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Abstract: Characterizations of up to date information of the Earth’s surface are an important
application providing insights to urban planning, resources monitoring and environmental studies.
A large number of change detection (CD) methods have been developed to solve them by
utilizing remote sensing (RS) images. The advent of high resolution (HR) remote sensing
images further provides challenges to traditional CD methods and opportunities to object-based
CD methods. While several kinds of geospatial objects are recognized, this manuscript mainly
focuses on buildings. Specifically, we propose a novel automatic approach combining pixel-based
strategies with object-based ones for detecting building changes with HR remote sensing images.
A multiresolution contextual morphological transformation called extended morphological attribute
profiles (EMAPs) allows the extraction of geometrical features related to the structures within the
scene at different scales. Pixel-based post-classification is executed on EMAPs using hierarchical fuzzy
clustering. Subsequently, the hierarchical fuzzy frequency vector histograms are formed based on the
image-objects acquired by simple linear iterative clustering (SLIC) segmentation. Then, saliency and
morphological building index (MBI) extracted on difference images are used to generate a pseudo
training set. Ultimately, object-based semi-supervised classification is implemented on this training
set by applying random forest (RF). Most of the important changes are detected by the proposed
method in our experiments. This study was checked for effectiveness using visual evaluation and
numerical evaluation.

Keywords: change detection; remote sensing; extended morphological attribute profiles; saliency;
morphological building index

1. Introduction

Timely and accurate change detection of the land cover (LC) and land use (LU) information
is extremely important for applications, such as monitoring environmental changes and resource
management. Image change detection (CD) involves the analysis of two registered images acquired
over the same geographical area at different times in order to identify differences in the state or type of
physical materials on the Earth’s surface [1]. Remote sensing (RS) data have become a major source for
CD studies due to their high temporal frequency and wide selection of spectral and spatial resolutions.
CD methods could be categorized as either supervised or unsupervised according to the nature of
data processing. Supervised methods require an appropriate training set, which makes them a difficult
and expensive task. Unsupervised methods without any prior information are more widely used
and studied.

Over the past few years, a variety of different unsupervised CD algorithms have been
proposed [2–4], in which pixel-based pre-classification CD techniques have been developed mainly
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including: (a) image differencing [5]; (b) image ratioing; (c) vegetation index differencing; (d) change
vector analysis (CVA) [6]; (e) principal component analysis (PCA) [7]; and (f) expectation-maximization
(EM) algorithm [5]. Differing from detecting simple binary changes, pixel-based post-classification
comparison can get detailed “from-to” change information [8–11]. Nevertheless, most of the above CD
techniques mainly focus on low and medium spatial resolution images.

In recent years, with the increasing availability of high resolution (HR) remote sensing images, it
is possible to identify detailed changes occurring at the level of ground structures, of which buildings
are paid the most attention. The emergence of high-resolution Earth observation data brings a huge
challenge to traditional information extraction techniques. Conventional pixel-based CD techniques
are considered ineffective for HR remote sensing data because of high intraclass variability and low
inter-class variability on these data. Another important limitation is the difficulty of modeling the
contextual information. To solve these problems, spatial dependence among neighboring pixels,
e.g., object, textural or structural-based image description, have been utilized in CD [2].

The object-based change detection (OBCD) techniques [12–14] have been shown to reduce the effects
of geo-referencing, higher spectral variability and acquisition characteristics. Im et al. [12] proposed
an object-based change detection method based on image segmentation and object/neighborhood
correlation image analysis. The method was based on the fact that the pairs of brightness values
from the same geographic area (e.g., an object) between bi-temporal image datasets tend to be highly
correlated for unchanged and uncorrelated for changes. Bovolo [15] proposed a novel parcel-based
context-sensitive CD technique for very high resolution (VHR) remote sensing images. CD was
achieved by applying a multilevel CVA to each pixel. Huo et al. [16] proposed a fast object-level
change feature extraction and classification. They improved the accuracy and the degree of automation
by dynamically adjusting the training samples and gradually tuning the separating hyperplane
in the support vector machine (SVM). Dalla Mura et al. [17] integrated morphological filters and
the CVA techniques for high resolution image change detection, demonstrating greater accuracy
than traditional pixel-based CVA. Falco et al. [18] extracted the geometrical features related to the
structures within the scene at different scales for CD using a multiresolution contextual transformation
performed by attribute profiles (APs). Huang et al. [19,20] investigated urban building change
detection. They combined several pieces of building information, including morphological building
index (MBI), spectral and shape conditions for multitemporal high-resolution images. Ding et al. [21]
proposed a sparse hierarchical clustering approach for VHR image CD. They stacked bi-temporal
multiscale center-symmetric local binary pattern features and learned a tree-structured dictionary.
Zhong et al. [22] improved the traditional automatic change detection method with pulse-coupled
neural networks (PCNN). They combined PCNN with the normalized moment of inertia (NMI)
feature for high spatial resolution imagery. Robertson and King [23] compared pixel- and object-based
classification in land-cover change mapping. They revealed that the object-based approach depicted
change information more accurately.

In spite of some efforts having been made to develop high-resolution CD techniques, how to
characterize discriminative object-based features for the extraction of sophisticated geospatial
information is difficult. A widely-used feature is the mean value of the pixels inside the object,
the main limitation of which is obvious, for it only considers the spectral values of pixels to construct
the object feature while ignoring the texture information and losing much of the spectral information.
Modeling contextual information using the local adaptive neighborhood of pixels not only exploits
the spectral characteristics, but also considers the spatial context. However, the different scales of the
observation window could not conform to the various sizes of the true geographical objects.

In this paper, an object-based building CD approach combining pixel-based post-classification
is proposed to address the aforementioned problems. We propose a novel framework for urban
building CD of HR remote sensing images. Pixel-based post-classification of this method is based
on recently-developed extended morphological attribute profiles (EMAPs) [24], which is able to
characterize spatial features by performing a multiresolution filtering of the multitemporal images.
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After that, the hierarchical fuzzy histogram is constructed for each region segmented using simple
linear iterative clustering (SLIC) [25]. Furthermore, saliency [26] and the MBI [20] map generated from
the difference image by object-based CVA are utilized to get a pseudo training set as the input of the
random forest (RF) classifier. The experimental results indicate that the proposed approach is effective
and feasible.

This paper consists of four sections. The next section describes our approach, including:
(1) feature extraction and representation; (2) super-pixel segmentation and hierarchical fuzzy histogram
construction; (3) saliency and MBI for final change detection. In Section 3, we present the used datasets,
the experimental results and the discussion. The conclusions are drawn in Section 4.

2. Methodology

In this section, we introduce the proposed method, which is composed of the following three
steps. First, we present how to characterize the spectral-spatial information of HR images by using
the multi-level, multi-attribute approach-based EMAPs. Following that, fuzzy clustering is applied to
EMAP feature vectors for each pixel. Then, we extract image-objects using SLIC segmentation, and a
hierarchical fuzzy histogram is generated for each object. Finally, saliency detection is applied, and the
MBI feature is employed to obtain the final object level CD. The most salient building regions serve
as the training sets, called pseudo training sets, for the RF classifier. The general scheme is shown in
Figure 1.
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Figure 1. Flowchart of the proposed method. EMAP, extended morphological attribute profile; CVA,
change vector analysis; MBI, morphological building index.

