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Abstract:



This paper presents analytical models, as well as numerical and experimental verification of intrinsic dissipation due to thermoelastic loss in tuning-fork resonator. The thermoelastic analytical governing equations are created for resonator vibrating at drive-mode and sense-mode, and thermoelastic vibration field quantities are deduced. Moreover, the theoretical values are verified that coincided well with finite element analysis (FEM) simulation results. Also, the comparison of vibration field quantities is made to investigate the effect of different conditions on resonator thermoelastic vibration behavior. The significant parameters of thermoelastic damping and quality factor are subsequently deduced to analyze the energy dissipation situation in the vibration process. Meanwhile, the corresponding conclusions from other studies are used to verify our theoretical model and numerical results. By comparing with the experimental quality factor, the numerical values are validated. The combination of the theoretical expressions, numerical results and experimental data leads to an important insight into the achievable quality factor value of tuning-fork resonator, namely, that the thermoelastic damping is the main loss mechanism in the micro-comb finger structure and the quality factor varies under different vibration modes. The results demonstrate that the critical geometry dimensions of tuning-fork resonator can be well designed with the assistance of this study.
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1. Introduction


Micro-resonators as critical components in microelectromechanical systems (MEMS), such as accelerometers, gyroscopes, harvesters etc., have considerably aroused the interest of researchers [1,2,3]. For all these applications, the prevalent parameter that has emerged is the resonator’s quality factor (Q) which is described as mechanical energy damping. In the MEMS field, it is important to design and fabricate micro-resonators with very high quality factors or very little energy loss, because a high quality factor results in high sensitivity and low power consumption [4]. Energy dissipation can occur in micro-resonators through intrinsic and external energy loss. The thermoelastic damping (TED) and the lattice defects belong to intrinsic loss while the air damping belongs to external energy loss. TED has been identified as the fundamental limit for attainable high quality factor of micro-resonators.



TED results from the irreversible heat flow in the vibration process of resonators. When a mechanical resonator vibrates, compressive stress occurs in some regions while tensile stress affects other regions. Accordingly, compressed regions heat up while stretched regions cool down. Hence a temperature gradient is established between different regions of a system. Thus, the system will adjust itself to the thermal equilibrium state by thermal conduction. However, the energy used in the adjustment process cannot be restored after the system returns to its original state. As long as the structure’s thermal expansion coefficient is not zero, TED will exist in micro-resonators. In recent years, much work has been done on the TED of micro-resonators. Zener derived the analytical model of TED and predicted thermoelastic losses which may be a limitation to the maximum Q of resonators [5,6]. Lifshitz and Rouckes gave the derivation of an exact expression for thermoelastic damping in thin rectangular beams and compared it with Zener’s approximation [7]. Rezazadeh et al. studied TED in a microbeam with modified couple stress theory [8]. Jiao et al. presented the numerical results of thermoelastic damping [9,10]. Kausinis used COMSOL Multiphysics to calculate damping in micromechanical resonator structures [11]. Guo used a customized finite element method to evaluate the thermoelastic damping in micro-beam resonators [12]. Yi used a reduced finite element formulation to investigate the thermoelastic damping in contour-mode in-plane vibrations [13].



In the field of MEMS applications, as different resonators are used, many researchers directtheir attention to the TED for various resonators. Lifshitz and Rouckes researched the TED effect in thin rectangle beam. Amy Duwel and X. Guo presented the TED-based methodology to calculate the microbeam resonator with different boundary conditions [14]. Nayfehprovided a model and analytical expressions for the quality factors of microplates with TED [15]. De studied the TED of electrostatically actuated resonators and Abouelregal researched the TED of an axially moving microbeam with external loading [16,17]. Bassiouny presented a model for a layered thin plate of sandwich structure, which is studied with the theory of TED [18].



