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Abstract: In practical localization system design, researchers need to consider several aspects to
make the positioning efficiently and effectively, e.g., the available auxiliary information, sensing
devices, equipment deployment and the environment. Then, these practical concerns turn out to be
the technical problems, e.g., the sequential position state propagation, the target-anchor geometry
effect, the Non-line-of-sight (NLOS) identification and the related prior information. It is necessary
to construct an efficient framework that can exploit multiple available information and guide the
system design. In this paper, we propose a scalable method to analyze system performance based
on the Cramér–Rao lower bound (CRLB), which can fuse all of the information adaptively. Firstly,
we use an abstract function to represent all of the wireless localization system model. Then, the
unknown vector of the CRLB consists of two parts: the first part is the estimated vector, and the
second part is the auxiliary vector, which helps improve the estimation accuracy. Accordingly, the
Fisher information matrix is divided into two parts: the state matrix and the auxiliary matrix. Unlike
the theoretical analysis, our CRLB can be a practical fundamental limit to denote the system that
fuses multiple information in the complicated environment, e.g., recursive Bayesian estimation based
on the hidden Markov model, the map matching method and the NLOS identification and mitigation
methods. Thus, the theoretical results are approaching the real case more. In addition, our method
is more adaptable than other CRLBs when considering more unknown important factors. We use
the proposed method to analyze the wireless sensor network-based indoor localization system. The
influence of the hybrid LOS/NLOS channels, the building layout information and the relative height
differences between the target and anchors are analyzed. It is demonstrated that our method exploits
all of the available information for the indoor localization systems and serves as an indicator for
practical system evaluation.

Keywords: indoor localization; Cramér–Rao lower bound; Bayesian estimation; non-line-of-sight;
wireless sensor network

1. Introduction

Locating a target using a wireless sensor network (WSN) is an efficient way to support
multiple Internet of Things (IoT) applications, and many measurement and sensing techniques
are proposed [1]. The techniques of measurement, such as angle-of-arrival (AOA), time-of-arrival

Sensors 2016, 16, 1346; doi:10.3390/s16091346 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2016, 16, 1346 2 of 22

(TOA), time-difference-of-arrival (TDOA) and received-signal-strength (RSS), play important roles
in many applications, e.g., navigation, localization, target tracking and location-based service
for mobile communication [2,3]. Just like other wireless applications, localization systems are
sensitive to the signal noise. The major sources that influence the measurements result from the
multi-path effect and non-line-of-sight (NLOS) during the propagation of the wireless signal due
to the complicated infrastructures or environment. In addition, motivated by cloud computing and
urban sensing technologies, multiple sensors are deployed widely, and much information in the
complicated environment is also useful to calibrate the target position, e.g., map information and the
trajectory records.

The main purpose of the localization system is the position estimation accuracy for a better
location-based service. Thus, many research efforts focus on developing accurate location estimation
algorithms [4]. The key idea is to fuse multiple pieces of information, derive the relationship to the
target position and eliminate the error. The most popular tools are the nonlinear filters based on
the recursive Bayesian estimation model, e.g., extended Kalman filters, particle filters and Gaussian
filters, which fuse the prior information of the previous state and the current measurement data to
derive positions [5–7]. One important factor that may influence the target position estimation is the
NLOS signals. Thus, many algorithms try to identify the NLOS measurements and mitigate or adapt
them based on the prior knowledge to improve the position estimation [8,9]. A hybrid method that
combines the recursive Bayesian model and NLOS information is proposed according to the jump
Markov model estimation [10]. Multiple information fusion methods are also studied, which fuse
both TOA and RSS measurements to improve the estimation [11,12]. The map or building layout
information is also modeled for the wireless localization system and is applied for estimation [13,14].
It can be found that with the development of the sensing technique, more and more information will
be integrated into the sensors and used for localization in the future. Thus, the localization system
requires a scalable architecture to fuse such information. Although the indoor localization system is
designed via employing multiple pieces of information, a theoretical analysis for such heterogeneous
information is not provided yet.

Before the practical implementation of the WSN localization system, theoretical analysis is also
required to evaluate the performance of the heterogeneous information fusion. The Cramér–Rao lower
bound (CRLB) as the optimal performance indicator for the unbiased estimator is widely applied in
localization and positioning systems. Theoretical investigations have been researched as the nonlinear
problem for wireless localization systems. Tichavsky et al. provided the formulation of recursive
posterior CRLB for nonlinear filters based on the Bayesian framework [15]. Zuo et al. proposed
a conditional CRLB, which considered that the posterior probability is conditioned on the prior
probability [16]. For range-based wireless localization system, many research works have provided
CRLB results for different scenarios. A generalized CRLB (G-CRLB) of the wireless system is proposed
for the NLOS environment [17]. The hybrid LOS/NLOS environment is analyzed, and the authors
indicated that with prior knowledge of the wireless transmission channel, the estimation performance
can be improved [17]. Shen et al. defined an equivalent CRLB (E-CRLB) for a general framework of the
wideband wireless network [18]. The multi-path and NLOS effect are both considered, and the CRLB
with or without prior information is compared to the E-CRLB [18]. A linear CRLB (L-CRLB) is proposed,
which considers the linearized effect and provided the lower bound for such an estimator [19]. Other
similar works also give CRLB for different ranging techniques [20,21]. Although some other methods
can be used for performance analysis [22], CRLB is still popular for wireless localization researchers
due to its simplicity and general expression. Although the above-mentioned CRLBs try to provide the
general fundamental limits of the localization systems, they assume only parts of the factors in the
localization problem, which limit their applications. In this case, these CRLBs still cannot be analyzed
precisely since more information makes the environment complicated, and they are influenced by
many unknown factors. Therefore, a general scalable framework of CRLB is required to further collect
more information and evaluate the practical environment.
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In this paper, we propose a general analysis method to evaluate the practical WSN localization
system, which can fuse multiple pieces of information. The first major contribution is that we construct
a scalable framework to model the multiple information fusion in the localization problem generally.
We derive the Fisher information matrix (FIM) based on the proposed abstract function of all of the
wireless localization system model instead of using a specific wireless propagation model. Furthermore,
we employ an extendable estimated random vector θ, which contains all of the unknown parameters,
e.g., the previous estimated state, the current state and the unknown indeterministic parameters
that may influence the estimation accuracy. Then, we divide θ into two parts: the estimated state
vector, which indicates the final position estimation, and the auxiliary vector, which helps improve
the estimation accuracy. When θ only contains the state vectors or together with NLOS indicators,
the our method is equivalent to the above-mentioned CRLBs. However, when a large number of
parameters is involved in the estimation, e.g., the map information, the previous state, the relative
height difference or the prior information of the unknown random parameters, our method can still
provide practical optimal performance of the localization systems. The major advantage is that it is
suitable for complicated and dynamic environment and fully considers the prior information, hybrid
unknown factors and the recursive feature of the tracking algorithms.

