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Abstract: The geosynchronous synthetic aperture radar (GEO SAR) is susceptible to orbit
perturbations, leading to orbit drifts and variations. The influences behave very differently from
those in low Earth orbit (LEO) SAR. In this paper, the impacts of perturbations on GEO SAR orbital
elements are modelled based on the perturbed dynamic equations, and then, the focusing is analyzed
theoretically and numerically by using the Systems Tool Kit (STK) software. The accurate GEO SAR
slant range histories can be calculated according to the perturbed orbit positions in STK. The perturbed
slant range errors are mainly the first and second derivatives, leading to image drifts and defocusing.
Simulations of the point target imaging are performed to validate the aforementioned analysis. In the
GEO SAR with an inclination of 53◦ and an argument of perigee of 90◦, the Doppler parameters and
the integration time are different and dependent on the geometry configurations. Thus, the influences
are varying at different orbit positions: at the equator, the first-order phase errors should be mainly
considered; at the perigee and apogee, the second-order phase errors should be mainly considered; at
other positions, first-order and second-order exist simultaneously.
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1. Introduction

Geosynchronous synthetic aperture radar (GEO SAR) [1] runs on an orbit height of around
36,000 km, has a revisit time of less than 24 h and a coverage of more than 1000 km by 1000 km. Recently,
GEO SAR has become a hot topic, as it has overwhelming advantages for monitoring earthquakes and
other disasters [2–4]. Related research is focused on the system design and optimization [5–8] and
the development of accurate imaging algorithms [9,10]. Other studies are devoted to the non-ideal
influences, including atmospheric effects [11–14]. However, orbital perturbations are rarely concerned,
though satellites are certain to be impacted by perturbations caused by the Earth’s non-spherical mass
distribution, the atmospheric drag, the third body attraction, the solar radiation, etc.

In spaceborne SAR, perturbations will lead to orbit drifts and variations by influencing the
orbital elements (the parameters required to uniquely identify a specific orbit in celestial mechanics)
varying with time. Perturbations imposed on satellites are related to orbit height. For the low Earth
orbit (LEO) case, the J2 term perturbation (a kind of the Earth’s non-spherical perturbation) and the
atmospheric drag should be mainly considered. Comparatively, the main sources of perturbations
for the geosynchronous orbit are the J2 term perturbation and the third body attraction. The solar
radiation should also be considered if the area/mass ratio is large. Furthermore, in LEO SAR, the radar
image integration time is very short (at levels of 1 s), and thus, the orbit can be considered to be frozen
within the integration time; while in GEO SAR, it behaves very differently. The perturbed orbit drifts
among days or weeks can form the spatial baseline between the repeat pass GEO SAR and can be
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employed for the repeat pass interferometry or the differential interferometry [15,16]. In comparison,
the perturbed orbit variations within one day or the GEO SAR aperture time (several hundreds or
even thousands of seconds) can lead to the changing of the slant range histories and result in the
degradation and even the failure of focusing [17,18].

Kou et al. [17] studies the perturbed orbit variations’ effects on the focusing and interferometry of
the circular SAR (CSAR). However, the CSAR is an innovative SAR system, which has a circular nadir
track and forms high resolution images by the coherent integration of the whole day’s (the orbit period)
acquisitions. Therefore, its signal models and the corresponding conclusions cannot be used directly in
the inclined GEO SAR, whose integration time is comparatively less and only at levels of around several
minutes. In [18], the perturbation effects are analyzed for the GEO SAR in a circular geosynchronous
orbit, and the approximate perturbed equations are adopted in analyzing the errors of the Doppler
parameters and the focusing performance. The fourth-order Doppler parameters are adopted [19].
Therefore, for the more general cases of GEO SAR, which is running in the elliptical or near-circular
orbit, the approximation method is not very accurate. In actuality, it is complex and difficult to derive
the analytical solutions of the various perturbations’ influences on the orbital elements and the slant
range histories because their effects are coupled with each other. In order to avoid the possible and
great errors induced by approximation, numerical approaches are recommended, in which the AGI
System Tool Kit (STK) (Analytical Graphics, Inc., Exton, PA, USA) software is employed to generate
the highly accurate perturbations and the perturbed slant range histories.

This paper studies the perturbation influences on the orbital elements, the slant range histories
and the focusing performance of GEO SAR based on the accurate numerical simulation using STK.
However, the theory of the perturbation influences on the orbital elements is also demonstrated
analytically. Then, the corresponding variations of slant range histories are derived based on the Taylor
expansion of slant ranges. The analyses are based on the perturbed motion equations and the STK.
The laws of the variations and the corresponding influences are deduced. As the analytical solution
for perturbation dynamic equations and their composited influences on the slant range are difficult
to obtain, a numerical approach based on STK is adopted to construct the SAR signals. The slant
range histories with and without the effects of perturbations are generated. Finally, the focusing and
evaluations are performed to validate the analyses based on the STK simulations.

2. Perturbations and Their Influences on GEO SAR Orbital Elements

Satellites are influenced by the Earth’s non-spherical mass distribution, the atmospheric drag,
the third body attraction, the solar radiation and others. The satellite orbit drifts induced by these
perturbations can be depicted by their influences on the orbital elements based on the corresponding
perturbation motion equations. In this section, all kinds of perturbations in GEO SAR are discussed
analytically, along with the differences from those in LEO SAR. Then, the expressions, the periods and
the orders of magnitude of the perturbations’ influences on orbit elements are presented. These will be
used as a bridge to analyzing the perturbations’ influences on slant range histories in the next section.

2.1. Perturbation Motion Equations

For GEO SAR, perturbations will produce accelerations, which are composed of the radial ar, the
normal az and the transverse aθ components (following the axis order of aθ az and ar, respectively).
The radial component is along the direction pointing from the geocentric center to the satellite; the
normal component is perpendicular to the orbit plane; and the transverse component lies within the
orbit plane and follows the right-hand rule. The imaging geometry of GEO SAR is shown in Figure 1.
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Figure 1. Geometry of the geosynchronous (GEO) SAR imaging. O-xyz is the Earth-centered inertial 
coordinate system. Oa-araθaz is the satellite local coordinate system. 

Equations of satellite motion have to be represented by perturbed equations. According to the 
orbital perturbation dynamic theory, the orbital elements influenced by the perturbations can be 
obtained. However, the Lagrangian perturbed equation can be only used for perturbation, which 
can be presented by a potential function (i.e., the Earth’s non-spherical perturbation and the third 
body perturbation). Considering the non-conservative perturbation forces, such as solar radiation 
and atmospheric drag, no potential functions exist for use; therefore, the Lagrangian perturbed 
equation of motion cannot be directly used in such a case. The Gaussian perturbed equation of 
motion can be employed for any type of perturbation. The temporal derivatives of the orbital 
elements have been expressed analytically [20]. The detailed algebras can be found in [20]. The 
differential equations are: 
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inclination, the true anomaly and the argument of perigee, respectively. The d/df is the  
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Figure 1. Geometry of the geosynchronous (GEO) SAR imaging. O-xyz is the Earth-centered inertial
coordinate system. Oa-araθaz is the satellite local coordinate system.