2.1. Feature Extraction and Representation

The change feature should be discriminative to distinguish the different distributions of HR
images. The simple spectral feature has difficulty in satisfying the aforementioned requirements
even if the spectral mean of pixels within a certain neighborhood is used. Although object extraction
by segmentation has the advantage of being able to make defining window size and shape more
flexible, an important challenge with image-object CD is how to extract the feature, which is not
only robust to lighting condition variations, seasons changes and sensor noise, but also ideal to
represent the corresponding object. The spatial organization between pixels is considered to be crucial.
As a consequence, a feature extraction method that combines spectral with spatial information is
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required to put forward for reducing labeling uncertainty. Moreover, spatial information provides
additional discriminant information related to the shape and size of different structures. One way to
extract spatial information by using a crisp neighborhood system is considered as the Markov random
field (MRF) modeling [5], which is a powerful tool for incorporating spatial and contextual information
into each pixel. Its limitations are that the standard neighborhood system may not contain enough
samples to characterize the object of interest, and a larger neighborhood system leads to intractable
computational problems. One possible way to solve these problems is to utilize different types of
segmentation methods, whereas they encounter the uncertainty of the object boundary.

Another set of methods that can extract spatial information by using an adaptive neighbor
system is based on morphological filters, which can avoid the above problems well. Pesaresi and
Benediktsson [27] used morphological transformations to build a morphological profile (MP) and
introduce them to HR images. They performed a multiscale analysis by computing an anti-granulometry
and a granulometry, i.e., a sequence of openings and closings by reconstruction with an structuring
element (SE) of increasing size, applied to a scalar image. MPs computed with a compact SE
(e.g., square, disk, etc.) can be used for modeling the size of the image-objects. Furthermore, the
concept of MPs was successfully extended to handle hyperspectral images, resulting in the extended
morphological profiles (EMPs), which are obtained by computing an MP on each of their first few
components [28,29]. Multiscale processing based on morphological filters (e.g., by MPs and EMPs)
has been proven to be an effective strategy for extracting informative spatial features from the
analyzed images. However, primary limitations lie in the following points: (1) the shape of SEs
is fixed; and (2) SEs cannot represent the information of the gray-level characteristics of the regions.
To overcome this, the morphological attribute profiles (APs) have been proposed as the extension of
the MPs and provide a multilevel characterization of an image by using the sequential application of
morphological attribute filters (AFs), which can be considered for modeling different specifications
of the structural information [24]. AFs process an image only considering its connected components,
which are proven to be efficient for modeling structural information in VHR images. The use of
different attributes leads to the generation of extended multi-attribute profiles (EMAPs) [24]. Next, we
will give the detailed description.

Morphological attribute opening and closing are morphological AFs [30], which are connected
operators processing an image by considering only its connected components. The common connected
components are 4- and 8-connected, where a pixel is considered adjacent to four or eight of its
neighboring pixels, respectively. For a grayscale image f , the set of connected components can be
obtained by representing the image as a stack of binary images generated by thresholding it at each
gray-level value. AFs preserve or merge the connected components C based on a predicate P if a given
attribute A is greater/lower than a predefined threshold value λ, i.e., P(C) = A(C) ≥ λ(A(C) ≤ λ).
If P is met, the region is preserved; otherwise, it is merged to the adjacent region with a closer gray-level
value. An AP is obtained by the sequence of attribute thinning and thickening transformations with a
series of progressively stricter criteria. More formally, an AP is defined as follows:

AP( f ) =
{

φPλL ( f ), φ
PλL−1 ( f ), ..., φPλ1 ( f ), f , γPλ1 ( f ), ..., γ

PλL−1 ( f ), γPλL ( f )
}

(1)

where γP( f ) and φP( f ) denote an attribute thickening and thinning, respectively. The considered
criteria are increasing, i.e., P(Cj) = true when also P(Ci) = true for any Cj ⊆ Ci. The original image
f is also contained in the profile since it can be considered as the level zero (i.e., φPλ0 ( f ) = γPλ0 ( f ) = f ).
Different information can be extracted from the multi-level characterizations of the image by AP. AP can
be efficiently computed by representing the input image as a rooted hierarchical tree of the connected
components of the image, i.e., the max-tree algorithm [31]. The EAP is obtained by stacking the AP on
each of the first k principal components (PCs), which are obtained by applying feature extraction on
the multi/hyperspectral image as the following equation:
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EAP( f ) = {AP( f1), AP( f2), ..., AP( fk)} (2)

During the concatenation of different attributes, the EMAP is obtained and given mathematically by:

EMAP( f ) = {EAPA1( f ), EAP′A2
( f ), ..., EAP′Am

( f )} (3)

where EAPAi is an EAP built with a set of predicates P evaluating m different kinds of attributes
Ai(i ≤ m) and EAP′ = EAP\{ fi}i=1,...k in order to avoid redundancy since the original image f is
presented in all of the EAP. The following attributes have been widely used in the literature for EMAP:

• area of the region (a measure of the size of the regions, denoted as ‘a’);
• standard deviation (a measure of the homogeneity of the regions, denoted as ‘s’);
• diagonal of the box bounding the regions (another measure of the size of the regions, denoted

as ‘d’);
• moment of inertia (a measure of the elongation of the regions, denoted as ‘i’).

APs, while considering the above attribute measures, perform a contextual analysis of the image,
which permits a richer description of the regions since the filtering is performed according to measures
of their spectral, spatial, textual and other characteristics. While the APs can be constructed on the
basis of different attributes, generally only the two attributes of area and standard deviation are used,
since they not only can be adjusted in an automatic way, but also are well related to the object hierarchy
of the images. In addition, they can model the spatial information considerably, while other attributes
(i.e., diagonal of the box bounding the region and the moment of inertia) cannot add significant
improvement to classification accuracy. With regard to λa for the area attribute, the resolution of the
image should be taken into account [32]. The automatic scheme of the attribute area is given as follows:

λa(PCi) =
1000

v
{amin, amin + δa, amin + 2δa, ..., amax} (4)

where amin and amax are the inner and upper bounds initialized by 1 and 11, respectively, with a step
increase δa equal to 1, and v shows the spatial resolution of the input image, which leads to 11 thinning
and 11 thickening operations for each feature of EAP. Considering the resolution of the image v in
meters, for an image with a spatial resolution of 1 m per pixel, each profile covers regions in the range
of 1000–11,000 m2, which might be a reasonable range of sizes of different urban structures in remote
sensing images. The standard deviation is adjusted with respect to the mean of the individual features
since the standard deviation shows dispersion from the mean [33]. Therefore, λs is initialized to cover
a reasonable amount of deviation, which is mathematically given by:

λs(PCi) =
µi

100
{σmin, σmin + δs, σmin + 2δs, ..., σmax} (5)

where µi is the mean of the i-th feature and σmin, σmax and δs are the inner bound, the upper bound
and the step size, respectively, which are set as 2.5%, 27.5% and 2.5% based on experience. The EAP
for the standard deviation includes 11 thinning and 11 thickening operations. Figure 2 illustrates the
general architecture of EMAP. In this paper, we only use the area attribute and the standard deviation
and adopt the above parameter-setting methods.

