDP-TRUE and SDP-P5 have
similar running times due to their global minima. As expected, the LS and the proposed method with
the closed-form solutions have the shortest running times.

Table 2. The average running time of the considered algorithms.

Algorithm Time (ms)

LS 0.874
ML-TRUE 34.035

ML-LS 59.728
SDP-TRUE 408.806

SDP-P5 407.404
The proposed method 0.988

Performance comparisons with different σβ are recorded in Figure 2. In this simulation, the std
σβ of PLE uncertainty is varied from 0.1 to 0.5, the number of RDs is six, β0 = 4, and σ = 4 dB. It can
be also observed that the proposed method outperforms the other three algorithms (the LS method,
ML-LS and SDP-P5).
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The effect of different numbers of RDs is simulated in Figure 3. In this simulation, σβ = 0.2,
β0 = 4, and σ = 4 dB. The number of RDs is varied from six to 10. As the number of RDs increases,
the performance of all algorithms becomes better as shown in Figure 3. For various numbers of RDs,
the proposed method performs better than other three algorithms (LS method, ML-LS and SDP-P5).
This proves the scalability of the proposed method.Sensors 2016, 16, 1452 13 of 22 
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Figure 4 is performed to verify Propositions 1 and 3. The simulation environments of Figure 4 are
the same as that of Figure 1. It can be seen from Figure 4 that the theoretical variance of the proposed
method is equal to the stochastic CRLB, which means the proposed method can reach its corresponding
CRLB. This conclusion matches Proposition 3. Figure 4 also shows that the proposed stochastic CRLB
has a better performance than the deterministic CRLB which is in line with Proposition 1. This implies
that the positioning accuracy can be improved by the prior information of the PLE.
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Figure 4. Comparison among the proposed stochastic CRLB, the deterministic CRLB, and the theoretical
variance of the proposed method under different RSS noises.

Proposition 2 is evaluated in Figure 5. In this simulation, the std σβ of the PLE uncertainty is varied
from 0.01 to 3.51, the number of RDs is 10, β0 = 4, and σ = 4 dB. Figure 5 shows that the stochastic
CRLB gradually reaches the deterministic CRLB as the PLE uncertainty σβ increases. The results mean
that the proposed CRLB reduces to the deterministic CRLB if no prior information on the PLE is given,
which verifies Proposition 2.
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7. Conclusions

A novel RSS localization method based on a two-step WLS estimator is proposed for the case
with the unknown transmit power and uncertainty in the PLE. Compared with other localization
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methods, the proposed method can not only provide the closed-form solution but it can also attain
the CRLB which is verified by the theoretical analysis and simulations. Both the theoretical variance
and stochastic CRLB for the proposed method are derived in the paper. The paper proves that the
deterministic CRLB is higher than the proposed stochastic CRLB and the stochastic CRLB reduces
to the deterministic CRLB if no prior information on the PLE is given. An experimental proof of the
proposed method is left for a future study.
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Appendix A

To estimate
[
J−1
θ

]
2×2

, H and Qθ are decomposed as:

H =
[

HT
1 HT

2

]T
, Qθ =

[
0 0
0 Q1

]
(A1)

where H1 =


10β
ln10

x1−x
r2

1
· · · 10β

ln10
xN−x

r2
N

10β
ln10

y1−y
r2

1
· · · 10β

ln10
yN−y

r2
N

 , H2 =

[
−1 · · · −1

10log10 (r1) · · · 10log10 (rN)

]
,

Q1 = diag
{[

0 1/σ2
β

]}
.

Substituting Equation (A1) into Equation (48) gives:

Jθ =

[
H1Q−1

s HT
1 H1Q−1

s HT
2

H2Q−1
s HT

1 H2Q−1
s HT

2 + Q1

]
(A2)

From the matrix inversion lemma [29],

[
A11 A12

A21 A22

]−1

=


(

A11 −A12A−1
22 A21

)−1
A−1

11 A12

(
A21A−1

11 A12 −A22

)−1

(
A21A−1

11 A12 −A22

)−1
A21A−1

11

(
A22 −A21A−1

11 A12

)−1

 (A3)

Using the above equation,
[
J−1
θ

]
2×2

becomes:

[
J−1
θ

]
2×2

=
(

H1Q−1
s HT

1 −H1Q−1
s HT

2
(
H2Q−1

s HT
2 + Q1

)−1 H2Q−1
s HT

1

)−1

=
(

H1

(
Q−1

s −Q−1
s HT

2
(
H2Q−1

s HT
2 + Q1

)−1 H2Q−1
s

)
HT

1

)−1
(A4)

From the second moment matrix inversion formula,[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
(A5)
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Then
(
H2Q−1

s HT
2 + Q1

)−1 can be expressed as:

(
Q1 + H2Q−1

s HT
2
)−1

=


N
σ2 − 1

σ2

N
∑

i=1
10log10ri

− 1
σ2

N
∑

i=1
10log10ri

1
σ2

N
∑

i=1

(
10log10ri

)2
+ 1

σ2
β


−1

= γ


1

σ2

N
∑

i=1

(
10log10ri

)2
+ 1

σ2
β

1
σ2

N
∑

i=1
10log10ri

1
σ2

N
∑

i=1
10log10ri

N
σ2


(A6)

where
γ =

1

N
σ2

(
1
σ2

N
∑

i=1

(
10log10ri

)2
+

1
σ2

β

)
− 1

σ4

(
N
∑

i=1
10log10ri

)2 (A7)

From Equations (A1) and (A6), we have:

Q−1
s HT

2

(
Q1 + H2Q−1

s HT
2

)−1
H2Q−1

s = γC (A8)

where

Cij = − 1
σ6 10log10ri

N
∑

i=1
10log10ri +

(
1
σ6

N
∑

i=1

(
10log10ri

)2
+

1
σ4σ2

β

)

+
N
σ6 10log10rj10log10ri −

1
σ6 10log10rj

N
∑

i=1
10log10ri

(A9)

Substituting Equation (A8) into Equation (A4) gives:[
J−1
θ

]
2×2

=
(

H1

(
Q−1

s − γC
)

HT
1

)−1
(A10)

Substituting H1 and Qs into H1Q−1
s HT

1 gives:

H1Q−1
s HT

1 =

(
10β

σln10

)2


N
∑

i=1

(xi − x)2

r4
i

N
∑

i=1

(xi − x) (yi − y)
r4

i

N
∑

i=1

(xi − x) (yi − y)
r4

i

N
∑

i=1

(yi − y)2

r4
i

 (A11)

Substituting Equation (A9) into γH1CHT
1 gives:

γH1CHT
1 = γ

(
10β

ln10

)2


N
∑

i=1

xi − x
r2

i

N
∑

j=1
Cij

xj − x
r2

j

N
∑

i=1

xi−x
r2

i

N
∑

j=1
Cij

yj − y
r2

j

N
∑

i=1

yi−y
r2

i

N
∑

j=1
Cij

xj − x
r2

j

N
∑

i=1

yi − y
r2

i

N

∑
j=1

Cij
yj − y

r2
j

 (A12)

From Equations (A11) and (A12),
[
J−1
θ

]
2×2

becomes:

[
J−1
θ

]
2×2

=

(
ln10
10β

)2
[

a b
c d

]−1

=

(
ln10
10β

)2 1
ad− bc

[
d −b
−c a

]
(A13)



Sensors 2016, 16, 1452 16 of 20

where

a =
1
σ2

N

∑
i=1

(xi − x)2

r4
i

− γ
N

∑
i=1

xi − x
r2

i

N

∑
j=1

Cij
xj − x

r2
j

(A14)

b =
1
σ2

N

∑
i=1

(xi − x) (yi − y)
r4

i
− γ

N

∑
i=1

xi − x
r2

i

N

∑
j=1

Cij
yj − y

r2
j

(A15)

c =
1
σ2

N

∑
i=1

(xi − x) (yi − y)
r4

i
− γ

N

∑
i=1

yi − y
r2

i

N

∑
j=1

Cij
xj − x

r2
j

(A16)

d =
1
σ2

N

∑
i=1

(yi − y)2

r4
i

− γ
N

∑
i=1

yi − y
r2

i

N

∑
j=1

Cij
yj − y

r2
j

(A17)

Appendix B

It can be seen from Equation (36) that cov (Z)(1:3)×(1:3) should be obtained firstly to estimate
cov (Z′′). To evaluate {cov (Z)}(1:3)×(1:3), G is decomposed as:

G =
[

G1 G2

]
(B1)

where

G1 =


2x1 2y1 −1

...
...

