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Abstract: Localization is an essential requirement in the increasing prevalence of wireless sensor
network (WSN) applications. Reducing the computational complexity, communication overhead in
WSN localization is of paramount importance in order to prolong the lifetime of the energy-limited
sensor nodes and improve localization performance. This paper proposes an effective Cuckoo
Search (CS) algorithm for node localization. Based on the modification of step size, this approach
enables the population to approach global optimal solution rapidly, and the fitness of each solution
is employed to build mutation probability for avoiding local convergence. Further, the approach
restricts the population in the certain range so that it can prevent the energy consumption caused
by insignificant search. Extensive experiments were conducted to study the effects of parameters
like anchor density, node density and communication range on the proposed algorithm with respect
to average localization error and localization success ratio. In addition, a comparative study was
conducted to realize the same localization task using the same network deployment. Experimental
results prove that the proposed CS algorithm can not only increase convergence rate but also reduce
average localization error compared with standard CS algorithm and Particle Swarm Optimization
(PSO) algorithm.

Keywords: wireless sensor network; localization; cuckoo search algorithm; average localization error;
convergence rate

1. Introduction

A wireless sensor network (WSN) is a self-organization network composed of a large number
of small-size, low-cost sensor nodes which can monitor physical or environmental condition [1].
Recent advances of micro-electro-mechanical systems (MEMS) technology and wireless communication
have propelled WSN applied to a variety of fields such as health monitoring [2], transportation
management [3], business and home automation [4], global-scale wildlife [5], forest fire and
environmental monitoring [6,7]. In almost all the above applications, on no account can we ignore the
value of location information of sensor nodes, because it is extremely hard to distinguish or utilize
the monitored information without location information. Besides that, geographic routing can save
significant energy by eliminating the need for route discovery [8]. Therefore, it is highly significant to
locate sensor nodes accurately.

Traditionally, each sensor node can be localized by using the BeiDou Navigation Satellite System
(BDS) or Global Positioning System (GPS). However, practical considerations such as cost, power
consumption and the volume of BDS/GPS receivers make it impossible for the use of BDS/GPS on
each sensor node, especially for wide-range WSN. For example, sensor nodes are typically powered by
small batteries, which generally cannot be easily changed or recharged. In addition, WSN is commonly
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deployed in the urban canyon or indoors where the transmission of the satellite signals is adversely
blocked [9].

In recent years, more and more researchers tried to overcome the drawbacks by proposing various
localization methods. Generally WSN node localization process can be illustrated using Figure 1.
In a two-dimensional (2-D) field, it is assumed that the unknown node’s coordinate is (x, y) which
needs to be positioned, anchor node’s coordinates are (x1, y1), (x2, y2), (x3, y3). The unknown node
will be localizable if there are three (or more) anchors, which have prior knowledge of their coordinates
within its communication range.
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As presented in Figure 1, the localization process consists of two stages: measurements based
on inter-sensor distance, angle measurements or connectivity, such as Time of Arrival (TOA),
Time Difference of Arrival (TDOA), Angle of Arrival (AOA), Received Signal Strength Indication
(RSSI), etc. [10]; then calculating position of unknown nodes whose coordinates are unknown either by
traditional mathematical optimization methods solving a set of simultaneous equations, or by using
stochastic optimization algorithms that minimize localization error. Whatever measuring technology
is adopted, in actual scenario measuring data is always disturbed by some noise, which will make
localization results dissatisfactory [11]. Hence a lot of literatures focus on overcoming the problem.