The second contribution is that we employ the proposed CRLB framework to analyze the TOA
range-based indoor localization system as a case study. The simulation environment considers
all of the possible factors, e.g., the target-anchor geometry effect, the building layout, the relative
height differences between the target and anchors, the NLOS transmission channel, the related prior
information and the recursive feature of the tracking algorithm. The impact of each factor for the
estimation accuracy is illustrated in the simulation. We use the spatial position error distribution (SPED)
as a metric to evaluate the performance. The SPED indicates not only the target-anchor geometry
effect, but also illustrates the impacts of height differences between the target and anchors, NLOS
transmission and building layout information for the indoor localization. In addition, the impacts
of the related prior information are also evaluated via SPED. To indicate which factor is important
to the location estimation, we numerically evaluate the NLOS ranging, the height difference and the
prior information in multiple scenarios. For the dynamic moving trajectories, the recursive form of the
CRLB is applied. Finally, the estimation improvement using multiple anchors is also presented in the
simulation. The results indicate that the NLOS ranging measurement mainly influences the estimation
accuracy, and the prior information of the NLOS channel and the target position play important roles
for improving the estimation. The relative height differences also degrade the estimation accuracy
if we ignore them. However, with reliable prior information, we can make the estimation accuracy
approach the location performance without any relative height differences. In general, our proposed
method is suitable to exploit all of the available information to analyze the performance of the WSN
localization system.

The rest parts of this paper is organized as follows: Section 2 provides the WSN localization
system model; Section 3 introduces the scalable CRLB framework; then, we use the CRLB to derive
the formulation of a practical TOA system in Section 4; the simulation evaluations and analysis are
illustrated in Section 5; and Section 6 concludes the whole paper. To make the content more clear, we
list all of the fundamental notations in Table 1 for the mathematical formulation.



Sensors 2016, 16, 1346 4 of 22

Table 1. Notations and explanations.

xt The target position state ht The measurement function

aj The target position vector θ Unknown state vector

kt The relative height vector J(θ) Fisher information matrix

l The NLOS drift JP The prior matrix

zt The measurement vector JD The measurement matrix

qt The prediction noise JK Nonlinear auxiliary matrix

vt The measurement noise JL Linear auxiliary matrix

dj() The distance function JS State matrix

ft() The prediction function JA Auxiliary matrix

2. System Model

In the WSN localization system, the mobile device with an unknown position is called the target,
such as a mobile sensor node or robot. The position state of the target is denoted by xt = [pX

t pY
t ]

T ,
where pX

t and pY
t are the coordinates in the two-dimensional positioning system, and T is the transpose

operator. The wireless sensor devices with known positions, which measure the ranges (or distances) to
the target, are called anchors. For each anchor, the position is denoted by aj = [aX

j aY
j ]

T , where aX
j and

aY
j are the coordinates. In this paper, we assume the WSN localization system uses the time-of-arrival

(TOA) method to measure the distance between the target and anchor. Thus, we will have the relative
factors that may influence the TOA and the final location estimation.

2.1. Time-Of-Arrival Ranging

In the TOA measurement method, the distance between the target and anchor is calculated
according to the wireless propagation time. Consider a synchronous wireless communication, where
clocks at the target and anchors are strictly synchronized. Anchors send the ranging measurements
periodically via a time-division multiplexing (TDM) method based on the related WSN protocol.
The target receives a radio signal transmitted from one anchor via a single propagation path. Let τ

j
t be

the time delay of the received signal from anchor j at time t:

τ
j
t =

1
c

[
||xt − aj||+ l j

t

]
(1)

where c = 3× 108 m/s is the propagation speed of the signal, aj = [aX
j aY

j ]
T is the anchor position

and || · || denotes the distance between two positions; l j
t ≥ 0 is the range drift, which is caused by the

NLOS effect. The indicator l j
t = 0 for the LOS propagation, whereas l j

t > 0 for the NLOS propagation.
For many indoor systems, the TOA ranging measurement is obtained through the packet transmission
time based on the network protocol; thus, the TOA is denoted as the time observation instead of the
received waveform, as depicted in [17,18]:

zj
t = cτ

j
t + vj

t (2)

where zj
t is the range measurement for anchor j, the measurement function hj

t((d(xt, k), l j
t)) = cτ

j
t and

vj
t is the measurement noise for anchor j. The measurement noise vj

t follows the zero-mean Gaussian
distribution vj

t ∼ N (0, Rj), where Rj is the variance of the ranging noise.
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2.2. TOA Noise

The localization performance mainly relies on the measurement noise. Thus, it is necessary to list
the factors that are related to the TOA noise. TOA relies on the quality of detecting the direct path (DP)
signal. Thus, the TOA ranging not only tolerates the attenuation of the signal strength, but also depends
on the peak of all received multipath signals related to the bandwidth. Thus, the radio interference,
the multipath effect and the scenario variability affect the ranging error. In addition, the TOA ranging
noise also depends on the system noise. The system noise comes from the unsynchronized signals
and the disordered received signals, which are transmitted from different sensors simultaneously.
Apart from the NLOS effect, the comprehensive impacts on the ranging noise can be generally modeled
as the normal distribution [23].