For the cluster of each pixel in the feature space, existing uncertainty of the number of categories
and the massive overlap of feature spaces of different categories, the pixels belonging to different
categories cannot be absolutely separable by sharp boundaries. Therefore, a fuzzy clustering
technique [9,34] is more appropriate to separate overlapping clusters. In our problem, we assume
that a pixel can belong to multiple different categories with certain degrees of membership due to no
clear boundary between them. In this study, we choose fuzzy c-means clustering (FCM) to process
the above EMAP features. After extracting EMAP features for each pixel, FCM is applied to cluster
each pixel in feature space.
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Figure 2. General architecture of EMAP.

2.2. Super-Pixel Segmentation and Hierarchical Fuzzy Histogram Construction

There are crucial challenges in the clustering process, i.e., how to predefine a suitable clustering
number. We propose a strategy called hierarchical fuzzy clustering in order to avoid the effects of
the improper selection of clustering number. For HR remote sensing images, we consider 8 classes as
the maximum number of clusters because more clusters did not show an increase in discriminative
information and introduced more error classification. Extensive experiments on clustering number
selection can be found in Section 3.2.

Given two coregistered multitemporal images I1 and I2, the FCM clustering is applied to EMAP
features in I1 and I2, where the clustering numbers range from 2 to the maximum number of clusters
(i.e., 8). The rationale of this method is to adaptively generate a model of the class spaces of each
pixel according to the hierarchical fuzzy clustering strategy. Higher spectral variation and mixed
pixels on these HR data lead to the diversity of pixels in the same class and the similarity of pixels
across different classes. Considering that, hierarchical fuzzy clustering can be the best solution to
this problem. It is more appropriate and realistic to separate overlapping clusters. Each cluster level
can distinguish corresponding class space information. Furthermore, EMAPs have been proven to
be suitable for extracting spatial information while preserving the geometrical characteristics of the
structures and representing the multiscale variability of the structures in the image. The combination
of EMAPs and hierarchical fuzzy clustering can preferably identify each pixel for HR images.

Pixel-based strategies lead to generating noises, like isolated changed pixels, holes in the connected
changed components or jagged boundaries. Misregistration between multitemporal images is a
another critical source of errors. These situations are more obvious for HR images. Characterizing
image-objects is less sensitive to the above errors than traditional pixel-based approaches are, which
provides great opportunities to better monitor land cover changes than using spectral information
alone. Major object-based strategies contain the following two methods: (1) extract object-based
features (e.g., geometry, texture and context); (2) derive image-objects by segmentation. The former
one is still impossible to independently generate exactly image-object boundaries on account of the
nature that pixels are the basic unit of image comparison. The latter one will face difficulty of the
selection of segmentation scale, as well. Traditional segmentation algorithms strive to segment out
the integrated geographical objects. However, the performance of CD is also strongly influenced
by the segmentation algorithms, and the extraction of object boundaries poses a great challenge to
segmentation algorithms.
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In this paper, a superpixel segmentation algorithm called SLIC proposed by Radhakrishma
Achanta [25] is utilized to address the above problems. This method has the following advantages:
(1) superpixels adhere well to object boundaries; (2) computational complexity of this method is not
high, and the computing speed is fast; (3) the segmentation scale is appropriate. The object size derived
from traditional segmentation methods is larger than that from SLIC. Consequently, the distortion
of object boundaries derived from conventional methods is greater than that of SLIC, especially for
object-based methods, because misclassification of larger objects results in the wrong labeling of more
pixels in the final results.

Images acquired from two different dates rarely capture the landscape surface in the same way
due to variations of illumination conditions, view angles and meteorological conditions. Thus, objects
obtained by separate segmentation on the same site from different images often vary geometrically.
Instead, a multitemporal segmentation method is applied in this paper. Firstly, a composite image
consisting of all bands of the two images is created by concatenating the pixels along the spectral
dimension. Then, PCA transformation is applied, and the first few principle components (the first
three ones are selected in our experiments) are extracted, as they contain most of the information
(including changed and unchanged ones) in the two images. We call this image the PC image. At last,
the PC image is partitioned into compact homogeneous objects with similar spectra. After that, the
fuzzy histogram is constructed for each segment by accumulating the degree of membership of the
pixel to clusters. The histogram should be normalized by dividing the sum over all of its elements [35].
Then, all of the fuzzy histograms for the clustering numbers ranging from 2 to the maximum number
of clusters are catenated to construct a hierarchical fuzzy histogram, which is used to represent this
object, i.e., the object feature Fl(l ≤ L, L is the maximum of segments) is represented as:

Fl =
{

µ̃
(2)
l1 , µ̃

(2)
l2 , µ̃

(3)
l1 , µ̃

(3)
l2 , µ̃

(3)
l3 , ..., µ̃

(c)
l1 , µ̃

(c)
l2 , ..., µ̃

(c)
lc

}
(6)

and:

µ̃
(i)
l j =

N
∑

t=1
µ
(i)
tj

N
∑

t=1
µ
(i)
t1 +

N
∑

t=1
µ
(i)
t2 + ... +

N
∑

t=1
µ
(i)
tj + ... +

N
∑

t=1
µ
(i)
ti

, (1 ≤ j ≤ i) (7)

where µ̃
(i)
l j means the normalized sum of the degree of belonging of each pixel within the l-th object

(N is the number of pixels in this object) to the j-th cluster when the clustering number is i (normalized
according to (7)). Analogously, µ

(i)
tj means the degree of belonging of the t-th pixel to the j-th cluster

when the clustering number is i. This kind of representation allows one to capture and exploit the entire
information presented in the considered objects. The traditional bag of words (BOW) approach [36–38]
constructs the codebook using the k-means algorithm, which is inadequate to capture the abundant
spectral information and complex structure in HR images. Similar to BOW, our method establish the
codebook by adopting hierarchical fuzzy clustering, which can model preferable spectral and spatial
information. The final change features are formed by differencing the corresponding hierarchical fuzzy
histograms at two different time instances, t1 and t2.