A detailed survey of node localization in WSN has been reported in the literature [12,13].
Niculescu et al. [14] proposed the efficient Ad Hoc Positioning System (APS) that extends the
capabilities of GPS to non-GPS enabled nodes in a hop by hop fashion in an ad hoc network where
only a limited fraction of nodes have self-location capability. Anchors flood their location information
to all the neighboring nodes and each unknown node estimates its own location by performing
distance measurement from three or more anchors. To prevent error accumulation, Rabaey et al. [15]
introduced a two-phase approach using connectivity between nodes for initial position estimates and
only the distances to one-hop neighbors are considered for position refinement. This approach reduces
insensitivity to range errors on some extent. Doherty et al. [16] reported an efficient second-order
cone method to solve the localization problem by relaxing the proximity constraints between nodes.
This method requires anchors deployed around the perimeter of the network, otherwise the position
estimation of unknown nodes will tend to interior, yielding highly inaccurate results. Based on [16],
other researchers [17] studied a semi-definite programming (SDP) relaxation method to solve sensor
network localization problem using incomplete and inaccurate distance information. This method
performs well even in highly noisy environments. In 2014, Simonetto et al. [18] presented a class of
convex relaxations based on a maximum likelihood (ML) formulation, which derived a computational
efficient edge-based version of this ML convex relaxation class and designed a distributed algorithm
that enable sensor nodes to solve these edge-based convex programs locally by communicating only
with their close neighbors. Employing this version of convex relaxations to message the original
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non-convex formulation can offer a powerful handle on computing accurate solutions. Shang et al. [19]
introduced a localization algorithm MDS-MAP (P), which worked in a distributed mode by using
relative maps. This algorithm keeps better performance than basic MDS-MAP algorithm under
the uniform layouts or irregularly-shaped networks, particularly when the number of anchors is
small. However, it needs a high consumption of battery power for each sensor to construct relative
maps. Although these traditional mathematical optimization techniques work well, they require
enormous computational efforts and communication overhead, which grow exponentially as the
problem size increases.

In recent years meta-heuristic algorithms gradually play an important role in engineering
optimization [20,21]. This is attributed to the fact that they require moderate memory and
computational efforts and more importantly can provide better results in comparison with traditional
mathematical optimization methods. WSN node localization is often formulated as a multi-dimensional
optimization problem. A survey of bio-inspired node localization can be found in [22,23]. To meet the
localization requirement of large scale WSN, Yun et al. [24] reported two intelligent range-free WSN
localization schemes, which utilize received signal strength (RSS) from the anchor nodes. First, the edge
weight of each anchor node is considered to be separately and combined to compute the location of
sensor nodes. The edge weights are modeled by the fuzzy logic system (FLS) and optimized by the
genetic algorithm (GA). Second, localization is considered as a single problem and the entire sensor
location mapping from the anchor node signals is approximated by a neural network (NN). To address
the flip ambiguity problem, Kannan et al. [25] introduced a two phase simulated annealing (SA) based
localization algorithm, which first obtains an accurate estimate of location, then if some nodes have
flip ambiguity problem, optimization is performed based on neighborhood information of nodes and
moved to the correct position. As a promising population-based optimization algorithm, Particle
Swarm Optimization (PSO) algorithm was first developed by James and Russell [26] in 1995 and has
been successfully applied in various fields. For example, Chih [27] presented extensive literature
review on PSO and introduced a novel self-adaptive check and repair operator (SACRO) based on
BPSO-TVAC and CBPSO-TVAC [28] to solve the multidimensional knapsack problem. Experimental
results show that the proposed algorithm is more competitive and robust than the traditional CRO.
To improve location accuracy, Gopakumar et al. [29] devised a WSN localization scheme using Particle
Swarm Optimization (PSO) algorithm. However, it is likely to get trapped in local optimal that leads
to pre-matured convergence. Biogeography based optimization (BBO) and its variants [30], hybrid
algorithms such as bacterial foraging approach (BFA) and GA [31], PSO and BFA [32], PSO and DE [33],
GA and SA [34], have been also developed in order to improve localization accuracy or convergence
speed. However, the implementation of these techniques involves additional computational overheads.

In 2009, Cuckoo Search (CS) as a highly potential meta-heuristic algorithm was proposed
by Xin-She Yang of Cambridge University and Suash Deb of C.V. Raman College of Engineering.
Recent work [35,36] has found that the CS algorithm is dominant in minimizing localization error
due to the characteristics of few parameters, being easy to realize, far more efficient global search
ability than existing algorithms such as GA and PSO [37]. However, the CS algorithm exhibits slow
convergence rate, which makes it require more resource to achieve the certain accuracy.