Although a tremendous amount of work has been done on thermoelastic coupling of micro-resonators in MEMS, very little research has been systematically undertaken on the gyroscope resonator with different vibration states. Weijian has researched the longitudinal vibration of the micro-resonators and made a comparison with the case of flexural vibration [9], and Sharmahas studied the thermoelastic damping of 3-D cantilever beam [19]. Therefore, the gyroscope has two vibration manners: the longitudinal vibration and the transverse vibration with Coriolis Effect. Thus, for 3D SOI-based resonators, both the longitudinal vibration and transverse vibration should be considered when analyzing TED of MEMS gyroscope. Also, the thermoelastic behavior of micro-resonators for free and forced vibration with electrostatic load should be taken into account.



On the basis of previous work, this paper presents the tuning-fork resonator model that illustrates the thermoelastic coupling behavior. The micro-comb fingers model is established for analyzing the thermoelastic coupling effect both in free vibration and electrostatic-actuated vibration. The governing equations of coupled thermoelastic problems for two different vibration conditions are set up, before the equations to analyze the influence of TED are calculated. The field quantities of displacement and temperature distribution are analyzed and the TED factor is calculated under different conditions. The corresponding finite element analysis (FEM) is made to verify the numerical results. Finally, the significant parameter of Q is expressed as the reciprocal of TED, compared with the experimental conclusion which is reported in the literature.




2. Theoretical Description of Thermoelastic Coupling Effects in Micro-Resonators


2.1. The Micro-Resonator Model Design


The critical component of gyroscope is the differential comb fingers resonator which acts as the driven element. When voltage is applied to the resonator, the electrostatic force will be generated correspondingly. The electrical load is composed of two components, which is AC and DC voltage. The applied DC voltage deforms the upper elastic surface that causes change in the system capacitance. If AC voltage is added to the DC one, the resonator that has harmonic motion can be obtained. Figure 1 shows a schematic view of a tuning-fork resonator which is consisted of a set of the movable and fixed fingers. As illustrated in Figure 1, the voltage that applied in the fixed comb is [image: there is no content] and [image: there is no content], respectively.


Figure 1. Schematic view of an electrostatic comb structure.



[image: Sensors 16 01445 g001]






The system capacitance change value is


[image: there is no content]



(1)




where [image: there is no content] is dielectric constant; b and g are thickness of comb and gap between the combs respectively.



Then, the electrostatic force can be presented as follows.


[image: there is no content]



(2)







Among it, [image: there is no content] represents direct voltage; [image: there is no content] refers to altering voltage; [image: there is no content] stands for excitation frequency, N represents the number of comb fingers.



To investigate the effect of TED on tuning-fork resonator, a group of comb fingers is selected as the research object. Figure 2 illustrates the model schematic. From the model schematic view, the movable finger is modeled with dimensions, [image: there is no content], [image: there is no content] and [image: there is no content]. We define the x, y, z axes corresponding to the length, width and thickness, respectively. In the equilibrium, the initial temperature of resonator is [image: there is no content] everywhere.


Figure 2. Illustration of a group of comb finger.



[image: Sensors 16 01445 g002]







2.2. Governing Equations of Resonator under Electrostatic-Forced Vibration and Free Vibration


In the longitudinal vibrating process, each cross-section of the micro-structure remains plane and the transverse deformation is ignored. For the longitudinal vibration problem, all quantities are only dependent on variable x. u(x, t) is defined as a longitudinal deflection of the beam. The thermoelastic governing equation of the electrostatic load is written as Equation (3):


[image: there is no content]



(3)




where [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] are density, Young’s modulus, thermal expansion coefficient, electrostatic force per unit volume, thermal conductivity, specific heat capacity, time and Poisson’s ratio, respectively. Also, [image: there is no content] is temperature variation in which [image: there is no content] is defined as temperature field of the resonator. The first equation is deduced from the vibration equilibrium equation and the second equation is derived from the thermal dynamic equation.



In order to compare the thermoelastic coupling effect on various vibration forms of resonator, the free harmonic vibration thermoelastic coupling equation is established as follows.


[image: there is no content]



(4)







As the gyroscope vibrates at the driven model, the micro-structure performs longitudinal vibration. Then with the Coriolis Effect, the resonator transverse vibrates at the detection mode. Accordingly, the flexural vibration governing the movable finger equation within the thermoelastic coupling effect is given by the following equation.