2.3. Relative Height

Another important factor that should be considered in the real-world system is that the localization
happens in the 3D world. In many theoretical research works, it is assumed that the anchors and targets
are on the same plane in many real localization applications. The goal is to calculate 2D positions,
the X−Y coordinates of the target, which is already implemented in our daily apps. In this case, the
height difference between anchor and target is ignored. However, the existing height difference in
the real world actually affects the accuracy in the 2D position estimation. Here, we define the height
difference between the anchor and target as relative height, which is a positive variable in the Z axis.
Then, we use kt ≥ 0 to denote the coordinate of the target in the Z axis and aZ

j to denote the coordinate
of the anchor. Thus, the relative height is kt − az

j at time t. If the relative height is zero or assumed to be
zero in the simulation, we define the range measurement as 2D-ranging. The distance of 2D-ranging
for each anchor is formulated as:

dj(xt, k) =
√
(pX

t − aX
j )

2 + (pY
t − aY

j )
2 (3)

where dj(xt, kt) denotes the distance function from anchor j to the target. If the relative height between
the anchor and target is not zero, which is always applicable in the real case, the measurement depends
on 3D coordinates, then we define the range measurement as 3D-ranging. The 3D-ranging for each
anchor is formulated as:

dj(xt, kt) =
√
(pX

t − aX
j )

2 + (pY
t − aY

j )
2 + (kt − aZ

j )
2 (4)

Figure 1 illustrates the difference between 2D-ranging and 3D-ranging. Suppose a person or a
robot is carrying a mobile device and walking in the building. Anchor 1 and Anchor 2 are deployed on
the roof, and the distance to the target depends on the target position on the ground and the relative
height. Even if the target is just below the anchor, the measurement is still not zero. Anchor 3 is
deployed on the same plane of the target. In this case, the range measurement is 2D-ranging. However,
2D-ranging is an ideal case, and the anchors cannot be always on the same plane of the targets. No
matter whether 2D-ranging or 3D-ranging, the position estimation is still for 2D in the playing field.
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Anchor 1 Anchor 2

Anchor 3

3D-ranging 3D-ranging

2D-ranging

Relative Height

Figure 1. Demonstration of 3D-ranging.

3. Scalable Framework of FIM

We attempt to construct the scalable analytical framework according to the Bayesian estimation
process. The Bayesian estimation is an efficient way to fuse multiple pieces of information. Firstly, we
build the predict-update model of the Bayesian estimation framework. Then, we derive the scalable
Fisher information matrix.

3.1. Bayesian Model

According to the Bayesian estimation framework, the relationship between the estimated state xt

and the measurement zt follows:
xt = ft(xt−1) + qt (5)

where (5) is the prediction function. In (5), the target’s movement is based on the transition function
ft(), and qt is the prediction noise, which follows the normal distributionN (0, Qt), where Qt indicates
the covariance matrix.

In order to generally denote the wireless localization model, we propose an abstract measurement
function of the unknown vectors:

zt = ht(d(xt, k), l) + vt (6)

where (6) is the abstract measurement function, which is a general expression based on several range
measurement techniques. In (6), zt = [z1

t . . . zj
t . . . zN

t ]T is the measurement vector, and N denotes
the number of anchors. Note that zt can represent the RSS vector or TOA vector, and (6) can be
rewritten according to the different measurement techniques. Then, ht() = [h1

t () . . . hj
t() . . . hN

t ()]T

is the nonlinear observation function, which relates to the actual received signal waveforms at the
target from the anchors; vt = [v1

t . . . vj
t . . . vN

t ]T is the ranging noise, which is assumed as independent
noise; d() = [d1() . . . dj() . . . dN()]

T represents the distance vector between the target and anchors.
The auxiliary parameters are defined as the optional unknown factors that may influence the estimation.
In the position estimation, the auxiliary parameters are not necessarily calculated. However, the
information of such parameters can improve the estimation accuracy. We define two kinds of
auxiliary parameters that may influence zt in (6). The first one is the nonlinear auxiliary vector
k = [k1 . . . k j . . . kNk ]

T , which affects the actual distance together with the position state xt, and Nk
denotes the number of elements of k. The second one is the linear auxiliary vector l = [l1 . . . lj . . . lNl ]

T ,
which affects the observed measurement zt and is independent of xt, where Nl ≤ N indicates the
number of the parameters. Since (6) is a general expression for several range measurement techniques,
it should be specified and rewritten in a particular system. In this paper, (6) is simplified as the TOA
formulation, which is discussed in the following sections. According to the Bayesian theorem, the
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posterior probability of xt is expressed as p(xt|zt, xt−1) = p(xt|xt−1)p(zt|xt), where t− 1 indicates the
previous time interval, and p(xt|xt−1) is the prior probability [24].

3.2. Recursive FIM

Our analysis fully considers all of the possible unknown random factors that may influence the
position estimation; hence, the parameter vector includes: the current state xt, the previous state xt−1

and auxiliary parameter vectors k and l. Thus, θ is expressed as:

θ ,
[

xT
t xT

t−1 kT lT
]T

(7)

The CRLB, which is given by the inverse of the Fisher information matrix (FIM), sets the lower
limit for the variance (or covariance matrix) of any unbiased estimators of an unknown parameter
(or unknown parameters) [25]. If p(θ, zt) denotes the joint probability density function (PDF) of
observations zt and the state θ, then the score function is defined as the gradient of its log-likelihood:

U(xt) , ∇θ ln p(θ, zt) (8)

where ∇θ =
[

∂
∂`1

, . . . , ∂
∂`N

]T
is the operator of first order partial derivatives. The FIM, J(θ), is the

covariance of the score function:

J(θ) , E
{
∇θ ln p(θ, zt) [∇θ ln p(θ, zt)]

T
}

(9)

where E {·} indicates the expectation operator. Additionally, the CRLB is just the inverse of FIM, and
the estimation covariance cannot be lower than it:

Covθ(θ̃) � {J(θ)}−1 (10)

where “A � B” should be interpreted as matrix A− B is non-negative definite.
Since p(θ, zt) = p(zt|θ)p(θ) is based on the Bayesian theorem, it is easily seen that J(θ) can be

decomposed into two parts:
J(θ) = JD(θ) + JP(θ) (11)

where JD(θ) represents the information obtained from measurement data and JP(θ) represents the
prior information.

Firstly, we use the notations h = ht(d(xt, k), l), hj = hj
t(d(xt, k), l) and decompose JD using the

chain rule as:
JD(θ) = H · Jh ·HT (12)

where H = [∇θh] and Jh is the FIM conditioned on h:

Jh = E
{
∇h ln p(zt|θ) [∇h ln p(zt|θ)]T

}
(13)

The matrix H is further decomposed into four components:

H = [Ht Ht−1 K L]T (14)

where Ht = [∇xt h]2×N , Ht−1 = [∇xt−1h]2×N , K = [∇kh]Nk×N and L = [∇lh]Nl×N . Since d is
independent of the previous state xt−1, Ht−1 = 0. Then, H is formulated as:

H = [Ht 0 K L]T (15)
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For Jh, we can use diagonal matrices of order N to represent it:

Jh = Λ = diag(λ1, . . . , λj, . . . , λN) (16)

where the diagonal term λj depends on hj
t() and will be derived based on the typical system later.

