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Abstract: The problem of direction-of-arrival (DOA) estimation is investigated for co-prime array,
where the co-prime array consists of two uniform sparse linear subarrays with extended inter-element
spacing. For each sparse subarray, true DOAs are mapped into several equivalent angles impinging on
the traditional uniform linear array with half-wavelength spacing. Then, by applying the estimation
of signal parameters via rotational invariance technique (ESPRIT), the equivalent DOAs are estimated,
and the candidate DOAs are recovered according to the relationship among equivalent and true DOAs.
Finally, the true DOAs are estimated by combining the results of the two subarrays. The proposed
method achieves a better complexity–performance tradeoff as compared to other existing methods.

Keywords: direction of arrival (DOA) estimation; co-prime array; ESPRIT; sparse array;
equivalent DOAs

1. Introduction

Direction of arrival (DOA) estimation is a crucial problem in various applications, such as radar,
sonar, and wireless communications [1]. Various DOA estimation methods have been studied in
uniform linear arrays (ULAs), including multiple signal classification (MUSIC) [2] and estimation of
signal parameters via rotational invariance technique (ESPRIT) [3]. In [4], a Khatri-Rao product-based
real-valued sparse estimation method is proposed. With respect to the random errors of sensor position,
a stochastic framework is established to find the probability density function of the DOA-estimates [5].
However, most of the traditional DOA estimation schemes have focused on ULA structure [6], which,
in fact, is not an optimal array geometry.

Recently, sparse array geometry has drawn lots of attention due to its high resolution [7–9].
An eigenstructure-based direction-finding algorithm is proposed in [7] for sparse uniform Cartesian
arrays. In [8], an ESPRIT-based estimation method is proposed for a sparse array with two different
sizes of spatial invariances. Moreover, the literature [9] introduces a novel direction-finding algorithm
for a multiscale sensor array, which presents multiple scales of spatial invariance. Except for these
sparse structures, the nested arrays [10] and co-prime arrays [11–13] have also attracted great attention.
The nested array suffers from the mutual coupling problem due to some closely located sensors,
while the co-prime array has less of a mutual coupling effect since sensor elements are sparsely
located. Consequently, we consider the co-prime array structure in this paper. Various DOA estimation
methods have been proposed for co-prime arrays [14–16]. A projection-like method is proposed in [14]
to estimate DOAs by combining the results of the two subarrays. By applying the MUSIC algorithm,
a total spectral search-based method (TSS) is proposed in [15], which, however, suffers from the
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high complexity caused by the spectral search step. By limiting the searching region to a small sector,
a partial spectral search-based method (PSS) is proposed in [16]. It is shown in [16] that the PSS
method can achieve almost the same estimation accuracy as TSS, but with a substantially reduced
complexity. Further, the PSS method is extended to co-prime planar array structures to estimate two
dimensional DOAs in [17]. However, since the complexity is mainly caused by spectral search, the
works [16,17] still have a heavy computational burden.

To this end, in this paper, we propose a low-complexity DOA estimation method for co-prime
linear arrays. For each subarray of the co-prime array, the true DOAs are mapped into their respective
equivalent angles impinging on a traditional ULA with half-wavelength inter-element spacing, which
can be the obtained by ESPRIT. Then, according to the relationship among true and equivalent DOAs,
the candidate DOAs are recovered immediately. Finally, the true DOAs can be uniquely estimated by
seeking the common angles recovered by the two subarrays. Simulation results are provided to verify
the effectiveness of the proposed method.

2. System Model

As shown in Figure 1, we consider a co-prime linear array consisting of two uniform linear
subarrays, which are located in the same line. The first subarray has M1 equal-spaced omnidirectional
sensors with inter-element spacing M2λ/2, while the second has M2 equal-spaced omnidirectional
sensors with inter-element spacing M1λ/2. Here M1 and M2 are co-prime integers, and λ is the
wavelength. The two subarrays share the first sensor, and consequently the co-prime array has
M1 + M2 − 1 sensors.

0 1 2 1 1M

2 2M

1 2M

1 2 2 1M

Subarray  1 Subarray  2

Figure 1. The system model of co-prime linear array.