[image: there is no content]



(5)







As is noted, the cross-section of the micro-resonator is rectangular, the area and moment of inertia of the cross-section are [image: there is no content] and [image: there is no content] where [image: there is no content] is the thickness. [image: there is no content] is thermal moment and w(x, t)refers to transverse deflection of the resonator. In Equation (5), p is equal to [image: there is no content].





3. Analysis Methods of the Coupling Equations


To evaluate the coupling strength between structure mechanical and temperature fields, the analytical approaches are used to solve three governing equations. Therefore, the direct coupling method can be used to solve the thermoelastic coupling problems in micro-comb fingers resonator with and without electrostatic load in drive-mode of longitudinal vibration and in sense-mode of transverse vibration.



3.1. Direct Coupling Method in Resonator with Electrostatic Load


For the sake of solving Equation (3), the following dimensionless variables are used to transform Equation (3) into a non-dimensional form.


[image: there is no content]



(6)







Therefore, the governing equation in its non-dimensional form is simplified as:


[image: there is no content]



(7)




where [image: there is no content], [image: there is no content], [image: there is no content].



In the interest of dealing with the problem, both initial and boundary conditions should be taken into consideration. The initial conditions of temperature and displacement are assumed to be homogeneous. The initial conditions and boundary conditions are presented as below.


[image: there is no content]



(8)







The same transformation is used for the initial and boundary conditions. Equation (8) is rewritten as follows.


[image: there is no content]



(9)







To solve the mechanical and thermal coupled Equation (3) more conveniently, the Laplace transform is introduced. The Laplace transform is defined as:


[image: there is no content]



(10)







Substituting Equation (10) into Equation (3), the result is


[image: there is no content]



(11)







The initial equations are substituted into Equation (11), which can be rewritten as below.


[image: there is no content]



(12)







[image: there is no content], [image: there is no content] and [image: there is no content] denote themselves Laplace transforms, respectively, and s denotes the Laplace transform parameter. The differential equations for [image: there is no content] and [image: there is no content] are given by using the elimination methodin Equation (12).


[image: there is no content]



(13)




where [image: there is no content], [image: there is no content], [image: there is no content]



The solution to Equation (13) in the Laplace domain can be presented as:


[image: there is no content]



(14)




where [image: there is no content] and [image: there is no content] are parameters depending on s and [image: there is no content] are the roots of the characteristic equation: [image: there is no content].



Substituting Equation (14) into differential equation about [image: there is no content] gives the compatibility between [image: there is no content] and [image: there is no content].[image: there is no content], where [image: there is no content].



Governing Equation (14) can be represented as:


[image: there is no content]



(15)







Then, the boundary conditions of Laplace transform to Equation (9) are


[image: there is no content]



(16)







Substituting Equation (15) into the above boundary Equation (16), the four linear equations in the matrix form can be obtained as follows.


[image: there is no content]



(17)







[image: there is no content] of the solution of the above linear equations is the unknown parameters. It is difficult to find the inverse Laplace transform of temperature and displacement distribution in the Laplace domain analytically. In order to determine the temperature variation and displacement distributions in the time domain, the Riemann-sum approximation method is used to obtain the numerical results [20]. In this method, any function in the Laplace domain can be inverted to that in the time domain. The Riemann-sum approximation method is defined as below.


[image: there is no content]



(18)




where Re and i are real part and imaginary part, respectively. For fast convergence, numerical experiments have shown that [image: there is no content] equals to 4.7/t, which can meet the above relation.




3.2. Direct Coupling Method in Resonator without Electrostatic Load


The Laplace transform is used in Equation (4) for comparing thermoelastic behavior in the micro-resonator with electrostatic-forced vibration before the dimensionless governing equation in free harmonic vibration is listed as.


[image: there is no content]



(19)




where [image: there is no content], [image: there is no content] are defined as in Equation (13). The solution to Equation (19) can be obtained as follows.


[image: there is no content]



(20)







Also, [image: there is no content] where [image: there is no content]. Applying the same boundary condition in Equation (8) to Equation (20), another four linear equations in the matrix form can be obtained as follows.