2.3. Saliency and MBI for Final Change Detection

After obtaining the change features, how to define a decision function that distinguishes changes
in unsupervised CD is of great importance. One common approach is applying an empirical threshold
value, which is used in most of unsupervised CD algorithms. Another widely-used method is using
the Gaussian mixture distribution (GMD) to model the distribution of the features and separate
the changed from unchanged class by maximizing a posterior probability. Nonetheless, mis- or
over-detection is a common occurrence because of the overlap of distributions of the changed and
unchanged class. Considering the complex statistical distributions of the change features, we propose
a new semi-supervised classification for CD.
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In this paper, saliency detection combined with MBI is utilized to obtain a pseudo training set.
This set includes the most reliable samples for the changes or no changes. Saliency computation is
an important method to detect the region of interest. It has been widely adopted in many applications
like object segmentation and detection. Usually, informative regions that represent the main contents
of an image can be selected by saliency computation. In remote sensing images, buildings stand out
from their surroundings and draw more attention of people. Meanwhile, the changed regions are
also salient across the bi-temporal images. Therefore, saliency detection could be used as a powerful
tool for CD. Before extracting the salient regions, we adopt an object-based CVA [16] to generate the
difference image instead of traditional pixel-based CVA in order to ensure the consistency within the
image-objects, because the difference between pixels in the same object should be comparatively small
and the saliency cues between them should be fairly approximate or equal. The object-based change
magnitude within the object Rl can be represented as DRl :

DRl =

√√√√√√ b

∑
i=1

 ∑
x∈Rl

Ii
1(x)

NRl
1

−
∑

y∈Rl

Ii
2(y)

NRl
2


2

(8)

where b is the number of spectral bands, Ii
1 and Ii

2 are respectively the magnitude of image I1 and I2 at
the i-th band and NRl

1 and NRl
2 denote the corresponding number of pixels in the object Rl .

Next, we obtain the saliency map from the difference image using the spectral residual
approach [26]. This method is efficient, independent of features, categories or other forms of prior
knowledge of the objects. Following that, we set a threshold to get two binary images Ms and Mu

marking the most salient regions and the least salient ones, respectively.
Furthermore, this paper mainly focuses on urban building changes. The recently-developed

MBI [19,20,35] is able to indicate the presence of buildings in HR images, so it is more helpful for
locating changed buildings. The basic idea of MBI is to represent the spectral-structural characteristics
of buildings by a set of morphological operators. The simple delineation is as follows,

1. Calculation of brightness: The maximum value of multispectral bands for each pixels is
denoted as:

v(t) = max
1≤i≤b

(bandi(t)) (9)

where bandi(t) indicates the intensity of the t-th pixel for the i-th band.
2. Calculation of DMPTH: Top-hat transformation is able to emphasize the locally bright structures.

Additionally, buildings have high local contrast comparing with their spatially adjacent shadows.
Therefore, the spectral-structural characteristics of buildings can be represented using the
differential morphological profiles (DMPs) [27] of top-hat transformation with multiscale and
multidirectional SE, i.e.,

DMPTH = |THv(d, s + ∆s)− THv(d, s)|
THv(d, s) = v− γre

v (d, s)
(10)

where THv(d, s) indicates the top-hat transformation with d and s(smin ≤ s ≤ smax) being the
direction and scale of a linear SE, respectively, γre

v represents the opening by reconstruction of the
brightness v in (9) and ∆s is the interval of the profiles.

3. Calculation of MBI: The MBI is calculated by the following formula

MBI =
∑
d

∑
s

DMPTH(d, s)

D× S
(11)
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where D and S are the total of directionality and scale. We consider four directions (i.e., 45◦, 90◦,
135◦ and 180◦) and eleven scales (i.e., smin = 2, smax = 52 and ∆s = 5).

Analogously, we extract MBI image Mb, which indicates the change information of buildings
from the above-mentioned difference image. With the purpose of extracting the most salient building
objects, we extract the image-objects that overlap the most with Ms and Mb as the changed class.
Considering that the unchanged class is not generally salient in difference images and includes
buildings and non-buildings, we extract the ones overlapping the least only with Mu as the unchanged
class. The changed and the unchanged objects constitute the pseudo training set. Finally, RF is used to
classify the object-specific change features with the aforementioned training samples, and the final CD
results are obtained.

3. Results and Discussion

3.1. Datasets

In order to assess the effectiveness of the proposed method, to begin with, we conduct the
experiments on a pair of images used in [16] as shown in Figure 7a,b. These images are taken over
Beijing, acquired by QuickBird in September 2002 and November 2003, and cut into 472× 472 pixels.
The second dataset used in our experiments is cropped from Google Earth. It contains five pairs of
bi-temporal images over the Beijing urban area. See those images in Figure 8a,b. These images have
only three bands in the visible spectrum with a fixed size of 500× 500. The typical image registration
is executed as the basic pre-processing step. Nevertheless, the corresponding images from different
times have a diversity of spectral colors. With the rapid infrastructure construction and updating,
the datasets show complicated land cover changes. The first, third and fourth pairs are taken on
30 September 2012 and 4 March 2013. The second pairs are on 28 June 2009 and 19 September 2015.
The spatial resolution of the first four pairs is 1 m. The last pairs are acquired on 4 March 2013 and
12 November 2014, with a spatial resolution of 4 m.

3.2. Experiments

Seven widely-used methods are chosen to be compared, including the EM-based method [5],
the MRF-based method [5], the PCA-based method [7], the parcel-based method [15], the MBI-based
method [19], the sparse hierarchical clustering (SHC)-based method [21] and the fast object-level-based
method [16].

1. Evaluation indexes:

Five indexes are used to evaluate the accuracy of above-mentioned methods.

• False alarms (FAs): the number of unchanged pixels that are incorrectly detected as changed
ones, i.e., NFA. The false alarm rate (FAR) is calculated as RFAR = NFA

N0
× 100%, where N0 is

the total number of unchanged pixels;
• Missed alarms (MAs): the number of changed pixels that are incorrectly detected as unchanged

ones, i.e., NMA. The missed alarm rate (MAR) is calculated as RMAR = NMA
N1
× 100%, where

N1 is the total number of changed pixels;
• Overall alarms (OAs): the total number caused by FAs and MAs; the overall alarm rate (OAR)

is calculated as ROAR = NFA+NMA
N0+N1

× 100%;
• Kappa coefficient (kappa): the consistency between experimental results and the ground truth;

it is expressed as kappa = Po−Pc
1−Pc

, where Po indicates the real consistency and Pc indicates the
theoretical consistency.

2. Parameter setting:

The approaches used for comparison are implemented using the same set of parameters presented
in their related papers. The EM-based method is free of parameters. The MRF-based method
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depends on the parameter β, which tunes the influence of the spatial contextual information, and
we selected β = 4. The PCA-based method has two parameters, i.e., non-overlapping blocks h
(h = 4 in our experiments) and the dimensions S (S = 3 in our experiments) of the eigenvector
space. In the parcel-based method, the parameters in hierarchical segmentation are tuned to
achieve the best performances as [15]. The MBI-based method is implemented as [19] where the
thresholds of the spectral condition, the MBI condition, the area and the geometrical index are
respectively 0.3, 0.2, 30 and 2.0. In the SHC-based method, we adopt the parameter setting the
same as [21]. For the fast object-level based method, the parameter setting we used is also the
same as [16].