Motivated by the above observations, in this paper, we propose a new modified CS algorithm to
obtain positioning results with high precision and rapid convergence. The proposed CS algorithm
adopts the modified step size to enable the population to approach global optimal solution rapidly.
In addition, to enhance population diversity and thereby avoid local convergence, the fitness of each
solution is employed to build mutation probability that determines the chance of it being found
and replaced by new random solution. Finally, the modified CS algorithm restricts the population
in the certain range so that it can prevent the energy consumption caused by insignificant search.
The modified CS algorithm is studied on the effects of parameters like anchor density, node density
and communication range with respect to average localization error and localization success ratio.



Sensors 2016, 16, 1390 4 of 17

Experimental results prove that the modified CS algorithm can not only increase convergence rate but
also reduce average localization error compared with standard CS algorithm and PSO algorithm.

The rest of the paper is organized as follows: Section 2 provides a description of standard CS
algorithm; Section 3 gives an introduction about the modified CS algorithm; WSN node localization
process based on the modified CS approach is explained in Section 4; simulation results and localization
performance analysis are given in Section 5; Section 6 gives the conclusion of the paper.

2. Standard Cuckoo Search Algorithm

Cuckoo Search (called CS), as one of the latest nature-inspired search algorithm, was proposed in
2009 by Xin-She Yang of Cambridge University and Suash Deb of C.V. Raman College of Engineering.
CS is based on the brood parasitism of some cuckoo species. To apply CS as an optimization tool,
Yang and Deb described the CS by three ideal rules [38]:

(1) Each cuckoo lays one egg at a time, and dumps its egg in a randomly chosen nest;
(2) The best nests with high-quality eggs will be carried over to the next generations;
(3) The number of available host nests is fixed, and the egg laid by a cuckoo is discovered by the

host bird with a probability Pa ∈ [0, 1]. In this case, the host bird can either get rid of the egg,
or simply abandon the nest and build a completely new nest.

As a further approximation, this last assumption can be approximated by a fraction Pa of the n
host nests are replaced by new nests (new random solutions).

For the implementation point of view, we can generate new solutions (cuckoos) by two methods:
Le′vy flight and a fraction Pa of the n host nests are replaced by new random solutions.

Firstly, the Le′vy flight process, which has previously been used in search algorithms, is a random
walk that is characterized by a series of instantaneous jumps chosen from a probability density function
which has a power law tail. When generating new solutions x(t+1) for, say, a cuckoo i, a Le′vy flight is
performed by using Equation (1):

xi
(t+1) = xi

(t) + α⊕ Le′vy(λ) (1)

where α > 0 is the step size which should be related to the scales of the problem of interests.
In most cases, α = (L/10) where L is the characteristic scale of the problem of interest. The above
Equation (1) is essentially the stochastic equation for a random walk. In general, a random walk is
a Markov chain whose next status/location only depends on the current location (the first term in
the above Equation (1)) and the transition probability (the second term in the above Equation (1)).
The product ⊕means entry-wise multiplications. This entry-wise product is similar to those used in
PSO, but here the random walk via Le′vy flight is more efficient in exploring the search space, as its
step length is much longer in the long run.

The step length of random walk formed by Le′vy flight obeys the Le′vy distribution which has an
infinite variance with an infinite mean as follows:

Le′vy ∼ u = t−λ, (1 < λ ≤ 3) (2)

where λ is a constant, and the step length can be calculated mathematically using the
following equation:

Le′vy(λ) =
u

|v|1/λ
(3)

where u and v are drawn from normal distributions as followings:

u ∼ N(0, σu
2), v ∼ N(0, σv

2) (4)

where:
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σu =

{
Γ(1+λ)sin(πλ/2)

Γ[(1 + λ)/2]λ2(λ− 1)/2

}1/λ

, σv = 1 (5)

Briefly speaking, the step length essentially forms a random walk process with a power-law
step-length distribution with a heavy tail. Some of the new solutions should be generated by Le′vy
walk around the best solution obtained so far, thus this will speed up the local search.