Then, JD, which is a (4 + Nk + Nl)× (4 + Nk + Nl) matrix, is written as:

JD = H ·Λ ·HT

=


D11 0 D13 D14

0 0 0 0
DT

13 0 D33 D34

DT
14 0 DT

34 D44

 (17)

where:
D11 = HtΛHT

t
D13 = HtΛKT

D14 = HtΛLT

D33 = KΛKT

D34 = KΛLT

D44 = LΛLT

(18)

Without prior information, JD cannot indicate the CRLB directly, because det(JD) = 0 and JD is
not reversible. However, the CRLB can also be attained through a calculation rule. The calculation
rule is illustrated in the next subsection. Next, we derive JP. The prior probability for θ is extended as
p(θ) = p(xt|xt−1)p(k)p(l), then the prior information is written as:

ln p(θ) = [ln p(xt|xt−1)] + ln p(k) + ln p(l) (19)

where p(k) and p(l) are the independent prior information of xt and xt−1. If we decompose θ into two
sub-vectors: the state vector [xt xt−1]

T and the auxiliary vector [k l]T . Then, JP can be formulated as:

JP = E
{
∇θ ln p(θ) [∇θ ln p(θ)]T

}
=

[
JP11 JP12

JT
P12

JP22

] (20)

where JP11 is the recursive form of xt and xt−1, which is formulated by Tichavsky et al. [15]:

JP11 =

[
M11 M12

MT
12 M22 + J(xt−1)

]
(21)

where:
M11 = Q−1

t
M12 = ∇xt−1ft(xt−1)Q−1

t
M22 = ∇xt−1ft(xt−1)Q−1

t
[
∇xt−1ft(xt−1)

]T
(22)

where J(xt−1) is the previous FIM of xt−1. Additionally, JP12 are 0 matrices, since p(k) and p(l) are
independent of xt and xt−1:

JP12 =

[
0 0
0 0

]
(23)
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The prior distribution p(xt|xt−1) is also independent of l and k; thus, JP21 = JT
P12

= 0. Finally, the
last element JP22 is expressed as:

JP22 =

[
JK 0
0 JL

]
(24)

where JK and JL are the FIMs conditioned on k and l, respectively:

JK = E
{
∇k ln p(k) [∇k ln p(k)]T

}
JL = E

{
∇l ln p(l) [∇l ln p(l)]T

} (25)

The formulations of JK and JL are based on the features of k and l, which are discussed in the
later sections. Then, substitute (17) and (20) into (11); we obtain:

J(θ)=


M11 + D11 M12 D13 D14

MT
12 M22 + J(xt−1) 0 0

DT
13 0 D33 + JK D34

DT
14 0 DT

34 D44 + JL

 (26)

However, J(θ) is a matrix of high dimensions, while only a small submatrix J−1(xt) , [J−1(θ)]2×2

is of interest. Using the form of the Schur complement of the submatrix [26], we decompose the FIM
into two parts: the state matrix JS and the auxiliary matrix JA:

J(xt) = JS − JA (27)

where:
JS = M11 + D11 −M12 (M22 + J(xt−1))

−1 MT
12

JA = [D13 D14]

[
D33 + JK D34

DT
34 D44 + JL

]−1

[D13 D14]
T (28)

Additionally, the formulation of each element can be found in (18), (22) and (25).

3.3. Calculation Rule

Equation (27) only holds when all of the elements in θ are to be estimated and the prior information
for the whole θ is available. If the CRLB is used to analyze a specific localization system, not all of the
elements are necessary for θ, and some vectors are absent sometimes. For instance, for the non-recursive
scenario, the system does not consider xt−1. In addition, when the system has a deterministic value of
the auxiliary vectors, k and l are not estimated and useless for J(xt). Thus, the calculation principle for
our CRLB is that: when any vector in θ is absent, the related matrix in (27) turns into 0, and we will
treat such a 0 matrix as the empty matrix, then we mitigate the empty matrix for further calculation.

Here, we consider two examples. The first example is that the estimated vector θ does not include
xt−1 and k, then M12, M22, J(xt−1), JK, D13, D33 and D34 are 0 and mitigated from (27):

J(xt) = M11 + D11 −D14 [D44 + JL]
−1 DT

14 (29)

which has the same form as the formulation of E-CRLB in the wideband NLOS environment [18] and
L-CRLB for the linear formulation [19].

The second example is that the estimated vector θ does not include k and l, and JA is empty, then
only JS remains, which is the form for the recursive nonlinear filter [15]:

J(xt) = M11 + D11 −M12 [M22 + J(xt−1)]
−1 MT

12 (30)



Sensors 2016, 16, 1346 10 of 22

4. Application to a TOA WSN Localization System

In this section, we apply the proposed CRLB to analyze the time-of-arrival (TOA)-based WSN
localization systems. Note that this paper provides a scalable framework for theoretical analysis rather
than a particular analysis. Thus, our goal is not to find the major impacts or factors via mathematical
derivation, but through the numerical simulations. In addition, according to the formulation of (27),
many factors are involved in the calculation. It is not easy to analyze them via a single formulation.
Thus, after enumerating the important factors in the TOA system, we will evaluate the performance
via numerical analytical simulations. The impacts of the practical conditions, e.g., the real 3D anchor
deployment and the NLOS transmission based on the building layout, are formulated. The related
parts in (26) are derived for both cases with and without prior knowledge.