Equations of satellite motion have to be represented by perturbed equations. According to the
orbital perturbation dynamic theory, the orbital elements influenced by the perturbations can be
obtained. However, the Lagrangian perturbed equation can be only used for perturbation, which
can be presented by a potential function (i.e., the Earth’s non-spherical perturbation and the third
body perturbation). Considering the non-conservative perturbation forces, such as solar radiation and
atmospheric drag, no potential functions exist for use; therefore, the Lagrangian perturbed equation
of motion cannot be directly used in such a case. The Gaussian perturbed equation of motion can be
employed for any type of perturbation. The temporal derivatives of the orbital elements have been
expressed analytically [20]. The detailed algebras can be found in [20]. The differential equations are:
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where p is the latus rectum and p = a
(
1− e2), µ is the geocentric gravitational constant. a, e, i, f , ω

are the orbital elements and represent the semi-major axis, the eccentricity, the inclination, the true
anomaly and the argument of perigee, respectively. The d/df is the differential operator.
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2.2. Perturbations in GEO SAR

The various perturbations have different influences on satellites at different orbit heights [21].
For the low Earth orbit satellites, the J2 term accounts for about one percent of the two-body centripetal
force. The atmospheric drag perturbation decreases as the satellite orbit height increases, and it is
around the orders of 10−1 ∼ 10−3 of the J2 term for most of the LEO satellites near 160–2,000 km orbit
heights. When the orbit height becomes higher, its influences vanish. The third body attraction and the
solar radiation perturbations are relatively small and are around the orders of 10–4~10–5 of the J2 term.

In comparison, the influences of perturbation on the high orbit satellites are very different. The J2

term will decrease as the orbit height increases; while the third body attraction increases (it will
arrive at the same level as the J2 term at the geosynchronous orbit). The solar radiation perturbation
remains almost unchanged. Furthermore, for any orbit height, the other perturbations, such as the
tidal perturbation, are several orders smaller than the J2 term and, thus, can be ignored.

The influences of perturbation on GEO SAR are simulated using STK. The initial orbital elements
of the reference GEO SAR have the semi-major axis of 42,164.2 km, the eccentricity of 0.07, the
inclination of 53◦, the right ascension of ascending node (RAAN) of 110◦ and the argument of perigee
of 270◦. The 10 days’ orbit drifts caused by each perturbation alone are produced and presented in
Table 1. The orders of each perturbation’s influence are consistent with the aforementioned analysis.
For GEO SAR, only the Earth’s non-spherical mass distribution, the third body attraction and the solar
radiation should be considered.

Table 1. GEO SAR orbit drifts after 10 days when considering each perturbation alone.

Earth’s Non-Spherical Mass Distribution Third Body Attraction Solar Radiation
Others (Tidal
Perturbation) Total

J2 Term Orders of 70 × 70

105.3 km 141.3 km 95.9 km 34.2 km 0.008 km 227.8 km

Furthermore, the influences have obvious periodicity. According to the influences on GEO
SAR orbital elements, perturbations can be categorized into the secular component and the periodical
component. The secular component can cause the long-term and continuous drifts, while the periodical
component will produce the periodical changes, including the short periodical term and the long
periodical term. The short periodical term has a smaller period than the satellite orbit period, while
the long periodical term has a much greater one. The periodical perturbations will cause oscillations
around a certain position. For GEO SAR, the short period is within 24 h and is usually 12 h or 24 h.
The long period can reach up to half a month, half a year or even several years.

2.3. Earth’s Non-Spherical Mass Distribution

In the ideal two-body movement (Keplerian motion), the satellite and the Earth are considered as
two particles, and the gravity is calculated between them. However, the Earth is not a regular sphere,
and its mass distribution is uneven, so the Earth’s gravity on satellites cannot be considered as the
point-to-point form in real cases. If the Earth is considered as an irregular ellipsoid, which is composed
of n particles approximately, the gravity on the satellite P outside the Earth is the sum of the gravities
on P from n particles of the Earth. As the gravity is a vector, the summation is complex. Therefore,
generally, the potential function V of the Earth’s gravitational field is firstly calculated, and then, the
gravity is produced based on the potential function V.

According to the celestial mechanics, the series expansion of the potential function V is spherical
harmonics series and can be presented as [22]:

V(r, ϕ, λ) =
µ

r

∞

∑
n=0

( aE
r

)n n

∑
k=0

(Cnkcos kλ + Snksin kλ)Pnk(sin ϕ) (6)
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where r, ϕ, λ is the geocentric range, the latitude and the longitude. aE is the Earth equatorial radius.
Cnk and Snk is the spherical harmonic coefficients. n and k are the orders. Pnk (x) is the associated
Legendre function, i.e.,:

Pnk (x) =
(

1− x2
)k/2 dk

dxk Pn (x) (7)

while Pn (x) is the Legendre polynomials:

Pn (x) =
1

2nn!
dn

dxn

(
x2 − 1

)n
(8)

Measurements and calculations of these spherical harmonic coefficients are under research.
Various models of the Earth gravitational field are constructed for the approximation to the Earth
gravities. Currently, the latest model is the Earth Gravitational Model 2008 [23] (EGM2008, by the
National Geospatial-Intelligence Agency, NGA), which has orders up to 2159 and a spatial resolution
of 9 km. In the models, the lower order terms have a more important role in the models of the Earth
gravitational field, especially for the second-order of zonal harmonics, i.e., the J2 term. Actually, the
tesseral harmonics will induce the orbit precession and the longitude drifts. However, they are long
periodical terms and will not influence focusing. When only the J2 term is considered, the Earth can be
simplified as an ellipsoid with some oblateness. For the simplification for analyzing the mechanical
model, only the J2 term is considered for influencing the orbital elements in this section. However, the
other higher terms have similar impacts and analyzing methods.

When only the J2 term is considered, the perturbation term in the potential function V of the
Earth’s gravitational field can be expressed as:

Vpert (r, ϕ) =
µaE

2

2r3 J2

(
3sin2 ϕ− 1

)
(9)

where J2 is the Earth oblateness coefficient. The accelerations caused by perturbations can be
expressed as:

→
a = −grad·Vpert (r, ϕ) = −

[ →
ir

→
iθ

→
iz
] 

∂
∂r
∂

r∂ f
∂

r sin( f+ω)∂i

 ·Vpert (r, ϕ) (10)

where
→
ir,

→
iθ ,

→
iz are the unit vectors of the three orthogonal directions in the satellite local

coordinate system.
Considering the sine law in the spherical triangle:

sin ϕ = sin i sin ( f + ω) (11)

we can obtain the radial, the normal and the transverse components of the J2 perturbation accelerations:

ar = −
3µRe

2 J2

2r4

(
1− 3sin2i sin2 ( f + ω)

)
(12)

aθ = −3µRe
2 J2

2r4 sin2i sin2 ( f + ω) (13)

az = −
3µRe

2 J2

2r4 sin2i sin ( f + ω) (14)



Sensors 2016, 16, 1420 6 of 24

Substituting Equations (12)–(14) into Equations (1)–(5), we can obtain the variation of the orbital
elements under the influences of the J2 perturbation (see Appendix A for the detailed deviations):

da
d f

=
−3Re

2 J2

p (1− e2)
2 (1 + e cos f )2

[
e sin f + sin2i sin 2u (1 + e cos f − 3e sin f )

]
(15)

di
d f

=
−3Re

2 J2sin 2i
2p2 (1 + e cos f ) sin u cos u (16)

de
d f

=
−3Re

2 J2

2p2 (1 + e cos f )2
[

sin f + sin2 isin 2u
(

cos f − 3sin f +
e + cos f

1 + e cos f

)]
(17)

dΩ
d f

=
−3Re

2 J2cos i
p2 (1 + e cos f ) sin2u (18)

dω
d f = −3Re

2 J2
2p2 (1 + e cos f ) ·[

(1+e cos f )(sin f+cos f )+sin f
e sin2 i sin 2u

− cos f (1+e cos f )
e − 2sin2 u cos2 i

]
(19)

where u = f + ω.
Inferred from Equations (15)–(19), each orbital element has a short periodical term with a period

of one GEO SAR orbit (T) under the influences of the J2 term. However, there exists no long periodical
term. In comparison, the secular term will give a secular decreasing (↓) in the RAAN and a secular
increasing (↑) in the argument of perigee. The specific law of the GEO SAR orbital elements variation
is summarized in Table 2. The dash indicates no influence at all.