In addition, a fraction Pa of the solutions will be replaced by new random solutions whose
locations should be far enough from the current best solution. This will make sure that the system will
not be trapped in a local optimum.

3. Modified Cuckoo Search (CS) Algorithm

In standard CS algorithm, the efficiency of searching global best solution is mainly guided by
step size control factor α and mutation probability Pa. Because the parameters are kept constant, i.e.,
α = 0.01, Pa = 0.25, this can result in decreasing location precision which will affect the practical
value of WSN applications and reducing convergence rate which will shorten the life time of sensor
nodes with limited energy resource because of a large number of iterations and long computational
time. Although some improvement schemes based on standard CS algorithm have been proposed to
meet specific requirements, but they are not greatly significant for WSN localization [39,40]. Therefore,
to solve the current situation, this paper tries to take strategies from the below aspects discussed to
propose an effective CS algorithm for WSN node localization.

One aspect is the modification about step size α. As is shown in Le′vy flight Equation (1) in
Section 2, if the value of α is set to be too small, the population in the search procedure will focus
on a small field around the current local best solution found in the past search. In other words, it is
insignificant for generating diverse solutions to explore the search space on the global scale. In the
end, global best solution cannot be found unless there is a large number of iterations which may result
in relatively high computational consumption for energy-limited WSN. If the value of α is set to be too
large, the according step length will make the new solutions generated too far away from the current
local best solution. Finally, it is not guaranteed to converge to global optimal solution. Consequently,
selecting a proper step size is very important to find the global best solution as efficiently as possible.

Based on the above analysis, we propose that step size α is modified using the Equation (6).

α = αmax − (N_iter/N_itertotal)× (αmax − αmin) (6)

where αmax and αmin denote the maximum and minimum of step size, respectively; N_iter and
N_itertotal denote the current iteration number and total number of iterations, respectively.

As expressed in the Equation (6), step size α decreases with the increasing of iteration numbers.
At the beginning of iterations, step size takes the maximum which can promote global search, then local
search is intensified gradually by decreasing step size. The reason for this modification is that the
population tends to global optimal solution gradually with the increasing of iterations.

The other aspect, we employ the fitness of solutions to build the mutation probability Pa which
can enhance population diversity and avoid local convergence. If mutation probability Pa is set to be
too large, the convergence rate cannot be accelerated in time; if mutation probability Pa is set to be too
small, then the accuracy decreases and a large number of iterations are caused in order to obtain good
performance. Therefore, the setting of parameter Pa should be neither too large nor too small.

According to the standard CS algorithm, mutation probability Pa is associated with the fitness of
the solution, which can simply be proportional to the value of an objective function. A nest having
higher fitness value which is closer to current global optimum than the other nest that is far away,
has a higher probability to be chosen as the member of populations of next generation, in other words,
it can be more hard to be found and replaced by new random solution, that is, the value of mutation
probability Pa can be relatively smaller, and vice versa.
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The above analysis is taken as the basis for the following adjustment about mutation probability Pa:

Pa (j) =


Pamin + (Pamax − Pamin)× K, K < 1

Pamax

N_iter
, otherwise

j = 1, 2, 3, . . . n (7)

where K = f itness(j)− fmin, which depends on the current quality of jth solution; f itness(j) and fmin

represent the current fitness of jth solution and current global optimal fitness of the population,
respectively; Pamax and Pamin represent the maximum and minimum of mutation probability
Pa, respectively.

From the Equation (7), it can be seen that the fitness of the solution is adopted to adjust Pa. If K ≤ 1,
it means that the current quality for jth solution is close to current global optimum. It is suggested
that mutation probability Pa should be proportional to K which represents the current quality of
jth solution. The higher the quality is, the smaller mutation probability Pa is. In contrast, if K > 1,
it means that the current quality of jth solution is far away from current global optimum. We propose
that mutation probability Pa vary inversely with iteration times because the population will approach
the global optimum as the iteration number increases.