4.1. Relative Height

As mentioned before, no matter whether 2D-ranging or 3D-ranging, the position estimation is still
for 2D in the playing field, which means we just want to obtain xt = [pX

t pY
t ]

T and not kt. However, for
CRLB analysis, we still consider if kt is involved in the calculation and check whether the estimation
accuracy is influenced. Then, Ht is obtained:

Ht =

 ∂d1
t (xt ,kt)

∂pX
t

. . . ∂dj
t(xt ,kt)

∂pX
t

. . . ∂dN
t (xt ,kt)

∂pX
t

∂d1
t (xt ,kt)

∂pY
t

. . . ∂dj
t(xt ,kt)

∂pY
t

. . . ∂dN
t (xt ,kt)

∂pY
t

 (31)

where: 
∂dj

t(xt ,kt)

∂pX
t

=
pX

t −aX
j√

(pX
t −aX

j )
2+(pY

t −aY
j )

2+(kt−aZ
j )

2

∂dj
t(xt ,kt)

∂pY
t

=
pY

t −aY
j√

(pX
t −aX

j )
2+(pY

t −aY
j )

2+(kt−aZ
j )

2

(32)

Then, K = [∇kt d(xt, kt)]1×N is expressed as:

K =
[

∂d1
t (xt ,kt)
∂kt

. . . ∂dj
t(xt ,kt)
∂kt

. . . ∂dN
t (xt ,kt)

∂kt

]
(33)

where:
∂dj

t(xt, kt)

∂kt
=

kt − aZ
j√

(pX
t − aX

j )
2 + (pY

t − aY
j )

2 + (kt − aZ
j )

2
(34)

Since xt and kt are within the same function d(xt, kt), Ht and K are both derived from d(xt, k).
In order to analyze the impacts of xt and kt, we decompose the matrix and obtain (31) and (33).
For a 3D positioning case, we can combine Ht and K together to indicate the 3D position state.
However, it is more convenient to separate Ht and K to analyze the estimation performance of xt in a
2D positioning case.

If any prior information is unknown to the system, substitute (31) and (33) into (27), then we obtain:

J(xt) = HtΛHT
t −HtΛKT(KΛKT)KΛHT

t (35)

For the prior information of kt, we assume that the target is always above the ground, which
is kt ≥ 0. Thus, we apply the Gamma distribution to indicate the potential distribution of kt,
where kt ∼ G(αk, βk)(kt) = (βk)

αk

Γ(αk)
kt

αk−1 exp(−βkkt), αk is the shape parameter and βk is the rate
parameter. For the Gamma distribution, Jk is complicated. To obtain an analytical expression,
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we assume αk > 2 for simplicity. Then, the Gamma function is Γ(αk) =
∫ +∞

0 exp(−x)xαk−1dx.

Thus, Jk = E
(

∂
∂k G(αk, βk)(k)

)2
is derived as:

Jk =β2
k −

2(αk − 1)βk
Γ(αk)

∫ +∞

0
β

αk
k kt

αk−2 exp(−βkkt)dkt

+
(αk − 1)2

Γ(αk)

∫ +∞

0
β

αk
k kt

αk−3 exp(−βkkt)dkt

(36)

Use the property Γ(αk) = αkΓ(αk − 1), and substitute it into (36); we obtain:

Jk =
β2

k
αk − 2

(37)

4.2. NLOS Impact

We use the vector l to represent the NLOS indicator. In the TOA system, the NLOS delays the
wireless packet propagation linearly. Thus, l is the linear auxiliary vector. We assume there are
Nl ≤ N NLOS measurements, and the drift for each measurement is independent of the others, then
L = [∇lh]Nl×N is formulated as:

L =


∂h1

t
∂l1

. . . ∂h
Nl
t

∂l1
. . . ∂hN

t
∂l1

...
. . .

...
. . .

...
∂h1

t
∂lNl

. . . ∂h
Nl
t

∂lNl
. . . ∂hN

t
∂lNl


=
(

INl 0
)

(38)

where INl is the identity matrix of order Nl , and the rest is a Nl × (N − Nl) zero matrix due to the
independent condition for the LOS measurement. As mentioned before, the zero matrix is mitigated
during the calculation, then L = INl . Note that L indicates the sub-matrix of the FIM, which means
that the NLOS condition is unknown to the system. Then, the system should also estimate the NLOS
parameters together with the position state in the real environment. In this case, the estimated error is
propagated and degrades the position estimation.

Since the range drift for the NLOS is also nonnegative, we still use the Gamma distribution as
the prior information lm ∼ G(am, bm)(lm) =

(bm)am

Γ(am)
lam−1
m exp(−bmlm) according to [17], where am ≥ 2

is the shape parameter, bm is the rate parameter and m is the m-th NLOS measurement. Similar to (37),
we obtain JL:

JL = diag(
b2

1
a1 − 2

, . . . ,
b2

m
am − 2

, . . . ,
b2

Nl

aNl − 2
) (39)

where JL is the prior matrix for L, which illustrates that the system can use the prior information to
determine whether a measurement is LOS or NLOS if this information is unknown. In this case, the
estimation error can be reduced to some extent.

5. Simulation

We set up several WSN localization simulations to evaluate the analytical performance. In each
simulation, we consider several different factors, e.g., the recursive process during the target tracking,
estimations with and without considering l and kt. To make the results clear, we mark the CRLBs
for different situations by adding superscripts and subscripts, which can be depicted as CRLB...

....
The subscripts indicate the considered vectors, including the state vector and the auxiliary vector. This
means that the system contains other factors in the ranging measurement, e.g., relative height or NLOS
measurement or both. The superscripts indicate the available prior information of the related vectors.
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For instance, if we want to simulate the estimation with the NLOS range drift, the results of the CRLB
are marked by CRLBxt ,l . Additionally, if the prior information of xt is attained in the simulation,

the results are marked by CRLBxt
xt ,l

. For the recursive estimation, we use the notation CRLBxt−1,l
xt ,l

to
indicate the results, which considers the prior state xt−1. Note that, the superscript of xt in CRLBxt ,...

...
indicates that we have arbitrary prior knowledge of xt. This information is provided directly by the
system instead of recursive estimation; while the superscript of xt−1 in CRLBxt−1,...

... also means the
prior knowledge of xt. However, such information is obtained based on the previous estimation of xt−1

in the recursive target tracking. Thus, we use CRLBxt ,...
... to analyze the static positioning scenarios and

use CRLBxt−1,...
... to analyze the dynamic continuous target tracking scenarios. Some CRLB notations

that appear in the following sections are listed below.