Assume K(K < min (M1, M2)) uncorrelated narrowband signals impinge on the array.
The received signal for the ith (i = 1, 2) subarray at time t (1 ≤ t ≤ T) is

xi(t) =
K

∑
k=1

ai(θk)sk(t) = Ais(t) + ni(t) (1)

where ai(θk) =
[
1, e−jMĩπ sin(θk) . . . , e−j(Mi−1)Mĩπ sin(θk)

]T
(i + ĩ = 3) is the steering vector for the kth

source θk, Ai = [ai(θ1), . . . , ai(θK)] is the steering matrix, s(t) = [s1(t), . . . , sK(t)]
T is the source vector.

The components of ni(t) are assumed to be independent and identically distributed additive white
Gaussian noise with equal variance in each sensor, and are independent from the sources. (·)T denotes
the transpose operation.

According to the property of sinusoid function, for each source θk in the ith subarray, there exist
some particular angles, denoted as θ

eqv
i,k , that satisfy π sin θ

eqv
i,k = Mĩπ sin θk + 2niπ, where ni is an

integer. From the definition of ai(θk), the angle θ
eqv
i,k can be regarded as the equivalent angle for the

true θk impinging on one traditional Mi-element ULA with half-wavelength spacing, which generates
the same steering vector as θk. The relation between true θk and its equivalent θ

eqv
i,k is thus given as

sin θ
eqv
i,k = Mĩ sin θk + 2ni (2)
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The signal model in Equation (1) amounts to K equivalent sources from angles θ
eqv
i,k impinging on

a traditional ULA simultaneously. The system model of the ith subarray of the co-prime array and its
equivalent uniform linear array is shown in Figure 2.

0 1 2 1iM 

2
i

M 

k

0 1 2 1iM 

2

(a)

(b)

,

eqv

i k

Figure 2. The System model of (a) the ith subarray and (b) its corresponding equivalent array of the
co-prime linear array. θk is the true DOA for the kth source, and θ

eqv
i,k is the equivalent angle.

3. Proposed DOA Estimation Method

The equivalent DOA equals to the true one only when Mĩ = 1. In the considered co-prime array,
since Mĩ > 1, there exist multiple equivalent angles θ

eqv
i,k for each true θk. The true DOA θk may be

one of the potential equivalent angles recovered by Equation (2), however, which one is the true DOA
cannot be determined by each subarray alone. According to the property of coprimeness, the true
DOAs can be uniquely estimated by finding the common angles in the two equivalent DOA sets
generated by the two subarrays, respectively.

In the following, we aim to find the equivalent DOAs from Equation (1). To avoid the high
complexity caused by spectral search, we propose to use the ESPRIT method.

3.1. Proposed Method

The steering matrix Ai of the ith subarray can be rewritten as

Ai=

[
Ai,1

the last row

]
=

[
the first row

Ai,2

]
(3)

where Ai,1 is the first Mi − 1 rows of Ai and Ai,2 is constructed from the last Mi − 1 rows.
The relationship between Ai,1 and Ai,2 is

Ai,2 = Ai,1J (4)

with J = diag
(

e−jπ sin θ
eqv
i,1 , e−jπ sin θ

eqv
i,2 , · · · , e−jπ sin θ

eqv
i,K
)

.

The eigen-decomposition of the array covariance matrix Ri = E
[
xi(t)xH

i (t)
]

of the ith
subarray yields

Ri = Us,iΛsUH
s,i + Un,iΛnUH

n,i (5)

Here E (·) and (·)H stand for statistical expectation and Hermitian transpose, respectively.
Us,i and Un,i denote the signal- and noise-subspace eigenvectors, respectively. Λs and Λn contain the
corresponding eigenvalues.
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The signal subspace eigenvector Us,i can be similarly partitioned as

Us,i=

[
Us,i,1

the last row

]
=

[
the first row

Us,i,2

]
(6)

where Us,i,1 = Ai,1G, Us,i,2 = Ai,2G = Ai,1JG, and G is a full rank K× K matrix. Then, we have

G−1JG =
(

UH
s,i,1Us,i,1

)−1
UH

s,i,1Us,i,2 (7)

The matrix
(

UH
s,i,1Us,i,1

)−1
UH

s,i,1Us,i,2 has the same eigenvalues as J, while J contains the
information of the equivalent DOAs. The equivalent DOAs can then be obtained by finding the

eigenvalues of the matrix
(

UH
s,i,1Us,i,1

)−1
UH

s,i,1Us,i,2. Specifically, assume the K eigenvalues are denoted
as dk(k = 1, 2, . . . , K), the equivalent DOAs of the ith subarray can be estimated as