Besides that, the population is restricted in the certain range so that it can prevent the energy
consumption caused by meaningless search. That is to say, when the solutions are outside the range,
we use the range maximum or minimum to replace them. A modified CS algorithm is proposed herein
relying on the above several aspects to find the global optimum as efficiently as possible. The detailed
steps about realization of the modified CS algorithm are described in Algorithm 1.

Algorithm 1. Modified CS algorithm

1. Begin
2. Generate initial population of n nests (solutions) xi, i = 1, 2, . . . , n
3. Define objective function f(x); x = (x1, x2, . . . , xd);
4. Set the range of α and Pa: αmin, αmax, Pamin, Pamax

5. Set the range of the nest(solution): Xmin, Xmax

6. Set the maximum number of iterations: N_itertotal
7. For all xi do
8. Calculate the fitness Fi = f (xi)

9. End For
10. N_iter = 1
11. While (N_iter < N_itertotal) do
12. For all xi do
13. Compute the step size for Le′vy flight using Equation (6)
14. Generate a new cuckoo (xj) from the nest xi randomly by taking Lévy flight
15. If (xj > Xmax) then
16. xj ← Xmax

17. End If
18. If (xj < Xmin) then
19. xj ← Xmin

20. End If
21. Calculate the fitness Fj = f (xj)

22. Choose a random nest (xk) among n nest randomly
23. If (Fj > Fk) then
24. xj ← xk
25. Fj ← Fk
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Algorithm 1. Cont.

26. End If
27. End For
28. Keep the current global optimal fitness: fmin

29. Compute the probability Pa using Equation (7)
30. A fraction (Pa) of worse nests abandoned and new ones/solutions are built/generated
correspondingly
31. For all the nests (say, xi) to be built/generated do
32. If (xi > Xmax) then
33. xi ← Xmax

34. End If
35. If (xi < Xmin) then
36. xi ← Xmin

37. End If
38. Calculate the fitness Fi = f (xi) and evaluate its quality/fitness Fi
39. Keep best solutions (or nests with quality solutions)
40. End For
41. Rank all the solutions and find the current best
42. End While
43. End

4. WSN Node Localization Process Based on the Modified CS Algorithm

The objective of WSN localization is to estimate the coordinates of N unknown nodes based on
M anchor nodes. Assuming that all sensor nodes are deployed in a two-dimensional sensor field.
The WSN node localization process based on modified CS algorithm is shown in the Figure 2.

As presented in Figure 2, estimating the locations of unknown nodes mainly includes the
following steps:

Step 1: M anchor nodes and N unknown nodes are randomly deployed in a sensor field.
The communication range for each sensor node is set to R.

Step 2: Anchor nodes broadcast their locations frequently.
Step 3: If ith unknown node has three or more than three anchors within communication range,

it will be considered to be localizable. Owing to RSSI (received signal strength indicator) of
simple implementation and low cost in hardware under actual deployment scenario, in this
paper, we assume that distance measurement between neighboring nodes is realized based
on RSSI that can then be transferred into equivalent distances for positioning intersection.
However, RSSI-based ranging is usually affected by multi-path and obstacles blocking,
which can be modeled as log-normal shadowing. The result of the log-normal model is that
RSSI-based distance estimates have ranging error which follows a zero-mean Gaussian
distribution with variance σ2. In addition, the standard deviation of ranging error is
proportional to the actual distance dij between node (xi, yi) and

(
xj, yj

)
[8,10], as shown in

the Equation (8).