• CRLBxt : Classical CRLB without any prior information, relative height or NLOS measurement
• CRLBxt ,kt : CRLB when the relative height exists
• CRLBxt ,l : CRLB with the NLOS measurement
• CRLBxt ,kt ,l : CRLB both contains the relative height and NLOS measurement

• CRLBkt
xt ,kt

: CRLB with the prior information of the relative height

• CRLBl
xt ,l : CRLB with the prior information of NLOS measurement

• CRLBxt ,...
xt ,...: CRLB with the arbitrary prior information of xt in the static scenario

• CRLBxt−1,...
xt ,... : CRLB with the prior information based on xt−1 in the dynamic scenario

To approach the real environment, we initially set the related parameters according to the test
building in [27]. Since the localization system can be affected by many factors, we tune the parameters
to provide a comprehensive analysis in the following simulations, e.g., kt, l and the number of anchors.
To better understand the performances in multiple environments, we uniformly locate the anchors
in the SPED evaluation. Additionally, we evaluate the performances considering the relative height,
NLOS and recursive estimation based on randomly-deployed anchors and Monte Carlo simulation to
draw a general performance. In the real experiment, the anchors are randomly deployed throughout
the whole building.

5.1. Spatial Position Error Distribution

In the first simulation, a 100× 100 m2 playing field with four anchors is constructed. All of the
anchors are deployed on the roof being 2.5 m high, and the target is about 0.5∼1 m. To approach the real
applications, we use several statistical results according to [27]. We set the relative height as the constant
value 1.5 m. The range error for each anchor follows zero-mean Gaussian distribution vj

t ∼ N (0, Rj
t),

where Rj
t is the variance of vj

t and is set to 52. The range drift for the NLOS measurements is set to
2 m. For the prior information, kt ∼ G(2.5, 2)(k). The prior information of the NLOS range drift lm is
lm ∼ G(3.5, 1.8)(lm). For the position state prior information, we assume that the prediction function
is a linear static identity matrix with the zero-mean Gaussian prediction noise qt ∼ N (0, Qt), where
Qt = diag(σ2

x , σ2
y ) is the covariance of qt. We assume σx = σy = 2 m.

We apply the CRLB to indicate the optimal squared error, which is
√

tr(J−1(xt)). To illustrate
the target-anchor geometry effect for the 2D localization system in the playing field, we employ√

tr(J−1(xt)) to depict the spatial position error distribution (SPED) [28]. The SPED is defined as the
distribution of the position error for every possible target position, which estimates the positions point
by point in the whole playing field and draws statistical results. Thus, every position in the playing
field is assumed as the target position during the simulation. The SPED is derived according to all of
the statistical results of the estimation error of all of the positions in the playing field. It illustrates how
the performance changes according to the target-anchor (RX-TX) geometry effect. When the anchor
positions and the error model change, the SPED changes accordingly, which helps to understand the
relationship between the anchor deployment and the algorithm. The SPED results are represented by
the contours in Figure 2, where the four anchor positions are marked by triangles.
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In Figure 2a, the SPED is drawn based on the classical CRLB (CRLBxt ) in which the unknown
vector is only xt, and no relative height or NLOS propagation is introduced. When both kt and l
are introduced in the simulation, the dimension of the estimated vector is increased again. Then, a
special pattern of the contours is drawn in Figure 2b, which demonstrates that the estimation error
is propagated and increased if more unknown factors are introduced. Each anchor seems to be a
center of an independent contour area, and the estimation error is extremely larger than Figure 2a,
which indicates the strong uncertainty and a special geometric relationship between the target position
and the anchor positions. Since more factors cannot be ignored in the complicated environment, the
localization problem turns out to be a high dimensional estimation problem. It is quite possible that the
squared error of the high dimensional estimation is larger than the low dimensional estimation, as the
probability of the wrong estimation increases if more unknown parameters appear. Additionally, it also
imposes new error on the original xt estimation error. However, such a high dimensional localization
problem cannot happen in the real world. On the one hand, the calculation complexity is increased
dramatically in the real system, and only xt is useful, which is a waste of computational resources. On
the other hand, the algorithm designers ignore some unimportant factors, simplify the calculation and
increase the estimation accuracy based on the prior knowledge.
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Figure 2. The spatial position error distribution (SPED) results of the CRLB with and without prior
information. (a) The SPED of CRLBxt ; (b) the SPED of CRLBxt ,kt ,l ; (c) the SPED of CRLBxt

xt
; (d) the

SPED of CRLBxt ,kt ,l
xt ,kt ,l

.

Then, the prior information of xt, kt and l is used in the CRLB to improve the estimation accuracy.
The SPEDs with prior information are depicted in Figure 2c,d. When the prior state information of xt

is introduced in Figure 2c, the estimation error is reduced effectively from more than 5 m in Figure 2a
to 1.4 m below. In addition, the position error is almost the same everywhere, although the geometric
pattern is similar to Figure 2a, which indicates that the geometric impact is reduced by using the
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prior information of xt. In Figure 2d, we assume that all of the prior information is available, then the
estimation error is reduced to below 1.4 m, just as Figure 2c. Although Figure 2d still has a geometric
pattern, which is similar to Figure 2c, the errors in different positions are almost the same. Thus, the
geometric effect is actually reduced. In addition, since the estimation error is not further reduced,
the results in Figure 2d can be the limits based on the prior information. It is also demonstrated that
the prior information of xt significantly reduces the estimation error and is the most important prior
information especially in the recursive estimation. For the other two parts of the prior information,
they are used for the improvement of the impacts of the relative height and the NLOS effects.

5.2. Impact of Relative Height

In this simulation, we evaluate the impact of the relative height independently. For the indoor
localization, the relative height cannot be too high unless the room is tall enough. Thus, we choose
the value of kt between 0.5 m and 10 m. The simulation evaluates CRLBxt ,kt and also CRLBxt as a
comparison. To illustrate the general relationship between the relative height and the measurement
noise, we also tune the variance of the noise from 0.52 to 52 and kt from 0.5 m and 10 m. In this
simulation, we run 1000 Monte Carlo experiments. In each experiment, we choose a random position
for analysis. The averaged results are listed in Figure 3.