...

2xN 2yN −1

 , G2 =


10−P1/5β

...

10−PN /5β

 = 10−P0/5β


10(P0−P1)/5β

...

10(P0−PN)/5β

 = 10−P0/5β


r2

1
...

r2
N

 (B2)

Substituting Equation (B1) into Equation (26) gives:

cov (Z) =
(

GTΨ−1G
)−1

=

[
GT

1ψ
−1G1 GT

1ψ
−1G2

GT
2ψ
−1G1 GT

2ψ
−1G2

]−1

(B3)

Using the matrix inversion lemma (Equation (A3)), {cov (Z)}(1:3)×(1:3) becomes:

{cov (Z)}(1:3)×(1:3) =

(
GT

1ψ
−1G1 −GT

1ψ
−1G2

(
GT

2ψ
−1G2

)−1
GT

2ψ
−1G1

)−1

=

(
GT

1

(
ψ−1 −ψ−1G2

(
GT

2ψ
−1G2

)−1
GT

2ψ
−1
)

G1

)−1
(B4)

Substituting Equations (11) and (B4) into Equation (36) gives:

cov (Z′′) =
(
B′′G′TB′−1GT

1 B−1
(

Q−1 −Q−1B−1G2

(
GT

2ψ
−1G2

)−1
GT

2 B−1Q−1
)

B−1G1B′−1G′B′′
)−1 (B5)

Substituting B′′, G′, and B′ into B′′G′TB′−1 gives:

B′′G′TB′−1 =

[
2x 0
0 2y

] [
1 0 1
0 1 1

] 
1

2x 0 0
0 1

2y 0
0 0 1

 =

[
1 0 2x
0 1 2y

]
(B6)
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Substituting Equation (B6) and G1 into B′′G′TB′−1GT
1 gives:

B′′G′TB′−1GT
1 =

[
1 0 2x
0 1 2y

]  2x1 · · · 2xN
2y1 · · · 2yN
−1 · · · −1

 =

[
2x1 − 2x · · · 2xN − 2x
2y1 − 2y · · · 2yN − 2y

]
(B7)

It can be seen from Equation (4) that:

r2
i = 10

P0−Pi
5β (B8)

P0 − Pi = 10βlog10 (ri) (B9)

Substituting Equations (B8) and (B9) into B and Q gives:

B = diag
{[

ln10
5β2 r2

1 · · · ln10
5β2 r2

N

]}
(B10)

Q = Q1 + Q2 = β2σ2I +
(
σββA

) (
σββA

)T (B11)

where

A =
[

10log10 (r1) · · · 10log10 (rN)
]T

(B12)

Using the matrix inversion lemma [29], Q−1 can be expressed as:

Q−1 =
(

β2σ2I +
(
σββA

) (
σββA

)T
)−1

=
1

β2σ2 I− 1
β2σ2

(
σββA

) (
1 +

(
σββA

)T (
σββA

)
β2σ2

)−1 (
σββA

)T 1
β2σ2

=
1

β2σ2 I− 1
β2σ4η

AAT

(B13)

where

η =
1
σ2

β

+
1
σ2

N

∑
i=1

(
10log10ri

)2 (B14)

Substituting Equations (B7) and (B10) into B′′G′TB′−1GT
1 B−1 gives:

B′′G′TB′−1GT
1 B−1 =


(x1 − x) 10β2

r2
1ln10

· · · (xN − x) 10β2

r2
Nln10

(y1 − y) 10β2

r2
1ln10

· · · (yN − y) 10β2

r2
Nln10

 (B15)

It can be observed from Equations (A1) and (B15) that:

B′′G′TB′−1GT
1 B−1 = βH1 (B16)