σ2 = γ2 × dij
2 (8)

where noise factor γ is set to 0.1 in the experiment, dij is the real distance between the
unknown node (xi, yi) and jth anchor

(
xj, yj

)
within communication range, such as the

Equation (9).

dij =
√
(xi − xj)

2 + (yi − yj)
2 (9)
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The measured distance dij
′ between unknown node (xi, yi) and jth anchor node

(
xj, yj

)
is

modeled using Equation (10).

dij
′ = dij + Nij (10)

where Nij represents ranging error between unknown node (xi, yi) and its neighboring
anchor node

(
xj, yj

)
. Meanwhile in this paper, we assume that the random ranging error Nij

different from each other, that is to say, if (i, j) 6= (k, p), Nij 6= Nkp.
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Step 4: Establishing the objective function f (xi, yi). The objective function representing mean of
square of ranging error between the unknown node and anchors, is defined as Equation (11):

f (xi, yi) =
1
m

m

∑
j=1

(dij − dij
′)

2 (11)

where m(m ≥ 3) is the number of anchor nodes within communication range, the unknown
node can estimate its coordinate by running the modified CS algorithm. That is, when the
objective function is minimized, corresponding (xi, yi) is the position of ith unknown node.

Step 5: The unknown nodes that get localized will act as anchors in the next iteration, thus the
number of anchors increase along with the iteration progress.
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Step 6: Step 2~Step 5 are conducted repeatedly until no unknown nodes can be localized or
termination conditions are reached.

Step 7: Computing the average localization error. The average localization error is defined as
the average Euclidean distance between the real and estimated locations of sensor nodes,
thus average localization error can be calculated via the following Equation (12).

Average localization error =

NL
∑

i=1

√
(Xi − xi)

2 + (Yi − yi)
2

NL
(12)

where NL is the number of localized node, (xi, yi) is the computed node location and
(Xi, Yi) is the actual node location. The smaller average localization error, the better the
localization performance.

5. Simulation Experiments and Performance Evaluation

In this section, all the simulation experiments are carried out by using MATLAB. The performance
of the modified CS algorithm is assessed from the effects of several factors, such as anchor density,
communication range, node density in terms of average localization error, localization success ratio
and a comparative study with standard CS algorithm and PSO algorithm is conducted to realize the
same localization task using the same network deployment. Average localization error is computed
using Equation (12) in Section 4.

Localization success ratio, which is defined as the number of unknown nodes which successfully
acquire their locations over the total number of sensor nodes whose locations is unknown, is calculated
using the following Equation (13). The higher localization success ratio is, the better the localization
performance is.

Localization success ratio =

(
Number o f unknown nodes localized

Total number o f unknown nodes

)
× 100% (13)

5.1. Simulation Setup

All the sensor nodes are randomly deployed in 100× 100 m2 two-dimensional sensor area using a
continuous uniform distribution pseudo-random generator. The total number of sensor nodes, namely
node density, is set to be 100, 200, 300 and 400. Anchor nodes account for 10%~60% of all sensor
nodes. Anchor nodes are deployed randomly. It is assumed that there is no localization error for
anchor nodes. Communication range for all sensor nodes is set to be 10 m~50 m. To eliminate the
effects of randomness of topology generation and bio-inspired algorithm, each data point is averaged
over 10 different test network and each result for a kind of network topology is averaged by running
30 times repeatedly. Extensive experiments have been conducted to design the parameters in the
proposed CS algorithm and Experimental results demonstrate that higher localization precision with
less iterations can be achieved when the parameters setting of the proposed CS algorithm are as follows,
αmin and αmax are set to 0.9 and 1.0 respectively, Pamin and Pamax are set to 0.05 and 0.25 respectively.
To prevent the search length over the sensor field, the boundary of sensor field is set to be the range
of each nest. Thus, in 100 × 100 m2 two-dimensional sensor area, Xmin and Xmax are set to 0 and
100 respectively. As standard CS algorithm, the value of nest number is 25. The iteration threshold for
each algorithm is 100 times.

5.2. Experimental Results and Performance Analysis

5.2.1. The Effect of Anchor Density

Anchor density is an important parameter affecting the localization performance and cost for
WSN. In this subsection, the effects of anchor density on localization performance are evaluated.
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Anchor ratio is set to be 10%, 20%, 30%, 40%, 50% and 60% of all sensor nodes. The communication
range of each sensor node is 25 m.