θ̂
eqv
i,k = arc sin

(
dk
/

π
)

(8)

Let θ̂
eqv
i =

[
θ̂

eqv
i,1 , θ̂

eqv
i,2 , · · · , θ̂

eqv
i,K

]
. The candidate true DOAs can be recovered by Equation (2); i.e.,

θ̂cand
i = arcsin

(
1

Mĩ

(
sin θ̂

eqv
i − 2ni

))
(9)

Here the relationship −Mĩ ≤
(

sin θ̂
eqv
i − 2ni

)
≤ Mĩ must hold due to the constraint of the

sinusoid function. Hence, the set θ̂cand
i contains Mĩ × K candidate DOAs, among which only K angles

are true. According to the coprimeness of M1 and M2, the true DOAs are obtained by finding the K
common angles of the two candidate sets θ̂cand

1 and θ̂cand
2 . In practice, due to the effect of noise, the true

DOAs are estimated by seeking for the nearest angle pairs.

Remark 1. The two candidate sets θ̂cand
1 and θ̂cand

2 both contain the K true DOAs. In particular cases, except
for true DOAs, they may have some other common angles (e.g., the candidate DOAs of different sources in
different subarrays may have common angles). This may generate more than K common angles and cause
ambiguity as a result. Without loss of generality, we consider K = 2 sources, denoted as θ1 and θ2. Let θc both
exist in the candidate set of source 1 in the ith subarray and the candidate set of source 2 in the ĩth subarray; i.e.,
except for θ1 and θ2, they generate another common angle. The relations are denoted as sin θc = sin θ1 +

2mĩ
Mĩ

sin θc = sin θ2 +
2mi
Mi

(10)

where mĩ and mi are integers. Then we have the relation between θ1 and θ2 as

sin θ1− sin θ2=
2mi
Mi
−

2mĩ
Mĩ

(11)

It is observed from Equation (11) that only when mi 6= 0 and mĩ 6= 0, the particular (θ1, θ2) pair
will generate another common angle. For example, let us consider a co-prime linear array with M1 = 5
and M2 = 7 and assume θ1 = 60.0◦ and θ2 = 48.7◦. The two DOAs satisfy the relationship (11). The
corresponding ambiguous DOAs generated by each subarray are listed in Table 1. As can be seen,
for each source, the estimate of the two subarrays can generate one unique common angle—i.e., the
true DOA. However, when the two sources (θ1 = 60.0◦ and θ2 = 48.7◦) are considered, expect for true
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DOAs, the estimate of the two subarrays may generate another two common angles (i.e., −58.0◦ and
27.8◦). This violates the uniqueness and causes ambiguity as a result.

Table 1. Two directions of arrival (DOAs) and their corresponding ambiguous DOAs in each subarray.

θ1 = 60.0◦
Subarray 1 with M1 = 5 −58.0, −34.2, −16.1, 0.51, 17.1, 35.5, 60.0

Subarray 2 with M2 = 7 −47.2, −19.5, 3.8, 27.8, 60.0

θ2 = 48.7◦
Subarray 1 with M1 = 5 −74.4, −42.6, −23.1, −6.1, 10.4, 27.8, 48.7

Subarray 2 with M2 = 7 −58.0, −26.7, −2.8, 20.6, 48.7

However, notice that the incident DOAs are in the continuous range between −90◦and 90◦,
and only some particular angle pairs (θ1, θ2) that satisfy Equation (11) may generate another common
ambiguous angle, except for the true DOAs. Specifically, for arbitrarily given θ1, only some discrete
angles for θ2 follow the relationship Equation (11). Therefore, as compared to the continuous angle
range, the number of (θ1, θ2) pairs that satisfy Equation (11) is rare. Therefore, the probability of the
existence of a different common angle θc approaches zero and it is consequently a small probability
event. Even if this small probability event happens, it can be solved by the entire co-prime linear array.
The beamforming-related techniques, such as the classical beamforming approach (CBF) [18] and the
Capon’s approach (also known as the minimum variance distortionless response, MVDR) [19,20], can
be utilized to eliminate the problem. Specifically, the CBF spatial spectrum of the entire co-prime
array is

PCBF = aH
C (θ)RCaC (θ) (12)

and the MVDR spatial spectrum is

PMVDR =
1

aH
C (θ)R−1

C aC (θ)
(13)

where aC (θ) denotes the steering vector with respect to θ of the entire co-prime array, and RC is the
covariance matrix of the entire co-prime array. By finding the peaks of PCBF in Equation (12) or PMVDR
in Equation (13) the true DOAs can be estimated, and other ambiguous angles are eliminated. Thus,
the ambiguity can be resolved successfully.