Table 2. Law of the GEO SAR orbital elements variations under the influences of the J2 term

Orbital Elements Short Period Long Period Secular

Semi-major axis T - -
Eccentricity T - -
Inclination T - -

RAAN T - ↓
Argument of perigee T - ↑

Note: T is the period of GEO SAR; ↑ is increase; ↓ is decrease.

The perturbation motion equations can be analytically solved by the canonical transformation,
but the solving process is complicated and the accuracy limited. In this section, the numerical integral
approach is adopted to solve the equations using MATLAB. The orbital elements variations are
presented in Figure 2, which shows consistency with the aforementioned theoretical analysis.
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Figure 2. Curves of the short periodical terms of GEO SAR orbital elements’ variations under the 
influences of the J2 term. 
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Figure 2. Curves of the short periodical terms of GEO SAR orbital elements’ variations under the
influences of the J2 term.

2.4. Attraction of the Sun and the Moon

The third body attraction perturbation is mainly caused by the attraction of the Sun and the Moon.
Especially for GEO SAR, these perturbation effects should be considered. When the orbit height arises
above 50,000 km, the influences of the attraction of the Sun and the Moon will exceed the J2 term.

The acceleration caused by the Moon attraction can be expressed as [22] (p. 65):

→
a =

µM

(→
rM −

→
r
)

m
∣∣∣→rM −

→
r
∣∣∣3 −

µM
→
rM

mrM3 (20)

where µM is the Moon's gravitational constant,
→
rM is the radial vector of the Moon in the Earth centered

inertial coordinate system (ECI).
→
r is the radial vector of the satellite in ECI. m is the satellite mass.

The acceleration caused by the Sun attraction has a similar form as Equation (20).
The perturbation accelerations by the Sun and the Moon can also be decomposed into the radial,

the normal and the transverse components and then be substituted into the perturbation motion
Equations (1)–(5), obtaining the analytical variation forms. As the period of the Earth revolution around
the Sun is one year and the period of the Moon revolution around the Earth is one month, the GEO SAR
orbital elements variations under the influences of the third body perturbations (the Sun and the Moon
attraction) have the long period term of half a month and half a year. If only the attraction of the Sun
and the Moon is considered, the laws of the perturbed variations are summarized in Table 3.

Table 3. Law of the GEO SAR orbital elements’ variations under the influences of the third
body perturbations.

Orbital Elements Short Period Long Period Secular

Semi-major axis T 0.5 months/0.5 years -
Eccentricity T 0.5 months/0.5 years ↑
Inclination T 0.5 months/0.5 years ↑

RAAN T 0.5 months/0.5 years ↓
Argument of perigee T 0.5 months/0.5 years ↓

2.5. Solar Radiation Pressure

Light illuminated on the object’s surface will produce pressure, which is named light pressure.
Besides visible light, electromagnetic waves also have the light pressure interaction. The light
pressure will impose perturbation forces on the satellite in space and will cause orbit drifts and
variations. This kind of perturbation is called the light pressure perturbation in which the solar
radiation perturbation contributes most. The accelerations caused by the solar radiation perturbation
is expressed as:
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→
a = −Cr ·

A
m
· Kφ

c

(
1
r

)2→
r̂ (21)

where Cr is the radiation pressure coefficient, which is generally set as between one and two. Cr is
defined as 1 + ε, where ε is the reflectivity. When the incident power is perfectly absorbed, ε = 0
and Cr = 1; when the reflection is perfectly diffuse, Cr = 1.44; when the reflection is perfectly
specular, ε = 1 and Cr = 2. A/m is the satellite area-mass ratio; K is the illumination factor (i.e., one
or zero depending on whether the satellite is in sunlight or not); φ is the light pressure acting at one
astronomical unit from the Sun (constant); c is the light velocity; r is the distance between the satellite

and the Sun; and
→
r̂ is the corresponding unit vector.

When ignoring the eccentricity of the Earth revolution and considering no shadow region (the
sunlight incident angle is zero), the radial, the normal and the transverse components of the solar
radiation perturbation accelerations can be expressed as:

→
ar = −Cr ·

A
m
· Kφ

c
(cos f�cos l + sin f�cos i�sin i) (22)

→
aθ = Cr ·

A
m
· Kφ

c
(cos f�cos l − sin f�cos i�sin i) (23)

→
az = −Cr ·

A
m
· Kφ

c
sin f�sin i� (24)

where l = θ + ω + Ω, f� is the true anomaly of the Sun in ECI and i� is the inclination of the Sun in ECI.
Substituting Equations (22)–(24) into the perturbation motion Equations (1)–(5), we can obtain the

law of the GEO SAR orbital elements variations under the influences of the solar radiation perturbation.
As the f� has a long period of one year, the orbital elements variations have an identical long period.
The law of variations is listed in Table 4.

Table 4. Law of GEO SAR orbital elements’ variations under the influences of the solar
radiation perturbation.

Orbital Elements Short Period Long Period Secular

Semi-major axis T 1 year -
Eccentricity T 1 year -
Inclination T 1 year ↑

RAAN T 1 year ↓
Argument of perigee T 1 year -

2.6. Influences on Orbital Elements

The compound influences of various perturbations on orbital elements and the corresponding
periodical changing laws are summarized in Table 5. The short periodical variations are within one
orbit period and can influence the GEO SAR slant range histories. The long periodical and secular
variations will influence the coverage and locations.

Table 5. Summary of the periodical changing laws of the perturbed GEO SAR orbital elements
variations (SP: short periodical term, LP: long periodical term, S: secular term).

Orbital Elements Earth’s Non-Spherical
Mass Distribution Attraction of Moon and Sun Solar Radiation Pressure

Semi-major axis SP SP + LP SP + LP
Eccentricity SP SP + LP + S↑ SP + LP
Inclination SP SP + LP + S↑ SP + LP + S↑

RAAN SP + S↓ SP + LP + S↓ SP + LP + S↓
Argument of perigee SP + S↑ SP + LP + S↓ SP + LP
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The aforementioned analyses of the perturbations’ influences on GEO SAR are given based
on the dynamic equations separately. However, in real cases, the perturbations impact GEO SAR
simultaneously, and thus, the orbital changing rules under the total perturbations cannot be presented
in analytical forms. Instead, the influences are calculated numerically. STK provides two numerical
models, i.e., the high-precision orbit propagator (HPOP) and the long-term orbit predictor (LOP).
The HPOP can accurately calculate the orbit under the comprehensive perturbation environment
and is suitable for the short period and highly accurate orbit calculation. The LOP can calculate
the averaged influences of perturbations and can reduce greatly the calculation time under some
precision precondition.