It is clearly observed that the estimation error rises according to the increase of kt. However, the
increased value is quite small. Take Figure 3c for instance; the increased error is only 0.06 m when kt is
tuned from 0.5 m to 10 m, and the estimation error is 3.43 m by that time. Therefore, the value of kt

does not affect the estimation accuracy too much. On the other hand, the existence of kt does affect the
performance no matter what the value of CRLBxt is. Compare the results in Figure 3c; kt affects the
estimation with a typical certain value. When kt is small, the average RMSE of CRLBxt is 1.4390 m,
but the average RMSE of CRLBxt ,kt=0.5 is 1.6856 m and CRLBxt ,kt=10 is 1.7137 m. According to the
analytical results, when the relative height is introduced into the simulation, there is a gap between 2D
localization without the relative height. Additionally, the gap becomes larger with the increased value
of the measurement noise. Take vj

t ∼ N (0, 0.52) for instance; when kt = 0, the average RMSE is only
0.84 m. When vj

t ∼ N (0, 52), the average RMSE without the relative height is about 8.3 m, which is
almost 10-times that of the low noise. Thus, the relative height really affects the estimation no matter
the value.

In addition, we evaluate the impact of the prior knowledge of kt in the multiple noise environment.
The simulation results are presented in Figure 4. It is clearly observed that the prior knowledge can
significantly improve the RMSE. If vj

t ∼ N (0, 52), the prior information of kt can even reduce 1 m RMSE.
Additionally, if the error is small, the improvement is only a little bit. However, with the increased
value of the relative height, the RMSE rises accordingly even with the prior information. For the real
application, the relative height can be within 10 m, in which the improvement can effectively reduce
the RMSE to a reasonable range. Therefore, even if the impact of the relative height is limited, it is still
necessary to employ the prior information.
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Figure 3. The evaluation of the impact of kt. (a) vj
t ∼ N (0, 0.52); (b) vj

t ∼ N (0, 12); (c) vj
t ∼ N (0, 22);

(d) vj
t ∼ N (0, 32); (e) vj

t ∼ N (0, 42); (f) vj
t ∼ N (0, 52).
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Figure 4. The evaluation of the impact of kt with the multiple noise environment and prior knowledge
of k. (a) vj

t ∼ N (0, 0.52); (b) vj
t ∼ N (0, 12); (c) vj

t ∼ N (0, 32); (d) vj
t ∼ N (0, 52).

5.3. Impact of NLOS

The analysis of NLOS measurements has been mentioned in several literature works [17,18].
Here, we evaluate the impact of the number of NLOS measurements through simulations. The playing
field is still 100× 100 m2 with 16 randomly-deployed anchors. We set up 1000 Monte Carlo runs,
and a random set of anchors is chosen to have NLOS measurements. We tune the number of NLOS
measurements from 1 to 16 and evaluate the performance of CRLBxt and CRLBl

xt ,l . The averaged
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results are depicted in Figure 5. It is observed that the RMSE of CRLBxt ,l increases according to the
rise of the NLOS measurement number. It is also possible to have useless estimation when all of the
measurements are NLOS, just as mentioned in [17]. When there is only one NLOS measurement,
the estimation error reaches 3 m. Additionally, the error is increased to 5 m if the number of NLOS
measurements is changed to 16. In real applications, the number of NLOS measurements is unknown,
and the system has to calculate all of the parameters from all of the measurements. Thus, the estimation
error is quite high without the help of prior information. In addition, with the prior information of l, the
estimation error is almost a constant value. Thus, the prior information of the NLOS measurement can
successfully reduce the NLOS effect, which is applicable for real applications. Such prior information
can be a combination of the building layout information and the wireless propagation model, e.g.,
map-matching-based algorithms [13]. Additionally, several literature works have proposed many
algorithms that either use pre-assumptions or estimate the parameters to obtain the NLOS information.
The NLOS-related methods are beyond the scope of this paper; please refer to other research works
in [20,23,29].
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Figure 5. The impact of the number of l.

5.4. Map Assist Localization System

In the following simulation, we evaluate a practical scenario where the layout of the building is
involved. The playing field is still 100× 100 m2. There are four big rooms located at four corners of the
playing field. The area for each room is 40× 40 m2. The rest of the playing field is the hallways. Four
anchors are deployed inside each room and placed at the four corners. Thus, 16 anchors are uniformly
deployed in the playing field, which is depicted in Figure 6a. The triangles mark the positions of
anchors. The LOS measurements can only be obtained in one room with four associate anchors,
and others measurements are NLOS. For the positions in the hallways, all of the measurements are
NLOS rangings.

All of the anchors are deployed on the roof with relative height 1∼2 m to the target.
The distributions of the range error and the related prior information are the same in Figure 2.
The range drift for the NLOS measurements depends on the signal transmission from the anchor to the
target. According to our previous research, the average positive NLOS drift of the signal through one
wall is set to 2 m and to 5m for the signal through two or three walls if the signal can be detected [30].
The prior information of the NLOS range drift lm depends on the signal transmission. Here, we use
the conclusions based on the experimental models in [27]: the distribution for the signal transmission
through one wall is lm ∼ G(3.5, 1.8)(lm); the distribution for the signal transmission through more than
two walls is lm ∼ G(4.5, 2.2)(lm). In this simulation, we evaluate the SPED of CRLBxt ,kt ,l , CRLBkt ,l

xt ,kt ,l

and CRLBxt ,kt ,l
xt ,kt ,l

, which means that every position is calculated, and the error contours are drawn to
indicate the target-anchor geometry effect. The results are depicted in Figure 6.
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Figure 6. The simulation of a building layout. (a) Anchor deployment of the playing field;
(b) the SPED of CRLBxt ,kt ,l ; (c) the SPED of CRLBkt ,l

xt ,kt ,l
; (d) the SPED of CRLBxt ,kt ,l

xt ,kt ,l
.

For numerical comparison, the RMSE in Figure 6b is higher than in Figure 6c,d, which is more
than 3.39 m in the central area. Additionally, the error becomes higher and higher when the position is
approaching the corner, which is more than 8 m. Due to the lack of prior information, the geometric
shape does not have special characteristics, which are related to rooms or corridors. The contours
are almost like rectangles located in the center of the playing field. When the prior information of kt

and l is introduced, the accuracy is significantly improved, which is reduced to 2.55 m on average.
The geometric shapes of the contours are different in the rooms and hallways. This indicates that
the localization algorithms using the prior knowledge of NLOS conditions based on the building
layout information and the NLOS identification and mitigation methods can reasonably improve the
estimation performance. Thus, the layout information in the building map is an important information
source for localizations. When the prior information of xt is introduced in the estimation as indicated
in Figure 6d, the RMSE is further reduced, which is 1.235 m in almost all of the playing field where the
target-anchor geometry effect is reduced effectively.