Substituting Equations (B16) and (B13) into Equation (B5) gives:

cov (Z′′) =

(
H1

(
β2Q−1 − β2Q−1B−1G2

(
GT

2ψ
−1G2

)−1
GT

2 B−1Q−1
)

HT
1

)−1

=

(
H1

(
Q−1

s −
(

1
σ4η

AAT +
P

β2GT
2ψ
−1G2

))
HT

1

)−1 (B17)
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where

P =

(
1
σ2 I− 1

σ4η
AAT

)
B−1G2GT

2 B−1
(

1
σ2 I− 1

σ4η
AAT

)
=

1
σ4 B−1G2GT

2 B−1 −
1

σ6η
B−1G2GT

2 B−1AAT − 1
σ6η

AATB−1G2GT
2 B−1 +

1
σ8η2 AATB−1G2GT

2 B−1AAT
(B18)

Substituting G2 and Equation (B10) into GT
2 B−1 gives:

GT
2 B−1 = 10

−P0
5β

5β2

ln10

[
1 · · · 1

]
(B19)

Similarly, AAT becomes:

AAT =
(
10log10r1

)2 · · · 10log10r110log10rN
...

. . .
...

10log10rN10log10r1 · · ·
(
10log10rN

)2

 (B20)

Substituting G2 and Equation (11) into GT
2ψ
−1G2 gives:

GT
2ψ
−1G2 = GT

2 B−1Q−1B−1G2

= GT
2 B−1

(
1

β2σ2 I− 1
β2σ4η

AAT
)

B−1G2

=
1

σ2β2 GT
2 B−1B−1G2 −

1
β2σ4η

GT
2 B−1AATB−1G2

(B21)

where

GT
2 B−1B−1G2 =

(
10
−P0
5β

5β2

ln10

)2

N (B22)

GT
2 B−1AATB−1G2 =

(
10
−P0
5β

5β2

ln10

)2( N

∑
i=1

10log10ri

)2

(B23)

Substituting Equations (B22) and (B23) into Equation (B21) gives:

GT
2ψ
−1G2 =

N
σ2β2

(
10
−P0
5β

5β2

ln10

)2

− 1
β2σ4η

(
10
−P0
5β

5β2

ln10

)2( N

∑
i=1

10log10ri

)2

(B24)

From Equations (B19) and (B20) we have:

B−1G2GT
2 B−1 =

(
10
−P0
5β

5β2

ln10

)2

1N×N (B25)

B−1G2GT
2 B−1AAT =

(
10
−P0
5β

5β2

ln10

)2 N

∑
i=1

10log10 (ri)

 10log10 (r1) · · · 10log10 (rN)
...

. . .
...

10log10 (r1) · · · 10log10 (rN)

 (B26)

AATB−1G2GT
2 B−1 =

(
B−1G2GT

2 B−1AAT
)T

(B27)
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AATB−1G2GT
2 B−1AAT =

(
10
−P0
5β 5β2

ln10

)2 ( N
∑

i=1
10log10ri

)2


(
10log10r1

)2 · · · 10log10r110log10rN
...

. . .
...

10log10rN10log10r1 · · ·
(
10log10rN

)2

 (B28)

Substituting Equations (B24)–(B28) into Equation (B18) gives:[
P

β2GT
2ψ
−1G2

]
ij

= γ

(
η

σ4 −
1
σ6

N
∑

i=1
10log10 (ri)10log10

(
rj
)
− 1

σ6

N
∑

i=1
10log10 (ri)10log10 (ri)

+
1

σ8η

(
N
∑

i=1
10log10 (ri)

)2 (
10log10ri

) (
10log10rj

)) (B29)

From Equations (A7), (B14) and (B20), we have:[
1

σ4η
AAT

]
ij

= γ

(
1

σ4ηγ

(
10log10ri

) (
10log10rj

))

= γ

(
N
σ6

(
10log10ri

) (
10log10rj

)
− 1

σ8η

(
10log10ri

) (
10log10rj

) ( N
∑

i=1
10log10ri

)2
) (B30)

From Equations (B29) and (B30), we have:[
1

σ4η
AAT + P

β2GT
2ψ
−1G2

]
ij

= γ
(

N
σ6

(
10log10ri

) (
10log10rj

)
η

σ4 − 1
σ6

N
∑

i=1
10log10ri10log10rj − 1

σ6

N
∑

i=1
10log10ri10log10ri

)
= γCij

(B31)

Substituting (B31) into (B17) gives:

{cov (Z)}(1:3)×(1:3) =
(

H1

(
Q−1

s − γC
)

HT
1

)−1
=
[
J−1
θ

]
2×2

(B32)
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