For our method, EMAPs are constructed using the area attribute and the standard deviation as
given in Section 2.1. In our experiments, for each image, 69 dimension EAPs on the area attribute
and 66 dimension EAPs on the standard deviation were generated, i.e., 135 dimension EMAPs.
The clustering number of hierarchical fuzzy clustering is eight as previously mentioned. Considering
the complexity of our used datasets, we adopt 16 to serve as the maximum clustering number for
comparisons. Figure 3 shows the qualitative results, which present the change maps with different
image pairs and clustering numbers, and Figure 4 shows the quantitative results, which present the
influence of different clustering numbers on MAR, FAR, OAR and kappa. From Figure 3, it can be
seen that there will be more false detection areas when the clustering number decreases, and there
will be more missed detections when it increases. From Figure 4, we can see that MAR reaches the
minimum value, and kappa reaches the optimum value when the clustering number is eight. It can be
seen that the best results are obtained when the clustering number is eight. As for the segmentation
method SLIC, two parameters need to be selected: the nominal size of the regions and the strength
of the spatial regularization. The former one is used to control the size of the image grid for division.
The latter one sets the trade-off between clustering appearance and spatial regularization. In this paper,
30 and one are selected for them based on experience. Other parameters, including threshold Tsaliency
for saliency map, TMBI for MBI image and overlapping ratio Toverlap between building regions and
salient regions, are determined to obtain the best results. The influence of Tsaliency, TMBI and Toverlap
on FAR, MAR, OAR and kappa is shown in Figures 5 and 6. When we analyze the sensitivity of each
parameter, the other parameters are set to be the constant optimal values.

From Figure 5, it can be seen that FAR and OAR tend to be stable, and MAR has slight fluctuations
as the saliency increases. When Tsaliency = 78, kappa is improved significantly. It is demonstrated
that saliency plays a vital role. With Tsaliency increasing, it also restricts the performance due to the
insufficiency of the training samples. In addition, MAR also reduces to the lowest value. Increasing
of TMBI results in the gradual increase on MAR and the decrease on FAR and OAR. Additionally,
when TMBI = 1.9, we can get a tradeoff between MAR, FAR and OAR, also the best results on
kappa, as shown in Figure 5e. The performance decreases when TMBI gets smaller or larger than 1.9.
The influence of the overlapping ratio on MAR, FAR and OAR is not obvious. However, there appears
some fluctuations when Toverlap are between 0.3 and 0.7. After that, kappa rises steadily and reaches
the optimal value when Toverlap = 1. Higher values in Toverlap filter out incorrect samples and improve
the classification results.

As for Figure 6, with the increasing value of Tsaliency, FAR and OAR are relatively stable, but
MAR decreases significantly and reaches a relatively low value when Tsaliency = 68. kappa increases
gradually and reaches the peak point around Tsaliency = 68. Over this point, it decreases continually
and has a slight fluctuation when Tsaliency is between 70 and 90 because the guidance of saliency is
unstable in this range. Finally, it descends rapidly due to the reduction of the correct training samples
caused by the excessively strict saliency limitation. This models can achieve the best performance on
this point. It can be seen that both too high and too low values lead to the introduction of the wrong
samples, which reduces the detection accuracies. As for MBI, in the beginning, the increase of MBI
will result in the increased kappa and the decreased OAR and FAR. The results achieve the optimum
when MBI reaches the appropriate threshold. After that, kappa decreases dramatically, and MAR rises
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sharply. It is observed that MBI is also of key importance, the same as saliency. By analyzing the
results with different percentages for overlapping, it can be seen that the increase of overlapped ratio
is insensitive to the detection performance. It mainly lies in that the object-based CVA reduces the
heterogeneity within each block, which results in the characteristics of each pixel within the same
block being essentially consistent. FAR, OAR and kappa reach the optimum when Toverlap = 0.9, but
the performance is not good when Toverlap = 1. It demonstrates that too strict limits seem adverse to
the performance.Version August 11, 2016 submitted to Sensors 12 of 20
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Figure 3. The influence of different clustering numbers. From up to down: corresponding results of
aforementioned two sets of image pairs, from left to right: different clustering numbers. (a) 2-4. (b)
2-6. (c) 2-8 (used in our experiments). (d) 2-10. (e) 2-12. (f) 2-14. (g) 2-16.
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Figure 4. The influence of different clustering numbers. The clustering numbers range from 2-4 to
2-16. (a) Influence of clustering numbers on FAR, MAR and OAR. (b) Influence of clustering numbers
on kappa.

Figure 3. The influence of different clustering numbers. From top to bottom: corresponding results of
the aforementioned two sets of image pairs; from left to right: different clustering numbers. (a) 2–4;
(b) 2–6; (c) 2–8 (used in our experiments); (d) 2–10; (e) 2–12; (f) 2–14; (g) 2–16.
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Figure 4. The influence of different clustering numbers. The clustering numbers range from 2–4 to 2–16.
(a) Influence of clustering numbers on false alarm rate (FAR), missed alarm rate (MAR) and overall
alarm rate (OAR); (b) influence of clustering numbers on kappa.
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Figure 5. Sensitivity delineation of the parameters for the first image pair. (a) Influence of saliency on
FAR, MAR and OAR; (b) influence of MBI on FAR, MAR and OAR; (c) influence of overlapping ratio
on FAR, MAR and OAR; (d) influence of saliency on kappa; (e) influence of MBI on kappa; (f) influence
of overlapping ratio on kappa.
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Figure 6. Sensitivity delineation of the parameters for the second image pairs. (a) Influence of saliency
on FAR, MAR and OAR; (b) influence of MBI on FAR, MAR and OAR; (c) influence of overlapping ratio
on FAR, MAR and OAR; (d) influence of saliency on kappa; (e) influence of MBI on kappa; (f) influence
of overlapping ratio on kappa.

On the whole, our approach has relatively high MAR. The first image pair has low resolution.
The second image pairs not only have higher spatial resolution, but also have more complicated
geographic structures and spectral intensity. Considering the difference of the radiance, spatial
resolution and structure of geographic objects, the curve shapes of the two sets are different. Therefore,
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based on the above discussions, for the first set of image pairs, Tsaliency = 78, TMBI = 1.9 and
Toverlap = 1 are used, and for the second ones, Tsaliency = 68, TMBI = 4.3 and Toverlap = 0.9 are adopted.

3.3. Results and Analyses

We designed the experiments on the above two sets of image pairs to validate the effectiveness
of our approach. On the first pair images, the performance of the proposed CD algorithm is
compared with seven approaches. Figure 7 shows comparison results of the input images I1 and I2

(see Figure 7a,b). The corresponding reference change map is shown in Figure 7c. Figure 7d–k shows
the CD results of the EM-based method, the MRF-based method, the PCA-based method, the
parcel-based method, the fast object-level method, the MBI-based method, the SHC-based method and
the proposed method. The quantitative performances are listed in Table 1.

(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Figure 7. The first image pairs and the results of different methods. (a) Image in 2002; (b) image in 2003;
(c) ground truth; (d) EM-based; (e) Markov random field (MRF)-based; (f) PCA-based; (g) parcel-based;
(h) fast object-level; (i) MBI-based; (j) sparse hierarchical clustering (SHC)-based; (k) proposed.