In Figure 3, using the proposed CS algorithm, the average localization error and confidence
interval of location error are evaluated by varying anchor ratio in the network for different node
density. The confidence interval represents a range estimate of average localization error. It can be
clearly observed that when the anchor ratio in the network increases from 10% to 40%, the localization
accuracy improves significantly. Because with the increasing number of anchor nodes, the number of
unknown nodes that can realize localization based on original anchor nodes (the nodes are localized
by BDS/GPS receivers or manual deployment) within their communication range increases. However,
when anchor ratio continues to expand, the effects on average localization error become insignificant.
It means that sometimes there is no need to increase the number of anchor nodes requiring the extra
specific hardware which may be expensive. In addition, as node density increases, average localization
error decreases correspondingly. This is because when node density increases, the number of anchor
nodes within communication range increases accordingly.
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The simulation results in Figure 3 show that the confidence interval is widen obviously when
anchor ratio is 10% and node density is 100. This may be attributed to the fact that there are very few
original anchors within communication range for many unknown nodes and error propagation occurs
between sensor nodes, which has a negative impact on the average localization error.

Figure 4 illustrates the variation of localization success ratio under different anchor ratio and
node density in the network. It demonstrates the fact that when anchor ratio increases, localization
success ratio also increases. In addition, it is noted that 100% localization success ratio is achieved
under the certain anchor ratio. In addition, expanding the node density improves localization success
ratio correspondingly. The simulation results above show that it is necessary to deploy proper number
of anchor nodes and node density for the efficient localization accuracy and localization success ratio.
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5.2.2. The Effect of Communication Range

Communication range is another important parameter determining localization performance
and energy consumption of sensor nodes. The impact of communication range on the proposed CS
algorithm in terms of average localization error under different node density is shown in Figure 5.
The number of anchor nodes is set as 20% of all sensor nodes. The variation of communication range is
from 10 m to 50 m. From Figure 5, we can observe that if the communication range is smaller than
20 m, the average localization error is slightly larger. This is because the network is not connected
for many nodes, such as the example of network topology in Figure 6. As communication range
increases, average localization error decreases greatly. This is due to the fact that there is more anchor
information available for computing the location of unknown nodes. Even so, when communication
range increases to a certain value, average localization error drops slightly. The localization accuracy
also depends on the node density that is introduced in the above. It can be observed that the average
localization error is decreased gradually with respect to the increasing of node density. This is due to
the fact that when node density increases, the network connectivity between sensor nodes becomes
high and the number of anchor nodes available within communication range increases, as the example
presented in Figure 6.

Figure 7 presents the variation of localization success ratio under the impact of communication
range for different node density. In Figure 7, it is remarkable that when the communication range
is smallest (that is 10 m) and node density is 100, localization success ratio is around 20.8%. This is
because there are few anchors for many unknown nodes within the communication range, and the
network connectivity between sensor nodes is poor as the example illustrated in Figure 6a. When the
communication range increases, localization success ratio is improved evidently, because as mentioned
above, there are more anchor information available in communication range. Therefore it is more
easily to locate the unknown nodes. When the communication range increases to a certain degree,
the localization success rate will reach the highest, 100%. In addition, when node density increases,
localization success ratio is also increased correspondingly. Figures 5 and 7 indicate that in practical
scenario the high localization success ratio and small average localization error can be achieved by
using the proposed CS algorithm. The choice of communication range depends on the localization
requirements, such as localization accuracy, localization success ratio and the energy constraint of
sensor nodes.
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Figure 6. Example of network topology under different node density, (a) 100; (b) 200; (c) 300; (d) 400
when communication range is 10 m and the number of anchor nodes (+) is 20% of node density.
In addition, the (◦) represents unknown nodes, the (−) represents the communication connectivity
between sensor nodes.
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5.2.3. Comparison with Standard CS and PSO Algorithm