[image: there is no content]



(21)








3.3. Analytical Approaches to Resonator in Transverse Vibration


In gyroscope sense-mode, the movable comb finger vibrates in flexible vibration. In the resonator, the Euler-Bernoulli assumption is used so that any plane cross-section initially is perpendicular to the axis of the beam and remains plane during bending.



To solve the coupling Equation (5), the assumption is made that the thermal moment [image: there is no content] and displacement component [image: there is no content] are time-harmonic forms.


[image: there is no content]



(22)







Equation (5) can be represented as


[image: there is no content]



(23)







The boundary conditions of the movable comb finger in flexural vibrating are given by the following equation.


[image: there is no content]



(24)







Differentiating the thermal conduction equation of Equation (5) with respect to x and substituting the first equation of Equation (5) into it results in


[image: there is no content]



(25)




where [image: there is no content]



The solution of Equation (25) can be expressed as


[image: there is no content]



(26)




where [image: there is no content] are the roots of the equation of [image: there is no content], and [image: there is no content],[image: there is no content][image: there is no content] are constants.



Substituting the dynamic equation of Equation (5) into the thermal conduction equation, the result is as follows.


[image: there is no content]



(27)







Substituting Equation (26) into Equation (27) leads to


[image: there is no content]



(28)




where [image: there is no content]



Thus, the solution of displacement component and the temperature moment can be deduced.


[image: there is no content]



(29)







Substituting the boundary conditions into Equation (29), Equation (30) can be obtained.


[image: there is no content]



(30)







The corresponding frequency equations of thermoelastic coupling transverse vibration are:


[image: there is no content]



(31)







By solving a complex transcendental Equation (31), the frequency [image: there is no content] can be obtained. The numerical method will be employed to solve this equation in the next section.





4. Numerical Results


The material used to fabricate the gyroscope is Si, and the parameters in numerical calculation and simulation are listed in Table 1.



Table 1. Mechanical, thermal, physical and electrical properties of gyroscope with silicon material.







	
Mechanical

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	

	
Thermal

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
Values

	
165

	
0.22

	
2330

	

	
values

	
2.6 × 10−6

	
159

	
713

	
300




	
Physical

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
Electrical

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
Values

	
60 × 10−6

	
15 × 10−6

	
5 × 10−6

	
5 × 10−6

	
Values

	
3

	
15

	
8.854 × 10−12

	
0.01










4.1. Thermoelastic Behaviors of Micro-Comb Finger Vibration with Electrostatic Load


The defined Riemann-sum approximation method in Equation (18) is used to perform the numerical inverse Laplace transform. The vibration displacement and temperature that generate during the vibration process are obtained. Figure 3 indicates the dynamic displacement and temperature of the micro-resonator for the coupled thermoelastic case. It can be observed in Figure 3 that the displacement u reaches maximum value both in two ends to satisfy the boundary Equation (8). Also, it can be seen from inverse Laplace transform that the vibration of the movable comb finger decays with time increasing when the coupling between strain and thermal fields are taken into account. Also the temperature decreases with the time increasing which means the mechanical energy of resonator is dissipated in the form of thermal energy. From the relationship between vibration displacement and temperature, it can be concluded that the temperature increases with vibration strength. When the resonator vibrates at drive-mode with electrostatic load, the variation of temperature is more severe.


Figure 3. Displacement and temperature variation for different values of vibration width t is 0.01 µs, 0.02 µs and 0.03 µs.



[image: Sensors 16 01445 g003]






Comparison is made between the displacement variation for different electrostatic parameters of direct voltage and alternating voltage, respectively. In the calculation process, the non-contrast parameters are kept in initial value (Table 1).



Figure 4 shows the graphical result of field quantities with the variation of the electrostatic parameters for altering voltage and direct voltage. From Figure 4a,b, the field quantities are sensitive to the variation of Vac and Vdc. When micro-comb finger harmonic vibration with AC voltage is applied, the field quantities are more sensitive to Vac. The amplitudes of displacement and temperature variation with the effect of altering voltage are 0.1 µm and 1 K, respectively, and 0.05 µm, 0.5 K with direct voltage.