The EM-based method and the MRF-based method generate more scattered changed areas.
This poor performance mainly lies in the limitation of traditional pixel-based image analysis and the
multimodal distribution of the change feature. The number of overall alarms is reduced, attributed
to the use of MRF-based contextual information. The PCA-based method uses block-based data
analysis to import the local neighborhoods, which reflect the contextual information. Therefore, it
decreases incorrect detection and increases missed detection. The parcel-based method exploits the
multitemporal and spatial contexts at different scales based on hierarchical segmentation. Its overall
alarms are slightly higher than the PCA-based method, but it has a better kappa. For the fast object-level
method and the SHC-based method, all of them can generate massive changed areas avoiding making
fragmentary areas. However, they bring in too much changed areas, including bare soil and vegetation,
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etc. Although the MBI-based method is able to indicate the presence of buildings using MBI, it is
sensitive to scales and spectral changes. As a consequence, it may loss abundant building areas and
only detects a fraction of changed ones and yields high MAR. The result of the proposed technique
indicates the best qualitative and quantitative results compared with other approaches. Our method
detects most of the changed building areas. It has the same lower overall alarms as the PCA-based
method does. However, certain areas may be missed, which is a drawback of this method. From the
table, we can conclude that our approach is superior to other methods in terms of OAR and kappa,
except for relatively high MAR.

We further conduct extensive experiments on more challenging images collected from Google Earth,
which have more complex spectral information, as shown in Figure 8a,b. The manually-delineated
ground truth maps are presented in Figure 8c. The proposed approach is compared against the six
above-mentioned approaches, that is EM-based, MRF-based, PCA-based, parcel-based, MBI-based
and SHC-based. The former three methods produce more false changed areas. They are excessively
sensitive to the changed shadows and spectral differences caused by illumination and sensors and
susceptible to displacement caused by registration errors, of which the EM-based method is the most
serious. It is obvious that traditional pixel-based strategies, such as the EM-based method, are less
effective for HR images. The introduction of spatial-contextual information improves the results to
some extent. The MRF-based method exploits inter-pixel class-dependent contexts. The PCA-based
method considers the spatial context by extracting eigenvectors on the non-overlapping blocks of the
difference image applying PCA. However, its square window of a fixed size limits its performance,
and the blocks localized on the boundaries between changed and unchanged regions bring about some
error detection. The parcel-based method is relatively robust and has fewer false changed areas. It has
good performance by analyzing multilevel and multitemporal parcel-based context information, but it
still cannot avoid the defect of pixel-based methods for HR images. The MBI-based method is good at
detecting small-scale building changes, as shown in the fourth row of Figure 8h. However, it ignores
large-scale building changes. For the SHC-based method, it can find almost all of the possible changed
areas, consequentially leading to more false changed areas.

The superiority of our approach could be seen from Figure 8j. The EMAPs and the hierarchical
fuzzy histogram improve the discriminative ability and the robustness of the features. Our approach
mainly yields partial missed changed areas (see Images 2 and 3 of Figure 8j) and only fewer false
ones (see Images 4 and 5 of Figure 8j). In Image 2 of Figure 8j, the several buildings on the left are not
detected due to the insensitivity of these kinds of spectral differences, and the missed detections of
Image 3 are on account of the spectral similarity before and after the changes. In Image 4 of Figure 8j,
the false detections are mainly derived from the effects of misregistration and shadow. The buildings
of Image 5 located in the upper left corner are spurious changes generated by the spectral difference
caused by illumination. The mistakes of MBI detection and the high spectral reflection give rise to the
false water detection of Image 5.

The quantitative accuracies of the different methods are in Table 2. From the table, it is apparent
that our approach, with fewer OAR and kappa, produces better CD results than other methods.
The only disadvantage is relatively high MAR. Compared with other methods, our method on MAR
ranks in the bottom half, which performs better than the parcel-based method and the MBI-based
method generally and better than the PCA-based method in a few cases. The possible reasons
are mainly the inaccuracy of saliency and MBI. The EM-based method performs the poorest on
almost all of the images because of the excessively simple difference operator and threshold selection.
The MRF-based method reduces MAR and FAR compared with the EM-based method due to the spatial
contextual information. It even outperforms the PCA-based method and the parcel-based method
in some images. The PCA-based method and the parcel-based method have relatively low OAR
and high kappa attributed to the spatial information introduced by different partitioning strategies.
The MBI-based method performs well on the images of a relatively small scale, such as Images 4 and 5.
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The SHC-based method is prone to have high FAR and results in better performance in the images that
have small color differences, such as Images 1 and 3.

Version August 11, 2016 submitted to Sensors 16 of 20
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Figure 8. The second image pairs and comparisons of different methods. From up to down: five image
pairs (Image1-Image5). (a) and (b) Images from two different time. (c) Ground Truth. (d) EM-based.
(e) MRF-based. (f) PCA-based. (g) Parcel-based. (h) MBI-based. (i) SHC-based. (j) Proposed.

Table 2. Performance comparisons against different approaches on the second set of image pairs.
(Image1 - Image5 are respectively corresponding to five image pairs from up to down in Figure 8)

Dataset Accuracy EM-based MRF-based PCA-based Parcel-based MBI-based SHC-based Proposed

Image1

Total Pixels Changed 11613 11613 11613 11613 11613 11613 11613
Unchanged 238387 238387 238387 238387 238387 238387 238387

False Alarms 44974
(0.1887)

32915
(0.1381)

33189
(0.1392)

31828
(0.1335)

11855
(0.0497)

52964
(0.2222)

4379
(0.0184)

Missed Alarms 1507
(0.1298)

855
(0.0736)

1464
(0.1261)

1913
(0.1647)

8394
(0.7228)

312
(0.0269)

1836
(0.1581)

Overall Alarms 46481
(0.1859)

33770
(0.1351)

34653
(0.1386)

33741
(0.1350)

20249
(0.0810)

53276
(0.2131)

6215
(0.0249)

Kappa 0.2451 0.3408 0.3195 0.3154 0.1992 0.2379 0.7458

Image2

Total Pixels Changed 22402 22402 22402 22402 22402 22402 22402
Unchanged 227598 227598 227598 227598 227598 227598 227598

False Alarms 84846
(0.3728)

55480
(0.2438)

61075
(0.2683)

63925
(0.2809)

15245
(0.0670)

98316
(0.4320)

9343
(0.0411)

Missed Alarms 9505
(0.4243)

7240
(0.3232)

11449
(0.5111)

11489
(0.5129)

18878
(0.8427)

3632
(0.1621)

10788
(0.4816)

Overall Alarms 94351
(0.3774)

62720
(0.2509)

72524
(0.2901)

75414
(0.3017)

34123
(0.1365)

101948
(0.4078)

20131
(0.0805)

Kappa 0.0806 0.2197 0.1104 0.1004 0.0974 0.1397 0.4917

Image3

Total Pixels Changed 14347 14347 14347 14347 14347 14347 14347
Unchanged 235653 235653 235653 235653 235653 235653 235653

False Alarms 49440
(0.2098)