LOP is suitable for the orbit calculation in much longer time scales, such as several months or
several years. The changing rules of the GEO SAR orbit within five years are calculated using LOP in
STK. Firstly, we will use STK to build a scene where a GEO SAR satellite is added. The orbit parameters
of GEO SAR will be input as the attributes of the satellite. The initial orbit parameters of GEO SAR
are as follows: the semi-major axis is 42,164.2 km; the eccentricity is 0.07; the orbit inclination is 53◦;
RAAN is 110◦; and the argument of perigee is 270◦. Then, the simulation parameters in Table are filled
into STK for simulating perturbations. Here, several assumptions are made: (1) the eccentricity of
the Earth’s revolution is not considered; (2) the shadow region of the Earth is not considered; (3) the
sunlight is incident at the angle of 0◦. In other words, the case of the maximum area-mass ratio is
considered in the simulations; while in actual cases, the area-mass ratio could be variant and smaller.

Simulation results are as shown in Figure 3. The orbital elements under the influences of the
compound perturbations have the long and short periodical variations. All of the orbital elements, but
the semi-major axis, have the secular variations. Under the influences of perturbations, the changing
period of the semi-major axis is the same as that of the longitude drifts and the GEO SAR orbital period
variations (around 2.7) years. In Figure 3f, the initial orbital period of GEO SAR is identical to the Earth
rotation and is 86,164 s. When influenced by perturbations, the GEO SAR orbital period increases and
becomes longer than the Earth rotation. Meanwhile, the longitude of the ascending node decreases
and behaves as the nodal regression. After 1.38 years, the GEO SAR orbital period and the longitude of
ascending node behave oppositely. Finally, this will lead to the reciprocating motion around a certain
longitude and the variation range is around 50◦, which is a function of the initial longitude relative
to the stable longitude points, but obtained through the STK simulation here. The maximum value
appears at the moment when the satellite is sent into orbit.
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Figure 3. Curves of perturbed GEO SAR orbital elements variations within five years. 

As the short periodical perturbations will influence focusing, the magnitudes of perturbed 
orbital elements are simulated based on the HPOP model in STK. The simulation parameters and 
options are similar to those in LOP, as shown in Table 6. The simulation start time is 4:00 a.m. on 1 
May 2013 and the end time is 4:00 a.m. on 6 May 2013. After simulation, we will use a MATLAB 
connector to interface with STK. The perturbed orbit elements after a preset time interval can be 
output in MATLAB. Thus, the variation ranges of the orbital elements caused by the short 
periodical perturbations can be retrieved, and the results are listed in Table 7.  

Table 6. STK parameters and options for the perturbations’ simulation. 

Parameters Values Parameters Values 
Simulation start time 0:00 a.m. 1 July 2007 Simulation end time 12:00 p.m. 11 July 2012 
Coordinate system J2000 Earth gravity model EGM2008(70 × 70) 

Solar radiation model Spherical Surface reflectivity 1.3 
Area-mass ratio 0.31416 m2/kg The third body attraction The Sun/Moon 
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As the short periodical perturbations will influence focusing, the magnitudes of perturbed orbital
elements are simulated based on the HPOP model in STK. The simulation parameters and options
are similar to those in LOP, as shown in Table 6. The simulation start time is 4:00 a.m. on 1 May 2013
and the end time is 4:00 a.m. on 6 May 2013. After simulation, we will use a MATLAB connector to
interface with STK. The perturbed orbit elements after a preset time interval can be output in MATLAB.
Thus, the variation ranges of the orbital elements caused by the short periodical perturbations can be
retrieved, and the results are listed in Table 7.

Table 6. STK parameters and options for the perturbations’ simulation.

Parameters Values Parameters Values

Simulation start time 0:00 a.m. 1 July 2007 Simulation end time 12:00 p.m. 11 July 2012
Coordinate system J2000 Earth gravity model EGM2008(70 × 70)

Solar radiation model Spherical Surface reflectivity 1.3
Area-mass ratio 0.31416 m2/kg The third body attraction The Sun/Moon

Table 7. Ranges of the orbital elements variations caused by the simulated short
periodical perturbations.

Orbital Elements Earth’s Non-Spherical
Mass Distribution

Attraction of Moon
and Sun Solar Radiation Pressure Others Total

Semi-major axis (m) 2308 2900 1255 0.093 5288
Eccentricity 3.7 × 10−5 1.2 × 10−4 6.8 × 10−5 1.2 × 10−9 1.7 × 10−4

Inclination (◦) 1.1 × 10−3 2.9 × 10−3 3.4 × 10−4 7.6 × 10−8 3.4 × 10−3

RAAN (◦) 8.1 × 10−3 1.5 × 10−3 4.9 × 10−4 3.7 × 10−8 7.1 × 10−3

Argument of perigee (◦) 0.032 0.082 0.013 1.5 × 10−6 0.111

3. Influences of Perturbations on GEO SAR Focusing

GEO SAR focusing is impacted by the slant range errors within the integration time. The slant
range errors are caused by the variations of the perturbed GEO SAR orbital elements, consisting of
the short periodical, the long periodical and the secular components. Because the long periodical and
secular orbit drifts will impact the characteristics of the coverage and locations, they will not influence
focusing and, thus, are not discussed in this section. In summary, this section carries out the modelling
of slant ranges and then analyzes the slant range variations when each orbital element has a small
variation of ∆, which is related to the short periodical perturbations.

3.1. GEO SAR Slant Range Model

In the Earth-centered Earth-fixed coordinate (ECEF) system, considering that the true anomaly at
the aperture center moment t0 is f 0, the coordinates of the point target being focused are:

→
r t ( f0) = (xt ( f0) , yt ( f0) , zt ( f0)) (25)
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where: 
xt = Re [cos ( f + ω) cos βcos α− sin ( f + ω) sin βcos icos α− sin βsin isin α]

yt = Re [cos ( f + ω) sin βcos α + sin ( f + ω) cos βcos icos α + cos βsin isin α]

zt = Re [sin ( f + ω) sin icos α− cos isin α]

(26)

where Re is the Earth radius, α is the geocentric angle and β equals Ω −ΩG and is related to the
longitude. ΩG is the Greenwich sidereal hour angle and equals ΩG0 + ωet, where ΩG0 is the initial
Greenwich sidereal hour angle and ωe is the Earth rotation angular velocity. f is the true anomaly; ω is
the argument of latitude; i is the orbit inclination.

The coordinates of GEO SAR can be expressed as:

→
r s f =

(
xs f , ys f , zs f

)
(27)

where: 
xs f = cos ( f + ω) cos β · r− sin ( f + ω) sin βcos i · r
ys f = cos ( f + ω) sin β · r + sin ( f + ω) cos βcos i · r
zs f = sin ( f + ω) sin i · r

(28)

Therefore, the slant range can be calculated as:

R =

√[
xs f − xt ( f0)

]2
+
[
ys f − yt ( f0)

]2
+
[
zs f − zt ( f0)

]2
(29)

The simplification of Equation (29) can be expressed as:

R =

√
r2 + Re

2 − 2Rercos α0 (30)

where R is the slant range and r is the geocentric distance of GEO SAR and equals
a
(
1− e2) / (1 + e cos f ). α0 is the geocentric angle of the aperture center.