Figure 4. Influence of electrostatic parameters on the field quantities along the axial direction of movable comb finger; (a) u, θ versus Vac; (b) u, θ versus Vdc.



[image: Sensors 16 01445 g004]







4.2. Thermoelastic Behaviors of Micro-Comb Finger Vibration without Electrostatic Load


In order to measure the effect of electrostatic load on the thermal and vibration couple process, the vibration with electrostatic load and without load is compared. The results are graphically presented in Figure 5. Note that the longitudinal free vibration moves around the first resonance frequency. From Figure 5, there is a quite obvious difference in the displacement under two different conditions. The discrepancy is about 0.1 µm in displacement, and the temperature variation shows 1.0 K difference. From the results, the thermoelastic coupling strength of micro-comb fingers with electrostatic load is stronger than that without electrostatic load.


Figure 5. Field quantities variation under different conditions: (a) displacement variation with and without electrostatic load; (b) temperature variation with and without electrostatic load.



[image: Sensors 16 01445 g005]







4.3. Micro-Comb Finger Thermoelastic Behaviors for Bending Vibration in Sense-Mode


When the gyroscope vibrates at the x axial then the resonator will vibrate at the y axial as rotating force is applied to the z axial. The x axial is defined as drive-mode and y axial is called sense-mode. The resonator performs longitudinal vibration at drive-mode and flexural vibration at sense-mode. Then the thermoelastic behaviors of the resonator should be considered in terms of transverse vibration. Figure 6 shows displacement and temperature variation of resonator bending vibration. Temperature has the opposite variation with displacement. The resonator deflection shares zero at the fixed end while the temperature has the maximum value. It is attributed to the presence of maximum stress of the resonator’s fixed end, which results in the peak temperature at this point. At the free end is also a similar trend.


Figure 6. Field quantities variation under transverse vibration.



[image: Sensors 16 01445 g006]







4.4. Simulation Results


In this section, models of the micro-comb finger in the presence of TED are investigated with COMSOL Multiphysics software. A 3-D computational model that provides the approximation of TED for both vibrations at drive-mode and sense-mode is developed. The geometry dimension is illustrated in Table 1. The mesh generation is implemented by adopting the mapping approach. To eliminate the effect of air on the resonator, the simulation is carried out under vacuum (below 0.01 mTorr). The initial and mechanical boundary conditions are based on the former setting (Equation (8)). The forced vibration characteristics at the first longitudinal mode are shown in Figure 7. The path analysis is made through selecting a line along the x direction in the movable comb upper face. The results are presented in Figure 8. It is observed that the longitudinal vibration u is symmetrically distributed at the range of −0.752~0.752 µm and the temperature θ increases directly with the location at the resonator length direction changing. Figure 9 provides the simulation results of vibration without electrostatic load. The contour plots of the temperature distribution and the vibration deformation are presented. From the figures, the maximum value of generated temperature is 5.210 K which is smaller than that with electrostatic-actuated vibration. Moreover, the displacement maximum value is smaller than that with forced vibration. The same analysis is applied in Figure 9, and the results are shown in Figure 10. Compared with the electrostatic-actuated vibration, the temperature and displacement distribution follow an similar pattern except for the extreme value. The sense-mode vibration characteristics are shown in Figure 11, and the path analysis of numerical results is illustrated in Figure 12. The field quantities of drive-mode and sense-mode are presented in Table 2, illustrating that the theoretical values coincide with simulation results within some small errors. Moreover, from Table 2 it can be seen that thermoelastic behaviors at sense-mode are more sensitive than those that at drive-mode.


Figure 7. Distribution of temperature and variation of displacement for electrostatically actuated longitudinal vibration: (a) temperature displacement; (b) displacement variation.



[image: Sensors 16 01445 g007]





Figure 8. The path analysis result of temperature distribution and displacement variation.



[image: Sensors 16 01445 g008]





Figure 9. The temperature variation and displacement distributionfor longitudinal vibration without electrostatic load: (a) temperature variation; (b) displacement distribution.