To evaluate the effectiveness of modified CS algorithm, a comparative study was carried out with
standard CS algorithm in this subsection. The parameters for standard CS algorithm are set (according
to the literature [38]) as follows, the number of nests is 25, the mutation probability Pa is 0.25, the step
size α is 0.01. Besides, to prevent the insignificant search over the sensor field, Xmin and Xmax for
the modified CS algorithm are set to 0 and 15 respectively. The network deployment is shown in
Figure 8. 40 unknown nodes and 4 anchors are deployed in a 15 × 15 m2 sensor field. Anchors are
specially deployed in the four corner of sensor area to avoid the collinear problem like the literature [8].
Their coordinates are (0, 0), (0, 15), (15, 0) and (15, 15). In addition, it is assumed that each sensor node
can communicate with every other sensor node in the sensor field, as shown the network connectivity
in Figure 9.
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Figure 9. Network topology of sensor nodes, the (◦) represents unknown nodes, the (+) represents
anchor nodes and the (−) represents the communication connectivity between sensor nodes.

It has been reported in previous work [30,41,42] that the PSO algorithm provides much better
performance than Simulated Annealing (SA), Genetic Algorithm (GA), BBO variants and traditional
mathematical optimization methods in terms of computational complexity and location accuracy.
Thus, localization performance of the modified CS algorithm is also compared with PSO algorithm.
The parameters of PSO algorithm are set (according to the literature [29,30]) as follows:

(1) Population size = 20;
(2) Acceleration constants c1 = c2 = 2;
(3) Inertia weight w = 0.7;
(4) Limits on particle velocity: Vmax = 15 m/s, Vmin = –15 m/s.

To assess the convergence speed to a minimum average localization error, each algorithm is
conducted for thirty iterations. The average localization error with respect to iterations is shown in
Figure 10, in which each data point is the average of the results of thirty independent experiments.
This is due to the fact that standard CS, PSO and modified CS algorithm are stochastic algorithms; the
same result cannot be obtained in all the runs even with the same network deployment. Taking into
account the characteristics of stochastic algorithm, it is assumed that convergence is reached if the
fluctuation of convergence curve with respect to average localization error is less than 0.01 m.
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Figure 10 reflects that as iterations proceed, all algorithms gradually converge to a minimum
average localization error at different speeds. The convergence speed reflects the efficiency of the
algorithm to find optimal locations. In addition, the algorithm with less iteration requires less resource,
which makes it more suitable for WSN. The average localization error of the modified CS algorithm
decreases more rapidly than that of PSO algorithm and standard CS algorithm during the first
six iterations and the modified CS algorithm converges approximately in the tenth iteration with
the average localization error of 0.259 m while the standard CS algorithm takes about twenty-four
iterations to reach the convergence with average localization error of 0.307 m. In addition, the PSO
algorithm seems to convergence at approximately twenty-second iteration with the average localization
error of 0.332 m. From the results, it can be seen that the modified CS algorithm can reach the same
localization accuracy as standard CS algorithm and PSO algorithm with much fewer iterations. It
proves that the modifications of the proposed CS algorithm in increasing convergence speed and
location accuracy are observable and effective. This means that it is possible to adopt the proposed CS
algorithm in optimizing WSN node localization instead of standard CS algorithm and PSO algorithm.

6. Conclusions

In this paper, we propose a modified CS algorithm for optimizing node localization in WSN.
The algorithm adopts the modified step size to enable the population to approach global optimal
solution rapidly, and the fitness of each solution is employed to build mutation probability to avoid
local convergence. In addition, to prevent the energy consumption caused by insignificant search,
the approach restricts the population in the certain range. Extensive experiments have been performed
to study the impacts of several factors like anchor density, node density and communication range
on the proposed algorithm with respect to average localization error and localization success ratio.
This provides the basis for optimizing node localization using the proposed algorithm in practical WSN
applications. Additionally, a comparative study has been conducted and experimental results prove
that when compared with standard CS and PSO algorithm, the modified CS algorithm performs better
in terms of reducing average localization error and increasing the convergence rate, which is favorable
to reduce computational consumption and thus prolong the lifetime of sensor nodes. The effectiveness
of the modified CS algorithm was verified through simulation results. In the future, we will focus on
designing an experiment system to test the modified CS algorithm in practical applications.
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