Inferred from Equation (30), R is mainly dependent on the semi-major axis and the eccentricity.
When substituting the true anomaly f into Equation (30), R with respect to f can be considered as the
range histories of GEO SAR. Assuming the range-Doppler algorithm is adopted, the location of the
target will be influenced by R, as well. Therefore, the location will also be dependent on the semi-major
axis and the eccentricity. Furthermore, the location will also be affected by the location of satellite and
the beam pointing. If the location of the satellite changes while the beam pointing remains unchanged,
location errors will be induced in the target location. Conclusively, the slant range history will be
influenced by the semi-major axis and the eccentricity, while the location of target will be influenced
by all of the orbit elements.

In order to analyze the influences of orbital elements’ variations on focusing, the GEO SAR slant
ranges should be firstly Taylor expanded for retrieving Doppler parameters. Thus, the derivatives of
the slant ranges will affect the focusing quality. The analytical forms of each order of the derivative
of the slant range are obtained. Then, the influences of the orbital elements’ variations on focusing
are analyzed. The slant range in Equation (30) is Taylor expanded to the third-orders at the aperture
center, and we have:

R ≈ R0 +
dR
dt

∣∣∣∣
t=t0

(t− t0) +
1
2!
· d2R

dt2

∣∣∣∣
t=t0

(t− t0)
2 +

1
3!
· d3R

dt3

∣∣∣∣
t=t0

(t− t0)
3 (31)

where t0 is the aperture center moment and t is the slow time.
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The time derivatives of the slant range can be calculated as (refer to the Appendix A for the
detailed derivations):

dR
dt

=
.
R =

√
µ

P
· e sin f

R
[r− Re cos α0] (32)

d2R
dt2 =

..
R =

µ

PR

(
e2 + e cos f

)
− µ

r2R
Re cos α0e cos f −

( .
R
)2

R
(33)

d3R
dt3 =

...
R = −

√
µ3

P ·
1

r2R e sin f − µ
.
R

PR2 ·
(
e2 + e cos f

)
+

.
R

3
−2R

.
R

..
R

R2 +

eRe cos α0

(√
µ3

P
1

r3R (sin f + 3e sin f cos f ) + µ
.
R

r2R2 cos f
) (34)

At the aperture center where t = t0 and f = f0, we have:

dR
dt

∣∣∣∣
t=t0

=

√
µ

P
e sin f0 cos θL ≈ µ1/2 e sin f0 cos θL

r01/2 (35)

d2R
dt2

∣∣∣
t=t0

= µ
(

e2−e2 sin2 f0 cos2 θL+e cos f0
r0R0(1+e cos f0)

− Re cos α0e cos f0
r0

2R0

)
≈ µ

e cos f0
r0R0

(
1− Re cos α0

r0

)
= µ

e cos f0 cos θL
r0

2

(36)

d3R
dt3

∣∣∣
t=t0

=

√
µ3

P ·
e sin f0

r0R0
·

 − 1
r0
+ 3e cos θL

R0

(
e sin2 f0 cos2 θL−e−cos f0

1+e cos f0

)
+ 3e cos θL

r0R0
cos f0Re cos α0 +

1
r0

2 (1 + 3e cos f0) Re cos α0


≈
√

µ3

P ·
e sin f0

r0R0
·
[
− 1

r0
− 3e cos θL cos f0

R0

+ 3ecos θL cos f0
R0

· Re cos α0
r0

+ 1
r0

2 (1 + 3e cos f0) Re cos α0

]
= −

√
µ3

P ·
e sin f0 cos θL(1+3e cos f0)

r0
2

≈ −µ3/2 e sin f0 cos θL
r0

7/2

(37)

In calculating Equations (35)–(37), Re cos α0 is the projection of Earth radius Re to the geocentric
range of GEO SAR. Therefore, we have the relationship of cos θL = (r0 − Re cos α0) /R0 where θL is
the down-look angle.

Substituting Equations (35)–(37) into Equation (31), we have:

R ≈ R0 + µ1/2 e sin f0 cosθL
r0

1/2 (t− t0) + µ
e cos f0 cosθL

2r0
2 (t− t0)

2

−µ3/2 e sin f0cosθL
6r0

7/2 (t− t0)
3

= R0 + C1 (t− t0) + C2 (t− t0)
2 + C3 (t− t0)

3

(38)

where Ci can be expressed as:
C1 = µ1/2 e sin f0 cosθL

r0
1/2

C2 = µ
e cos f0 cosθL

2r0
2

C3 = −µ3/2 e sin f0 cosθL
6r0

7/2 .

(39)

In order to validate the slant range model, we will check the phase errors induced by the Taylor
expansion to approximate the ideal slant range as the above discussion. The simulation parameters
of the imaging validation are listed in Table 8. It should be noted that for the highly inclined GEO
SAR (with inclination of 53◦), the integration time of around 100 s can achieve a moderate resolution
of 20 m.
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Table 8. Simulation parameters of the imaging validation experiment.

Parameters Values Unit Parameters Values Unit

Semi-major axis 42,164.2 km Down-look angle 4.65 ◦

Eccentricity 0.07 - Antenna diameter 24 m
Inclination 53 ◦ Wavelength 0.24 m

RAAN 105 ◦ PRF 200 Hz
Argument of perigee 270 ◦ Integration time 100 s

Mean anomaly 0 ◦ Pulse width 20 us
∆a 5300 m Signal bandwidth 18 MHz
∆e 0.00017 - Sampling rate 20 MHz

Assuming the GEO SAR transmitting and receiving slant ranges are identical to R, the phase
errors when using the Taylor expansion are shown in Figure 4. Inferred from Figure 4, the phase errors
are at the orders of 10−4π at perigee and apogee. The maximum phase error at the equator is 0.32π.
Thus, the phase errors are all below the theoretical threshold of π/4. The approximation can satisfy
the analysis of the influences of the orbital elements variations on the derivatives of the slant range.
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3.2. Influences of Orbital Elements on Slant Range

As the aforementioned analysis, only the semi-major axis and the eccentricity should be considered
in analyzing influences on the GEO SAR slant ranges. Therefore, in this section, only the errors of the
slant range derivatives C1, C2 and C3 are derived when the variations of the semi-major axis and the
eccentricity exist.

3.2.1. Influences of the Semi-Major Axis

When the semi-major axis has a small variation of ∆a, all orders of the slant range coefficient can
be approximated by the first derivative:

∆Cia ≈
dCi
da

∆a (40)

where Ci can be referred to Equation (38) and r0 = a
(
1− e2) / (1 + e cos f0). It can be transformed

into (see Appendix A for the detailed deviations):

∆C1a ≈
dC1

da
∆a = −1

2
· C1

a
· ∆a (41)

∆C2a ≈
dC2

da
∆a = −C2

a
· ∆a (42)

∆C3a ≈
dC3

da
∆a =

7
12
· C3

a
· ∆a (43)
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According to Figure 3a, ∆a has a long periodical variation with a maximum range of 25 km.
Therefore, all orders of the slant range coefficient can be produced as the maximum value of ∆a = 25 km,
and the synthetic aperture time is 100 s. The corresponding results are shown in Figure 5. The phase
errors are almost the same for all of the down-look angles. Therefore, the results in Figure 5 take the
case of the down-look angle of 4.65◦. From Figure 5, the third-order phase errors are below 4× 10−4π

and can be ignored. At the perigee and apogee, ∆a mainly leads to the second-order phase errors.
At the equator, ∆a mainly leads to the first-order phase errors. At other orbit positions, ∆a can produce
both the first-order and the second-order phase errors.
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The variations of all orders of the slant range coefficient caused by e  are at the levels of 
310 e , 110 e   and 610 e  . According to Figure 3b, e  has a secular variation, and the annual 
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3.2.2. Influences of Eccentricity

When the eccentricity has a small variation of ∆e, all orders of the slant range coefficient can be
approximated by (see Appendix A for the detailed deviations):
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The variations of all orders of the slant range coefficient caused by ∆e are at the levels of 103∆e,
10−1∆e and 10−6∆e. According to Figure 3b, ∆e has a secular variation, and the annual deviation is
around 0.005. Therefore, in the cases of ∆e = 0.005 and the synthetic aperture time of 100 s, all orders’
phase errors caused by ∆e are calculated and presented in Figure 6. The phase errors are also almost
the same for all of the down-look angles.