[image: Sensors 16 01445 g009]





Figure 10. The path analysis results of temperature and displacement variation.



[image: Sensors 16 01445 g010]





Figure 11. The temperature variation and displacement distribution for transverse vibration: (a) temperature variation; (b) displacement distribution.



[image: Sensors 16 01445 g011]





Figure 12. The path analysis results of temperature and displacement variation.



[image: Sensors 16 01445 g012]






Table 2. Field quantities simulation and analytical comparison results for vibration at drive-mode and sense-mode.







	
Vibration Mode

	
Displacement/µm

	
Temperature/K






	
Drive-mode

	
Forced vibration

	
Theoretical value

	
0.735

	
−0.735

	
5.943

	
0




	
Simulation value

	
0.752

	
−0.752

	
5.977

	
0




	
Error rate (%)

	
2.312

	
2.312

	
0.572

	
/




	
Free vibration

	
Theoretical value

	
0.667

	
−0.698

	
4.950

	
0




	
Simulation value

	
0.69

	
−0.750

	
5.210

	
0




	
Error rate (%)

	
3.448

	
3.448

	
5.252

	
/




	
Sense-mode

	
Theoretical value

	
−2.966

	
0

	
0

	
7.85




	
Simulation value

	
−3.17

	
0

	
0

	
7.98




	
Error rate (%)

	
6.878

	
/

	
/

	
1.656












5. The Thermoelastic Damping and Quality Factor


In this section, the parameter of TED that characterizes the energy dissipation at the vibration process is discussed. The thermal energy method will be used to calculate the thermoelastic damping. Landau and Lifshitz derived expressions for energy dissipation due to thermoelastic coupling effect by seeking the dissipated vibration energy, which is equal to the amount of heat flowing from a hot to cold region [21]. The assumption is made that the lost energy per cycle of vibration is all transformed into thermal energy. The dissipated energy is thus presented as:


[image: there is no content]



(32)







The stored mechanical energy per cycle of vibration is:


[image: there is no content]



(33)







From the above graphics, it can be found that the dissipated energy and stored mechanical energy per cycle have been deduced. The TED is defined as below.


[image: there is no content]



(34)




where [image: there is no content] and [image: there is no content] are the stress and strain under vibration process. On account of inverse Laplace transformation of s domain to time domain, the dependence of TED on resonator material and geometry dimension is deduced. It is difficult to find the inverse Laplace transformation in the Laplace domain analytically, so the numerical results for different conditions are plotted in Figure 13. The results show that as the resonator length increases, the TED first increases and then decreases. Furthermore, there exists a critical size at which TED takes the maximum value. It is shown that under different vibration modes, the TED reaches different peak values. TED for electrostatic-actuated vibration at drive-mode is larger than that for free vibration, and TED of resonator vibration at sense-mode is larger than that at drive-mode. For the movable comb resonator with 60 µm length, TED at drive-mode of electrostatic-forced vibration and free vibration and sense-mode vibration is 1.278 × 10−6, 1.212 × 10−6, 7.662 × 10−6 and the maximum TED value with critical size is 1.9 × 10−8 m, 3.6 × 10−8 m, 4.3 × 10−7 m, respectively.


Figure 13. TED under different conditions.



[image: Sensors 16 01445 g013]






Once TED is known, the quality factor related to the TED in the tuning-fork resonator can be calculated as


[image: there is no content]



(35)







The numerical results of Q are shown in Figure 14. It shows that with the vibration strength increasing, the dissipated thermal energy also increased. Therefore, Q of the movable resonator for vibration at sense-mode shares the minimum value. For an intuitive impression, the numerical result Q within theoretical and simulation methods is listed in Table 3.


Figure 14. Quality factor under different conditions.



[image: Sensors 16 01445 g014]






Table 3. TED and Q simulation and analytical results for vibration at drive-mode and sense-mode.