39160
(0.1662)

39461
(0.1675)

40730
(0.1728)

10775
(0.0457)

66260
(0.2812)

9334
(0.0396)

Missed Alarms 7082
(0.4936)

6851
(0.4775)

6398
(0.4459)

5184
(0.3613)

11971
(0.8344)

879
(0.0613)

8250
(0.5750)

Overall Alarms 56522
(0.2261)

46011
(0.1840)

45859
(0.1834)

45914
(0.1837)

22746
(0.0910)

67139
(0.2686)

17584
(0.0703)

Kappa 0.1243 0.1732 0.1857 0.2153 0.1248 0.2094 0.3722

Image4

Total Pixels Changed 3384 3384 3384 3384 3384 3384 3384
Unchanged 246616 246616 246616 246616 246616 246616 246616

False Alarms 49500
(0.2007)

51376
(0.2083)

38816
(0.1574)

43902
(0.1780)

13646
(0.0553)

133047
(0.5395)

11489
(0.0466)

Missed Alarms 1012
(0.2991)

738
(0.2181)

766
(0.2264)

1093
(0.3230)

1227
(0.3626)

44
(0.0130)

1094
(0.3233)

Overall Alarms 50512
(0.2020)

52114
(0.2085)

39582
(0.1583)

44995
(0.1800)

14873
(0.0595)

133091
(0.5324)

12583
(0.0503)

Kappa 0.0620 0.0685 0.0942 0.0689 0.2072 0.0220 0.2506

Image5

Total Pixels Changed 4103 4103 4103 4103 4103 4103 4103
Unchanged 245897 245897 245897 245897 245897 245897 245897

False Alarms 57854
(0.2353)

49947
(0.2031)

50753
(0.2064)

14108
(0.0574)

6840
(0.0278)

98441
(0.4003)

3895
(0.0158)

Missed Alarms 1153
(0.2810)

808
(0.1969)

1244
(0.3032)

3516
(0.8569)

3290
(0.8019)

812
(0.1979)

2001
(0.4877)

Overall Alarms 59007
(0.2360)

50755
(0.2030)

51997
(0.2080)

17624
(0.0705)

10130
(0.0405)

99253
(0.3970)

5896
(0.0236)

Kappa 0.0621 0.0871 0.0707 0.0378 0.1195 0.0316 0.4046

Figure 8. The second image pairs and comparisons of different methods. From top to bottom: five image
pairs (Image 1–Image 5). (a,b) Images from two different times; (c) ground truth; (d) EM-based;
(e) MRF-based; (f) PCA-based; (g) parcel-based; (h) MBI-based; (i) SHC-based; (j) proposed.

Our approach not only adopts the feature extraction methods of EMAPs and the hierarchical
fuzzy histogram, but also utilizes a semi-supervised strategy that we select some potential training
samples by means of the combination of saliency and MBI for the final refined classification. To clearly
describe this strategy, the intermediate results for the six above-mentioned datasets are reported in
Figure 9. Figure 9a shows the difference image by object-based CVA. It can be seen that the changed
areas have higher brightness values and that of the unchanged ones are decreased, and this operation
preserves the contours and edges of the buildings and generates higher homogeneity within each
object, which is beneficial to the calculation of MBI and saliency. Figure 9b represents the possible
changed building areas extracted by MBI. From the figure, we can see that there are many missed areas
and false ones, but the primary building areas still could be detected. Saliency detection on difference
images can locate the apparent changed areas and unchanged ones in spite of the production of error
detection, as shown in Figure 9c,d, which plays an important role as a guidance for generating the
pseudo training sets. The combination of saliency and MBI filters out plenty of false detected areas
and reserves the most crucial changed ones for the subsequent classification, as shown in Figure 9e.
Figure 9f demonstrates the unchanged areas derived from the non-salient detection of Figure 9d.
We take advantage of potential changed areas (Figure 9e) and unchanged ones (Figure 9f) as the
training sets for RF and transform the original unsupervised method to the supervised one, so as to
effectively improve the performance for CD, as shown in Figure 8j. From Figure 9e,f, it can be seen that
our constructed features are extremely discriminative, because we only use a few training sets and
achieve good performances. In all cases, the proposed method outperforms all of the other methods
over both qualitative and quantitative measures.
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Table 1. Performance comparisons against different approaches on the first set of image pairs.

Accuracy EM-Based MRF-Based PCA-Based Parcel-Based Fast Object-Level MBI-Based SHC-Based Proposed

Total Pixels
Changed 31,198 31,198 31,198 31,198 31,198 31,198 31,198 31,198

Unchanged 191,586 191,586 191,586 191,586 191,586 191,586 191,586 191,586

False Alarms
43,113

(0.2250)
40,298

(0.2103)
12,505

(0.0653)
19,347

(0.1010)
51,372

(0.2681)
3,672

(0.0192)
47,912

(0.2501)
9,711

(0.0507)

Missed Alarms
11,840

(0.3795)
7,497

(0.2403)
16,647

(0.5336)
13,379

(0.4288)
2,197

(0.0704)
26,132

(0.8376)
4,337

(0.1390)
14,543

(0.4662)

Overall Alarms
54,953

(0.2467)
47,795

(0.2145)
29,152

(0.1309)
32,726

(0.1469)
53,569

(0.2405)
29,804

(0.1338)
52,249

(0.2345)
24,254

(0.1089)

kappa 0.2786 0.3815 0.4247 0.4353 0.3985 0.2050 0.3855 0.5167

Table 2. Performance comparisons against different approaches on the second set of image pairs. (Image 1–Image 5 respectively correspond to five image pairs from
top to bottom in Figure 8).

Dataset Accuracy EM-Based MRF-Based PCA-Based Parcel-Based MBI-Based SHC-Based Proposed

Image 1

Total Pixels Changed 11,613 11,613 11,613 11,613 11,613 11,613 11,613

Unchanged 238,387 238,387 238,387 238,387 238,387 238,387 238,387

False Alarms
44,974

(0.1887)
32,915

(0.1381)
33,189

(0.1392)
31,828

(0.1335)
11,855

(0.0497)
52,964

(0.2222)
4,379

(0.0184)

Missed Alarms
1,507

(0.1298)
855

(0.0736)
1,464

(0.1261)
1,913

(0.1647)
8,394

(0.7228)
312

(0.0269)
1,836

(0.1581)

Overall Alarms
46,481

(0.1859)
33,770

(0.1351)
34,653

(0.1386)
33,741

(0.1350)
20,249

(0.0810)
53,276

(0.2131)
6,215

(0.0249)

kappa 0.2451 0.3408 0.3195 0.3154 0.1992 0.2379 0.7458
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Table 2. Cont.