Therefore, the results in Figure 6 take the case of the down-look angle of 4.65◦. From Figure 6, the
third-order phase errors are below 0.03π and can be ignored. At the perigee and apogee, ∆e mainly
leads to the second-order phase errors. At the equator, ∆e mainly leads to the first-order phase errors.
At other orbit positions, ∆e can produce both the first-order and the second-order phase errors.

Conclusively, the semi-major axis and the eccentricity variations caused by perturbations can
result in the errors of the first-order and second-order of the slant range and, thus, the corresponding
first-order and second-order phase errors, leading to the focusing degradation. The third-order phase
errors or above will not affect the focusing quality.
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3.3. Influences of Orbital Elements Variations on Focusing

According to the focusing theory, all orders of phase errors except the constant phase could
affect the focusing. The first-order will only lead to image drifts, while the second-order will change
the frequency modulation rate fdr and leads to the focusing degradation, including the broadening
and declination of the main lobe, along with the sidelobes arising. The third-order will result in the
asymmetrical sidelobes and the broadening main lobe.

The point targets at perigee and equator are selected for validating the influences of orbital
elements variations on focusing. The focusing algorithms employing the series reversion [24] will be
used. In the simulation, the initial ideal two body motion and the slant ranges are firstly obtained
using STK. Then the perturbed slant ranges after an increment of ∆a for the semi-major axis and ∆e for
the eccentricity are also produced using STK. The ideal two body slant ranges will be used as reference
to match the perturbed slant ranges and focus. The simulation parameters of the imaging validation
are referred to Table 8. According to the simulation in Table 7, the variations of the semi-major axis and
the eccentricity caused by perturbations will be 5288 m and 1.7 × 10−4. So in the imaging validation,
∆a and ∆e are set as 5300 m and 1.7 × 10−4, respectively.

As shown in Figure 7a–c, it can be well focused in the range and azimuth at perigee if no variations
are added in the orbital elements, and the peak sidelobe ratios (PSLR) can achieve the ideal level of
−13.2 dB. As shown in Figure 7d–f, when an increment of 5300 m is added to the semi-major axis (i.e.,
it rises from 42,164.2–42,169.5 km), it cannot be well focused in the azimuth at perigee. The sidelobes
rises seriously, and the azimuth PSLR is deteriorated to −11.0 dB. The focusing in range is not affected.
Meantime, the target remains at the scene center, and no asymmetrical sidelobes exist. This suggests
that ∆a only results in the second-order of the slant range without the first-order and second-order
variations. As shown in Figure 7g–i, when an increment of 0.00017 is added to the eccentricity (i.e.,
it rises from 0.07–0.07017), it cannot be focused at all in the azimuth at perigee. The main lobe has been
overwhelmed by the sidelobes, but the target is still in the scene center, and no asymmetrical sidelobes
exist either. The range focusing is good. This suggests a similar variation as that for ∆a, and only the
second-order slant range is changed.

For the focusing at the equator, the results are shown in Figure 7j–l. It can be well focused in the
range and azimuth when no orbital elements’ variations exist. When the variations ∆a and ∆e are
considered, only the location of the point target is changed without any influence on focusing. Thus, it
can be concluded that only ∆a and ∆e change the first-order slant range of GEO SAR at the equator.
The focusing quality is not impacted, and thus, the perturbed imaging results are not shown here.

In conclusion, the GEO SAR slant range is mainly related to the semi-major axis and eccentricity.
The variations of these two items will result in the errors of the first-order and second-order slant
ranges, while the influences of the third-order and above could be ignored. At different orbit positions,
the influences have different behaviors. At the equator, the first-order phase errors should be mainly
considered; at the perigee and apogee, the second-order phase errors should be mainly considered; at
other positions, the first-order and second-order phase errors exist simultaneously.
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Figure 7. Perturbed imaging results of the simulated point targets in GEO SAR when considering the 
variations of the semi-major axis and eccentricity. 
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4. STK Simulation and Verification

The perturbed GEO SAR slant range history and the accurate signal model cannot be obtained
analytically from the GEO SAR geometry and the perturbation dynamic equations directly. For the
second best, the perturbed signals can be generated by using the deduced variations of the slant ranges.
This is useful in summarizing the changing laws based on the error propagation theory, but not very
convincing in analyzing the influences of perturbations on GEO SAR accurately. Instead, the numerical
approach is a good alternative in simulating the influence directly. In this section, the HPOP in STK
is used to simulate the perturbed GEO SAR slant range histories and then to generate the echoes.
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The series reversion algorithm is adopted for focusing. The simulation parameters are the same as
in Table 8.

The simulation results are presented in Figure 8. Figure 8a gives the drifts of the minimum slant
range (equivalent to the range at the aperture center). The derivations from the initial position increase
continually within 30 days and accumulate up to 65 km at perigee (in comparison with 34 km at the
equator). Ignoring the constant component in the slant range, the perturbed slant range histories
within the 100-s aperture time are presented in Figure 8b. The variations are changing for 1–5 days
from the initial position. The phase errors caused by perturbations within the integration time of
100 s can achieve up to 0.14π, as shown in Figure 8c. If the aperture increases, the phase errors also
deteriorate and even have to be considered when achieved up to a certain extent.Sensors 2016, 16, 1420 18 of 26 
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Figure 8. Variations of the slant range history and the Doppler coefficient (Doppler centroid: fdc,
frequency modulation rate: fdr and third-order Doppler rate: fdrr) of the perturbed GEO SAR within
one aperture at perigee.

Figure 8d–f shows the variations of the first-order to the third-order Doppler coefficient, which will
influence focusing. The first-order Doppler rate coefficient is the Doppler centroid fdc; the second-order
is the Doppler modulation rate fdr; and the third-order is the second derivatives of the Doppler history
fdrr. At perigee, the maximum increment of fdrr after 30 days is up to 2 × 10–7 Hz/s2 within the
integration time of 100 s. Correspondingly, the accumulated phase error within 100 s is only 8 × 10–3π,
which is far less than the threshold of π/4 in SAR theory. Thus, the influence of fdrr can be ignored.
In comparison, the variations of fdc are non-zero and will induce image drifts; the variations of fdr
would result in accumulated quadratic errors of above π/4, which will cause defocusing. Conclusively,
the variations of fdc and fdr should be considered.