	
Vibration Mode

	
Drive-Mode

	
Sense-Mode




	
Forced Vibration

	
Free Vibration




	
Theoretical Value

	
Simulation Value

	
Error Rate %

	
Theoretical Value

	
Simulation Value

	
Error Rate %

	
Theoretical Value

	
Simulation Value

	
Error Rate %






	
Frequency/HZ

	
4.406 × 108

	
4.409 × 108

	
0.068

	
4.403 × 108

	
4.406 × 108

	
0.068

	
2.264 × 108

	
2.261 × 108

	
0.133




	
TED

	
1.278 × 10−6

	
1.260 × 10−6

	
1.41

	
1.212 × 10−6

	
1.198 × 10−6

	
1.259

	
7.662 × 10−6

	
7.746 × 10−6

	
1.10




	
Q

	
7.825 × 105

	
7.937 × 105

	
1.47

	
8.251 × 105

	
8.347 × 105

	
1.163

	
1.305 × 105

	
1.291 × 105

	
1.07










Table 3 clearly shows that theoretical values are in line with simulation results within a small fluctuation, verifying the theoretical model. We conclude that within vibration at sense-mode, more mechanical energy is dissipated through thermal energy, and its quality factor is correspondingly lower than that at drive-mode.




6. Experimental Verification


To verify the thermoelastic coupling effect on the tuning-fork resonator, the experimental conclusions are used from the paper of Xu [22]. In Xu’s results, the model consists of a tuning-fork comprised of a set of three flexural beams and two proof masses, and is fixed on the substrate through the two anchors located at the center of the whole device. The study in this thesis focuses on one group comb finger. According to the experimental conclusions from Xu, the quality factor expression can be written as


[image: there is no content]



(36)




where [image: there is no content] represents the external resistor.[image: there is no content], [image: there is no content] is the equivalent circuit model of the tuning-fork structure consisting of a RLC circuit in series, and the values of the equivalent electrical components of the structure can be calculated as follows.


[image: there is no content]








where M and k are the modal mass and stiffness, respectively.



From Xu’s results, the TED for a whole device is the dominant loss in the drive-mode and sense-mode of the tuning-fork structure, occupying as high as 76% of the total energy loss. The comb finger parameters are substituted to the Q expression in Xu’s experimental research, which can obtain the relationship between Q and resonator length. The comparison was made between the simulated results of comb finger and the calculated results from Equation (36).



From the comparison results in Figure 15, the simulated Q values are about 10% smaller than the results from Equation (36). According to Xu, the sum of electronics damping and anchor loss is about 20% of measured Q. The electronics damping is not considered in the simulation process, so the simulated Q value is a little smaller than the calculated value. The analytical solution coincides with the calculated results from Equation (36). The analytical conclusions are thus experimentally verified.


Figure 15. The compared Q values of the drive-mode and sense-mode of micro-comb finger versus different lengths (20 µm, 40 µm, 60 µm). (a) drive-mode and (b) sense-mode.



[image: Sensors 16 01445 g015]







7. Conclusions


Aimed at the internal dissipation due to thermoelastic coupling in tuning-fork resonator, this paper established the thermoelastic coupling governing equations for vibrations at drive-mode and sense-mode. The numerical results of vibration displacement and the temperature which generated in vibration process are then calculated, and the comparison is made between numerical results and simulation results. From that, the calculated results of displacement and temperature coincide with the FEM simulated results. Through the results, the generated heat due to the vibration process shares a small magnitude. In other words, the loss energy enjoys a lower level compared with the vibration energy. The temperature generated under three conditions is 5.943 K, 4.950 K and 5.210 K, respectively. Also, the error between theoretical and simulated results is quite small. Additionally, TED and Q are analyzed with theory and simulation. By means of other researchers’ experimental conclusions, the analytical and simulated results can be verified. The TED numerical results have the order of 10−6 for 60 µm length micro-comb finger at both drive-mode and sense-mode vibrations. At the drive-mode vibration, the electrostatically actuated TED is slightly higher than that at the free vibration. For the transverse vibration, the calculated value is 7.662 × 10−6, which is larger than the drive-mode vibration. The comparison is thus made between the simulated Q value and the calculated Q value based on Xu’s conclusion, thereby showing that the TED is the dominant loss for a gyroscope with tuning-fork resonator in the drive-mode and sense-mode.
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