Remark 2. In general, there exist K common angles, which are the true DOAs. However, if the incident angles
satisfy Equation (11), more than K common angles can be generated. We need to determine the number K̂
(K̂ ≥ K) of the common angles. Let N1 and N2, respectively, denote the numbers of the relevant angles (including
the true and ambiguous angles) for the first and second subarray, and let di denote the absolute value of angle
difference, where 1 ≤ i ≤ N1N2. By sorting di in ascendant order, we have

d1 ≤ d2 ≤ · · · ≤ dK ≤ · · · ≤ dN1 N2 (14)

For common angles of the two subarrays, the angle differences are small (nearly 0), while they become larger
for distinct angles. Define a decision variable as

D (n) =
dn+1 − dn

dn
, n = K, K + 1, · · · , N1N2 − 1 (15)

Notice that when both dn and dn+1 are the differences of common angles or distinct angles,
the decision variable will almost keep small. Meanwhile, if dn is the difference of common angles
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and dn+1 is the difference of distinct angles, the decision variable will become much larger. Thus,
the number of common angles can be estimated as

K̂ = arg max
n

D (n) (16)

When K̂ > K, the true K DOAs can be distinguished according to Equations (12) and (13).

3.2. Complexity Analysis

The complexity of different methods is provided in Table 2. The ESPRIT method with M
sensors and K sources requires covariance matrix estimation and the eigen-decomposition of both the

covariance matrix Ri and the matrix
(

UH
s,i,1Us,i,1

)−1
UH

s,i,1Us,i,2, and the corresponding complexities are

O
(

M2T
)
, O
(

M3), and O
(
3MK2 + 2K3), respectively. The resulting complexity of ESPRIT is given

as O
(

M2T + M3 + 3MK2 + 2K3). The complexity of the proposed method is given similarly. As is
shown in Table 2, the complexity of the proposed method is lower than that of ESPRIT.

Table 2. Computational complexity comparison.

ESPRIT O(M2T + M3 + 3MK2 + 2K3)

PSS [16] O((M2
1 + M2

2)T + M3
1 + M3

2+
J

M2
M1(M1 − K) + J

M1
M2(M2 − K))

Proposed O((M2
1 + M2

2)T + M3
1 + M3

2 + 3(M1 + M2)K2 + 4K3)

Note: M = M1 + M2 − 1, J is the number of sampling points. PSS: partial spectral search.

4. Results

In this section, we compare the proposed method with PSS [16] in co-prime arrays with M1 = 5
and M2 = 7. For fair comparison, the results of the traditional ESPRIT are also provided for two types
of half-wavelength spacing ULAs with M1 + M2 − 1 = 11 and M1M2 −min(M1, M2) + 1 = 31 sensors,
respectively. The former has the same sensor number as the considered co-prime array, but with less
aperture length, denoted as ESPRIT with the same sensor number (ESPRIT-SSN). The latter has the
same aperture length, but with more sensor elements, denoted as ESPRIT with the same aperture
length (ESPRIT-SAL). The Cramer-Rao bound (CRB) for the co-prime array geometry is also given as a
benchmark [21]. The searching grid for PSS is set as 0.1◦.

In the first test, we compare the average root mean square error (RMSE) of different methods.
Two uncorrelated sources are assumed to impinge on the array from directions 21◦ and 41◦. Figure 3
plots the RMSE performance versus signal-to-noise ratio (SNR) via 200 Monte Carlo simulations with
T = 200. As is shown, under the same sensor number condition, the proposed method outperforms
ESPRIT-SSN greatly. With respect to the same aperture length, the proposed method can achieve almost
the same estimation accuracy as ESPRIT-SAL. The proposed method is inferior to PSS at low SNR,
and gradually exceeds PSS with the increase of SNR. Regarding the complexity, the ESPRIT-SSN,
ESPRIT-SAL, PSS, and proposed method requires O

(
2.57× 104), O (2.22× 105), O (3.17× 104),

and O
(
1.55× 104) complexities, respectively. The average running time for the four methods are