Figure 9 shows the perturbed imaging results of point targets at perigee after the 1, 2 and 6 days’
perturbations. The perturbation can produce the phase errors within one aperture and is certain to
degrade the focusing. The azimuth PSLR of the imaging result after one day (see Figure 9a–c) will drop
to −12.8 dB, while the range focusing is good. As for the imaging results after two days in Figure 9d–f,
the sidelobes rise apparently; the azimuth PSLR drops to −10.7 dB; and the point target deviates from
the scene center. This means that there exist obvious first-order and second-order phase errors. As for
the imaging results after six days in Figure 9g–i, there is serious defocusing in the azimuth, and the
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drift is also serious. In comparison, the focusing in range is not impacted. The evaluations of the
imaging results of the perturbed GEO SAR point targets at perigee are listed in Table 9.
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Figure 9. Imaging results of the perturbed GEO SAR point targets at perigee after the 1, 2 and 6 days’ 
perturbations. 

Table 9. Evaluations of the perturbed GEO SAR point targets at perigee. 

 
PSLR (dB) ISLR (dB) Drift (m) 

RangeAzimuthRange AzimuthAzimuth 
Ideal two body motion −13.20 −13.22 −9.94 −10.36 0 

1 day’s perturbation −13.18 −10.94 −9.93 −8.02 2 
2 days’ perturbation −13.18 −10.7 −9.92 −6.91 1413 
6 days’ perturbation −13.20 −13.19 −10.11 −10.87 5727 
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Figure 9. Imaging results of the perturbed GEO SAR point targets at perigee after the 1, 2 and 6
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Table 9. Evaluations of the perturbed GEO SAR point targets at perigee.

PSLR (dB) ISLR (dB) Drift (m)

Range Azimuth Range Azimuth Azimuth

Ideal two body
motion −13.20 −13.22 −9.94 −10.36 0

1 day’s perturbation −13.18 −10.94 −9.93 −8.02 2
2 days’ perturbation −13.18 −10.7 −9.92 −6.91 1413
6 days’ perturbation −13.20 −13.19 −10.11 −10.87 5727

5. Conclusions

Perturbation is a main error source influencing GEO SAR focusing. It will cause the variations of
GEO SAR orbit elements, among which the changes of semi-major axis and eccentricity can result in
the varying slant range histories. The studies about perturbation influences on the orbital elements
and the slant range histories are carried out analytically based on the perturbed motion equations
and the Taylor expansion approximation. The changing laws of the perturbed orbital elements and
the slant range variations are deduced, along with the corresponding influences. The variations of
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the perturbed GEO SAR slant range will induce the first-order and the second-order errors within
the integration time. Thus, the accumulated linear and quadratic phase errors will deteriorate the
focusing quality.

The focusing performance is analyzed based on the numerical approach using STK, which is
adopted to construct the SAR signals with and without the effects of perturbations. Then, the imaging
results are evaluated and compared. The simulations have good consistency with the aforementioned
theoretical analyses that the first-order and second-order phase errors should be considered, while
the cubic and the higher-order phase errors will not impact the imaging and, thus, can be ignored.
For the GEO SAR (with the elliptical orbit, the inclination of 53◦ and the argument of perigee of 90◦),
the influences are dependent on the geometry configurations (as the Doppler parameters and the
integration time are different). Therefore, at different orbit positions, the influences have different
behaviors. At the equator, the first-order phase errors should be mainly considered; at perigee
and apogee, the second-order phase errors should be mainly considered; at other positions, the
first-order and second-order exist simultaneously. Though these conclusions are derived from the
specific reference GEO SAR orbit chosen, the numerical approach can be generalized to the GEO
SAR applications. In operation, the perturbations’ influences will accumulate during the mission life,
and thus, the performance will deteriorate. When the perturbation errors become intolerable, it is
recommended to compensate them through accurate measurements.

Actually, orbit maintenance is also a possible compensation alternative. It is a direct way to impose
a certain force, which counteracts the perturbation forces. Correspondingly, the perturbed motion
equations can be modified by adding such a force. However, in space missions, one limiting factor
is fuel consumption for orbit maintenance. If the fuel runs out, the space missions will be degraded
or even fail. Thus, though continuous orbit maintenance would be necessary for compensating the
influences of orbit oscillations on focusing, the demands for fuel will be huge and beyond tolerance.
Resultantly, continuous maintenance is not the option. Furthermore, GEO SAR has a huge platform
and a large antenna, which are employed for compensating the huge slant range loss. Therefore, if
continuous orbit maintenance is employed, it is difficult to stabilize the platform within the focusing
time. The focusing performance can be degraded seriously in this case.

In summary, orbit maintenance is only preferred when the accumulated orbit drifts caused by the
long-term periodical and secular perturbations are achieved up to a certain level when the observation
plan is impacted. If so, the operation life time can be prolonged. For improving GEO SAR focusing
influenced by perturbations, it is recommended to employ accurate orbit measurements or some signal
processing methods, such as the phase gradient autofocus (PGA) algorithm.
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Appendix A

The differential equations of the orbital elements variations under the influences of the J2

perturbation can be obtained by substituting Equations (12)–(14) into Equations (1)–(5). Considering the
relationship between the latus rectum p and the radium r, which is:

r =
p

1 + e cos f
, (A1)
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Equations (15)–(19) can be derived by the following algebra:

da
d f = − p2

µ
2p

(1−e2)
2

3µRe
2 J2

2r4

 e sin f
(1+e cos f )2

(
1− 3sin2i sin 2 ( f + ω)

)
+ 1

1+e cos f sin2i sin 2 ( f + ω)


= − 3Re

2 J2

p(1−e2)
2

p4

r4
1

(1+e cos f )2

[
e sin f

(
1− 3sin2i sin 2u

)
+ (1 + e cos f ) sin2i sin 2u

]

= − 3Re
2 J2

p(1−e2)
2 (1 + e cos f )2

[
e sin f − 3e sin f sin2i sin 2u
+sin2i sin 2u + e cos f sin2i sin 2u

]
= − 3Re

2 J2

p(1−e2)
2 (1 + e cos f )2

[
e sin f + sin2i sin 2u (1 + e cos f − 3e sin f )

]
(A2)

de
d f = − p2

µ

 sin f
(1+e cos f )2

3µRe
2 J2

2r4

(
1− 3sin2i sin 2 ( f + ω)

)
+ e+2cos f+e cos2 f

(1+e cos f )3
3µRe

2 J2
2r4 sin2i sin 2 ( f + ω)


= − p2

µ
3µRe

2 J2
2r4

 sin f
(1+e cos f )2

(
1− 3sin2i sin 2 ( f + ω)

)
+ e+2cos f+e cos2 f

(1+e cos f )3 sin2i sin 2 ( f + ω)


= − 3Re

2 J2
2p2

p4

r4
1

(1+e cos f )3

[
sin f (1 + e cos f )

(
1− 3sin2i sin 2 ( f + ω)

)
+
(
e + 2cos f + e cos2 f

)
sin2i sin 2 ( f + ω)

]

= − 3Re
2 J2

2p2 (1 + e cos f )

[
sin f

(
1− 3sin2i sin 2u + e cos f − 3e cos f sin2i sin 2u

)
+
(
e + 2cos f + e cos2 f

)
sin2i sin 2u

]

= − 3Re
2 J2

2p2 (1 + e cos f )

[
sin f + e sin f cos f+(
e + 2cos f + e cos2 f − 3sin f − 3e sin f cos f

)
sin2i sin 2u

]

= − 3Re
2 J2

2p2 (1 + e cos f )

[
sin f (1 + e cos f ) +
sin2i sin 2u (e + cos f + cos f (1 + e cos f )− 3sin f (1 + e cos f ))