Dataset Accuracy EM-Based MRF-Based PCA-Based Parcel-Based MBI-Based SHC-Based Proposed

Image 2

Total Pixels Changed 22,402 22,402 22,402 22,402 22,402 22,402 22,402

Unchanged 227,598 227,598 227,598 227,598 227,598 227,598 227,598

False Alarms
84,846

(0.3728)
55,480

(0.2438)
61,075

(0.2683)
63,925

(0.2809)
15,245

(0.0670)
98,316

(0.4320)
9,343

(0.0411)

Missed Alarms
9,505

(0.4243)
7,240

(0.3232)
11,449

(0.5111)
11,489

(0.5129)
18,878

(0.8427)
3,632

(0.1621)
10,788

(0.4816)

Overall Alarms
94,351

(0.3774)
62,720

(0.2509)
72,524

(0.2901)
75,414

(0.3017)
34,123

(0.1365)
101,948
(0.4078)

20,131
(0.0805)

kappa 0.0806 0.2197 0.1104 0.1004 0.0974 0.1397 0.4917

Image 3

Total Pixels Changed 14,347 14,347 14,347 14,347 14,347 14,347 14,347

Unchanged 235,653 235,653 235,653 235,653 235,653 235,653 235,653

False Alarms
49,440

(0.2098)
39,160

(0.1662)
39,461

(0.1675)
40,730

(0.1728)
10,775

(0.0457)
66,260

(0.2812)
9,334

(0.0396)

Missed Alarms
7,082

(0.4936)
6,851

(0.4775)
6,398

(0.4459)
5,184

(0.3613)
11,971

(0.8344)
879

(0.0613)
8,250

(0.5750)

Overall Alarms
56,522

(0.2261)
46,011

(0.1840)
45,859

(0.1834)
45,914

(0.1837)
22,746

(0.0910)
67,139

(0.2686)
17,584

(0.0703)

kappa 0.1243 0.1732 0.1857 0.2153 0.1248 0.2094 0.3722

Image 4

Total Pixels Changed 3,384 3,384 3,384 3,384 3,384 3,384 3,384

Unchanged 246,616 246,616 246,616 246,616 246,616 246,616 246,616

False Alarms
49,500

(0.2007)
51,376

(0.2083)
38,816

(0.1574)
43,902

(0.1780)
13,646

(0.0553)
133,047
(0.5395)

11,489
(0.0466)

Missed Alarms
1,012

(0.2991)
738

(0.2181)
766

(0.2264)
1,093

(0.3230)
1,227

(0.3626)
44

(0.0130)
1,094

(0.3233)

Overall Alarms
50,512

(0.2020)
52,114

(0.2085)
39,582

(0.1583)
44,995

(0.1800)
14,873

(0.0595)
133,091
(0.5324)

12,583
(0.0503)

kappa 0.0620 0.0685 0.0942 0.0689 0.2072 0.0220 0.2506
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Table 2. Cont.

Dataset Accuracy EM-Based MRF-Based PCA-Based Parcel-Based MBI-Based SHC-Based Proposed

Image 5

Total Pixels
Changed 4,103 4,103 4,103 4,103 4,103 4,103 4,103

Unchanged 245,897 245,897 245,897 245,897 245,897 245,897 245,897

False Alarms
57,854

(0.2353)
49,947

(0.2031)
50,753

(0.2064)
14,108

(0.0574)
6,840

(0.0278)
98,441

(0.4003)
3,895

(0.0158)

Missed Alarms
1,153

(0.2810)
808

(0.1969)
1,244

(0.3032)
3,516

(0.8569)
3,290

(0.8019)
812

(0.1979)
2,001

(0.4877)

Overall Alarms
59,007

(0.2360)
50,755

(0.2030)
51,997

(0.2080)
17,624

(0.0705)
10,130

(0.0405)
99,253

(0.3970)
5,896

(0.0236)

kappa 0.0621 0.0871 0.0707 0.0378 0.1195 0.0316 0.4046
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use a few of training sets and achieve the good performances. In all cases, the proposed method500

outperforms all the other methods over both qualitative and quantitative measures.501

(a) (b) (c) (d) (e) (f)

Figure 9. Intermediate results of MBI and saliency. From up to down: corresponding results of
aforementioned two data sets. (a) The difference image by object-based CVA . (b) Building regions
by thresholding MBI. (c) Salient regions. (d) Non-salient regions. (e) Changed objects of training sets.
(f) Unchanged objects of training sets.

4. Conclusions502

In this paper, a novel CD approach for HR remote sensing images is presented. The proposed503

method combines pixel-based post-classification with object-based semi-supervised classification and504

achieves a promising performance on challenging data sets.505

In the stage of pixel-based post-classification, we adopt recently developed EMAPs for the506

feature extraction of each pixel, which is frequently used for multispectral and hyperspectral image507

classification. Then we propose a hierarchical fuzzy histogram construction for the feature extraction508

of each object which is obtained by super-pixel segmentation SLIC. This enables the sufficient509

Figure 9. Intermediate results of MBI and saliency. From top to bottom: corresponding results of the
two aforementioned datasets. (a) The difference image by object-based CVA; (b) building regions
by thresholding MBI. (c) salient regions; (d) non-salient regions; (e) changed objects of training sets;
(f) unchanged objects of training sets.

4. Conclusions

In this paper, a novel CD approach for HR remote sensing images is presented. The proposed
method combines pixel-based post-classification with object-based semi-supervised classification and
achieves a promising performance on challenging datasets.

In the stage of pixel-based post-classification, we adopt recently-developed EMAPs for the
feature extraction of each pixel, which is frequently used for multispectral and hyperspectral image
classification. Then, we propose a hierarchical fuzzy histogram construction for the feature extraction of
each object, which is obtained by super-pixel segmentation SLIC. This enables the sufficient integration
of the pixel-based and object-based advantages. Our approach not only preserves the spectral
characteristic of each pixel avoiding the loss of information, but also solves the limitation of the
CD methods only depending on the analysis of the single pixel for HR images by introducing the
object level strategy.
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As for the stage of object-based semi-supervised classification, we propose a novel strategy, which
is to acquire the most possible changed building areas and unchanged areas as the input of RF by
utilizing saliency detection and MBI. The advantages of supervised CD methods are making the best
use of these, and the disadvantages of unsupervised CD methods are adequately avoided.

Compared with a variety of CD methods, our proposed approach is promising in robustness and
effectiveness. Moreover, the qualitative and quantitative results show that the proposed approach
produces fewer OAR and higher kappa for the HR images in our experiments. Despite the comparable
results achieved by the proposed method, there are still many improvements to consider in the future
work. Firstly, we should deliberate on the reduction of the MAR of our approach. Excessively high
MAR is a drawback of our method. It may be helpful for solving this problem to add some a priori
information to obtain more reliable and representative samples. For example, shadow information
can be used as a constraint to identify buildings and used to eliminate the spurious changes caused
by shadow, and the vegetation index can be used to extract tree and grass backgrounds to reduce the
mistakes further. Then, from the experiments, it is seen that our approach cannot avoid a few false
detections caused by the spectral difference of the same class. In subsequent work, we consider adding
some preprocessing steps to solve this, such as the transformation and normalization of the color space.
In addition, how to extract more discriminative features and adopt more robust difference measures
should be considered for the object-based change feature representation. Furthermore, automatic
selection of the parameters should be the focus of the latter research.
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