5.74 s, 15.60 s, 12.98 s, and 2.66 s. The complexity of the proposed method is lower than that of others,
implying that the proposed method needs less memory. Especially, to achieve the same estimation
accuracy, the proposed method only requires about 10% computational complexity as compared to
ESPRIT-SAL. Therefore, the proposed method can achieve a better complexity–performance tradeoff.
Further, Figure 4 depicts the RMSE performance versus snapshot number with SNR = 5 dB. The
performance of the proposed method is almost the same as ESPRIT-SAL and is superior to ESPRIT-SSN,
but is slightly weaker than that of PSS. However, the performance gap becomes smaller with the
increase of snapshot number.
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Figure 3. Root mean square error (RMSE) vs. signal-to-noise ratio (SNR), T = 200. CRB: Cramer–Rao
bound; ESPRIT: estimation of signal parameters via rotational invariance technique; ESPRIT-SAL:
ESPRIT with the same aperture length; ESPRIT-SSN: ESPRIT with the same sensor number.
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Figure 4. RMSE vs. Snapshot Number, SNR = 5 dB.

In the second test, we investigate the resolution probability performance. The two sources are
said to be resolvable [22] if both

∣∣∣θ̂1 − θ1

∣∣∣ and
∣∣∣θ̂2 − θ2

∣∣∣ are smaller than |θ1 − θ2|
/

2, where θk and θ̂k

(k = 1, 2) are the true and estimated DOAs, respectively. We set θ1 = 20◦ and θ2 = θ1 + ∆θ, where ∆θ

is the control variable. We fix SNR = 5 dB and T = 200 and plot the resolution probability against ∆θ

in Figure 5. As can be seen, the resolution ability is enhanced with the increase of ∆θ. The proposed
method provides almost the same resolution performance as ESPRIT-SAL, but with substantially
reduced complexity. The proposed method provides the best resolution performance as compared to
ESPRIT-SSN and PSS.

To eliminate the ambiguity for some particular angle pairs that satisfy Eqaution (11), we give
the ambiguity check results in Table 3. For θ1 = 48.7◦ and 60.0◦ as in Table 1, the estimate of two
subarrays may generate another two common angles except for true DOAs; i.e., −58.0◦ and 27.8◦.
We can see that the true DOAs are checked successfully by both CBF and MVDR. Notice that the spatial
output powers for MVDR at true DOAs are much higher than that of other common DOAs, thus the
MVDR-based check approach has superior resolution ability. However, since an inverse operation
of the covariance matrix is required, the MVDR-based approach has a heavy computation burden.
Therefore, the CBF-based approach is more feasible when real-time processing is required.
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Figure 5. Resolution probability versus ∆θ, with θ1 = 20◦, θ2 = θ1 + ∆θ.

Table 3. Ambiguity check results of classical beamforming (CBF) and minimum variance distortionless
response (MVDR) with T = 200 and SNR = 5 dB.

θ −58.0◦ 27.8◦ 48.7◦ 60.0◦

PCBF|PMVDR 0.6122|0.0931 0.5974|0.0926 1.3082|0.9561 1.2529|0.9454

True or false false|false false|false true|true true|true

5. Conclusions

In this paper, we have proposed a low-complexity ESPRIT-based DOA estimation method for
co-prime arrays. We firstly map the true DOAs into several equivalent angles for each source, which are
regarded as the DOAs impinging on traditional uniform linear array. We obtain the equivalent DOAs
by ESPRIT and then recover the candidate DOAs according to their relationship. Finally, we uniquely
estimate the true DOAs by finding the common angles of the candidate DOAs of the two subarrays.
Simulation results show that the proposed method achieves an improved complexity–performance
tradeoff in terms of estimation accuracy and resolution ability, as compared to other existing methods.
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Abbreviations

DOA Direction of arrival
ULA Uniform linear array
ESPRIT Estimation of signal parameters via rotational invariance technique
MUSIC Multiple signal classification
TSS Total spectral search
PSS Partial spectral search
CBF Classical beamforming
MVDR Minimum variance distortionless response
ESPRIT-SSN ESPRIT with the same sensor number
ESPRIT-SAL ESPRIT with the same aperture length
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CRB Crame-Rao bound
RMSE Root mean square error
SNR Signal-to-noise ratio
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