]
= − 3Re

2 J2
2p2 (1 + e cos f )2

[
sin f + sin2i sin 2u

(
cos f − 3sin f + e+cos f

1+e cos f

)]
(A3)

di
d f = − p2

µ
cos( f+ω)

(1+e cos f )3
3µRe

2 J2
2r4 sin2i sin ( f + ω)

= − 3Re
2 J2

2p2
p4

r4
cos( f+ω)

(1+e cos f )3 sin2i sin ( f + ω)

= − 3Re
2 J2

2p2 cos ( f + ω) (1 + e cos f ) sin2i sin ( f + ω)

= −3Re
2 J2sin2i

2p2 (1 + e cos f ) sin u cos u

(A4)

dΩ
d f = − p2

µ
1

sin i
sin( f+ω)

(1+e cos f )3
3µRe

2 J2
2r4 sin2i sin ( f + ω)

= − 3Re
2 J2

2p2
p4

r4
1

(1+e cos f )3 sin ( f + ω) 1
sin i sin2i sin ( f + ω)

= − 3Re
2 J2

2p2 (1 + e cos f ) sin u 2sin i cos i
sin i sin u

= −3Re
2 J2cos i
p2 (1 + e cos f ) sin2 u

(A5)
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dω
d f = p2

µ


cos f

e(1+e cos f )2
3µRe

2 J2
2r4

(
1− 3sin2i sin2 ( f + ω)

)
− (2+e cos f )sin f

e(1+e cos f )3
3µRe

2 J2
2r4 sin2i sin2 ( f + ω)

+ 1
tan i

sin( f+ω)

(1+e cos f )3
3µRe

2 J2
2r4 sin2i sin ( f + ω)


= p2

µ
3µRe

2 J2
2r4

1
(1+e cos f )3


cos f (1+e cos f )

e

(
1− 3sin2i sin2 ( f + ω)

)
− (2+e cos f )sin f

e sin2i sin2 ( f + ω)

+ 1
tan i sin ( f + ω) sin2i sin ( f + ω)


= 3Re

2 J2
2p2

p4

r4
1

(1+e cos f )3


cos f (1+e cos f )

e

(
1− 3sin2i sin2 ( f + ω)

)
− (2+e cos f )sin f

e sin2i sin2 ( f + ω)

+ 1
tan i sin ( f + ω) sin2i sin ( f + ω)


= 3Re

2 J2
2p2 (1 + e cos f )


cos f (1+e cos f )

e − 3sin2i sin 2u cos f (1+e cos f )
e

− (2+e cos f )sin f
e sin2i sin 2u

+ cos i
sin i 2sin i cos isin2u


= −3Re

2 J2
2p2 (1 + e cos f ) ·

[
(1+e cos f )(sin f+cos f )+sin f

e sin2i sin 2u
− cos f (1+e cos f )

e − 2sin2 ucos2 i

]

(A6)

where u = f + ω.
Details of the derivations of Equations (32)–(34) are as follows. The slant range can be expressed as:

R2 = r2 + Re
2 − 2Rer cos α0

= Re
2 + r (r− 2Re cos α0)

(A7)

Taking the partial differential operations for Equation (A7), we can obtain:

2R
.
R =

.
r (r− 2Re cos α0) + r

.
r

= 2
.
r (r− Re cos α0) .

(A8)

The derivatives of r can be calculated as:

.
r =

a(1−e2)e sin f

(1+e cos f )2
.
α

= r2 .
α

e sin f
p

=
√

µ
p e sin f ,

(A9)

..
r =

.
α
√

µ
p e cos f

=
√

µp
r2

√
µ
p e cos f

= µ

r2 e cos f .

(A10)

In the deviations,
.
α is the satellite angular velocity. We will also use the relationships p = a

(
1− e2)

and r2 .
α =
√

µp [25]; Equation (A8) can be transformed as:

dR
dt

=
.
R =

√
µ

p
· e sin f

R
(r− Re cos α0) . (A11)

Similarly, we will take the second derivatives at both sides of Equation (A7), and we get:

.
R

2
+ R

..
R =

..
r (r− Re cos α0) +

.
r2 (A12)
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Therefore, the second derivative of R can be expressed as:

..
R =

(
µ

r2 e cos f
)
(r−Re cos α0)+

(√
µ
p e sin f

)2

R −
.
R

2

R

=
µr
r2 e cos f− µRe

r2 e cos f cosα0+
µ
p e2sin2 f

R −
.
R

2

R

=
µ
p e cos f (1+e cos f )+ µ

p e2 sin2 f− µRe
r2 e cos f cos α0

R −
.
R

2

R

=
µ
p (e cos f+e2)− µRe

r2 e cos f cos α0

R −
.
R

2

R

(A13)

Then, we obtain:

d2R
dt2 =

..
R =

µ

pR

(
e2 + e cos f

)
− µ

r2R
Re cos α0e cos f −

.
R

2

R
(A14)

Similarly, we can obtain the third derivative of R as Equation (34). Here, we will first use the third
derivative of r, which is:

...
r = − 2µ

.
r

r3 e cos f − µ

r2 e
.
αsin f

= − µe
r3

(
2

.
rcos f + r

.
αsin f

)
= − µe

r3

(
2
√

µ
p e sin f cos f +

√
µp
r sin f

)
= − µesin f

r3

√
µ
p (3e cos f + 1)

(A15)

When considering the small variation of ∆a, Equations (41)–(43) can be derived as:

∆C1a ≈ dC1
da ∆a

= µ1/2e sin f0cosθL
dr0
−1/2

da ∆a
= − 1

2 ·
(

µ1/2e sin f0cosθL · r0
−1/2

)
· dr0

r0da ∆a

= − 1
2 · C1 ·

(1−e2)/(1+e cos f0)
r0

· ∆a
= − 1

2 ·
C1
a · ∆a

(A16)

∆C2a ≈ dC2
da ∆a

= 1
2 µe cos f0cosθL · (−2) · r0

−2 · r0
−1 dr0

da ∆a
= −C2 · dr0

r0da ∆a
= −C2

a · ∆a

(A17)

∆C3a ≈ dC3
da ∆a

= 7
12 µ3/2e sin f0cosθL · r0

−7/2 · ·r0
−1 dr0

da ∆a
= 7

12 ·
C3
a · ∆a

(A18)

Similarly, when considering the small variation of ∆e, Equations (44)–(46) can be derived as:

∆C1e ≈ dC1
de ∆e

= µ1/2sin f0 cosθL
d(er0

−1/2)
de ∆e

= µ1/2sin f0 cosθL
(r0
−1/2de+edr0

−1/2)
de ∆e

= µ1/2sin f0 cosθL

(
r0
−1/2de− 1

2r0
3/2 edr0

)
de ∆e

= C1

(
1
e −

1
2r0
· dr0

de

)
∆e

(A19)
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∆C2e ≈ dC2
de ∆e

= µ
cos f0 cosθL

2
d(er0

−2)
de ∆e

= µ
cos f0 cosθL

2
(r0
−2de−2er0

−3dr0)
de ∆e

= C2

(
1
e −

2
r0
· dr0

de

)
∆e

(A20)

∆C3e ≈ dC3
de ∆e

= −µ3/2 sin f0 cosθL
6

d(er0
−7/2)

de ∆e

= −µ3/2 sin f0 cosθL
6

(
r0
−7/2de− 7

2r0
9/2 dr0

)
de ∆e

= C3

(
1
e −

7
2r0
· dr0

de

)
∆e

(A21)
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