5.5. Bayesian-Based Target Tracking Estimation

In this simulation, we evaluate the performance of the recursive Bayesian estimation for target
tracking. Since the impacts of kt and l are extensively analyzed above, this section mainly focuses
on analyzing the impact of xt−1. The playing field is still 100× 100 m2, and 16 anchors are deployed
randomly in the field. We evaluate the CRLB in three scenarios: The first one considers NLOS
and relative height measurement; the second scenario considers only the relative height; the third
scenario only has NLOS measurement. In each scenario, both CRLB without prior information and the
recursive CRLB with prior information based on (27) are analyzed. Therefore, we evaluate CRLBxt ,kt ,l

and CRLBxt−1,kt ,l
xt ,kt ,l

in the first scenario, CRLBxt ,kt and CRLBxt−1,kt
xt ,kt

in the second scenario and CRLBxt ,l

and CRLBxt−1,l
xt ,l

in the third scenario. We assume that the prior information is unknown initially in the
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recursive estimation. This information can only be obtained recursively after the initial estimation is
obtained. Then, the recursive estimation is applied.

We run 1000 Monte Carlo simulations, and the target moves in a separate random path in each
simulation. In addition, the target can also be static. Since xt−1 can also be estimated in the static
scenario and be used for recursive estimation, the analysis results are the same as the dynamic target
tracking scenarios. The estimation results are averaged and represented by the RMSE in Figure 7.
There are three solid parallel straight lines, which indicate the estimations without prior information:
CRLBxt ,kt ,l , CRLBxt ,kt and CRLBxt ,l . The three other dashed curves illustrate the recursive estimations

according to time steps, which are CRLBxt−1,kt ,l
xt ,kt ,l

, CRLBxt−1,kt
xt ,kt

and CRLBxt−1,l
xt ,l

.
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Figure 7. Sequential estimation lower bound.

The Bayesian recursive estimation method with related prior information effectively reduced
the estimation as indicated in Figure 7. The RMSEs of the three curves gradually converge to low
values according to time steps. The impacts of the relative heights and the NLOS drifts still degrade
the estimation performance. Even with the recursive estimation, the estimation error cannot be further
reduced, where the CRLBxt−1,kt ,l

xt ,kt ,l
is 0.5 m larger than CRLBxt−1,kt

xt ,kt
when t = 20.

5.6. Multiple Anchors

The relationship between the CRLB and the number of anchors is illustrated in Figure 8.
We randomly deploy multiple anchors in the playing field. The number of anchors is adapted from
four to 30. Both kt and l are considered in this simulation. We assume that all of the measurements
are NLOS. In this simulation, we evaluate CRLBxt ,kt ,l , CRLBkt ,l

xt ,kt ,l
, CRLBxt−1

xt ,kt ,l
and CRLBxt−1,kt ,l

xt ,kt ,l
. With

a few anchors, CRLBxt ,kt ,l contains large error, which achieves more than 15 m. When the number of
anchors is four, the prior information of kt and l can reduce much of the error as indicated by the curve
of CRLBkt ,l

xt ,kt ,l
. Furthermore, the recursive estimation based on CRLBxt−1

xt ,kt ,l
can reduce much of the error,

which is even smaller than CRLBkt ,l
xt ,kt ,l

. The error of the recursive estimation based on CRLBxt−1,kt ,l
xt ,kt ,l

is
only a little lower than CRLBxt−1

xt ,kt ,l
. It is demonstrated that compared to the prior information of kt and

l, xt−1 is the dominant factor for reducing the estimation error. However, when the number of anchors
is increased, all of the curves converge gradually to a low value. In this case, the prior information
does not improve much for the estimation. Thus, even if the prior information is not available, using
more observations still improves the estimation accuracy effectively.
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Figure 8. Cramér–Rao lower bound with different number of anchors.

5.7. Practical Evaluation

For practical usage, we employ the CRLB to evaluate a reference system. In this system, we
deployed 17 wireless sensor nodes either along the corridor or in the offices of the research building.
A robot carrying a sensor node as a target moved along the corridor of the building with constant
speed while recording its own positions [31]. All sensors are integrated with the nanoPAN 5375 RF
(Nanotron Tech. GmbH, Berlin, Germany) module with a 2.4-GHz transceiver and a 1-Mbps data
rate for range measurement, the LPC 2387 as the micro-controller (Nanotron Tech. GmbH, Berlin,
Germany) and the CC1101 900-MHz transceiver (Nanotron Tech. GmbH, Berlin, Germany) as the radio
transceiver for communication. The data collected from sensor nodes are also range measurement
values, which are based on TOA. Figure 9 depicts the map of our experimental building. The triangles,
which are randomly deployed, mark the sensor node positions.

Figure 9. Building layout for the indoor localization experiment and the robot trajectory. The triangles
mark the positions of sensor nodes, which are placed either in the offices or along the corridor.

According to the collected data and map information, we construct the distribution model for
both LOS and NLOS measurements, which are a zero-mean Gaussian distribution vj

t ∼ N (0, Rj
t); Rj

t
is set to 52 for LOS measurement; and the NLOS measurements drift is set to 2 m. Then, the SPEDs
with or without prior knowledge are depicted in Figure 10. As illustrated in Figure 10a, the overall
estimation error can be extremely high due to the measurement error. In addition, the anchor-target
geometry shape is seriously distorted due to the randomly-deployed anchor. In the corners of the
building, the RMSEs are changing rapidly. However, with the help of prior information, we can
effectively reduce the error to about 1.25 m.
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Figure 10. The real system evaluation. (a) SPED without prior knowledge; (b) SPED with prior knowledge.

5.8. Discussion

In this section, we use our proposed method to evaluate the optimal performance in multiple
environments. It can be observed that our method can adapt the estimated parameters to fit the
practical environment. In addition, the scalable architecture can effectively fuse multiple pieces of
information, which outperforms other methods, which only consider parts of the information. In
Table 2, we compare our method to three mainly used CRLBs, which are generalized CRLB [17],
conditional CRLB [16] and equivalent CRLB [18]. The first row in Table 2 indicates the considered
information, and the word “prior” means the related prior information. As illustrated in the table, the
generalized CRLB can only analyze the NLOS effect. The conditional CRLB provides the formulation
of the state vector instead of other factors. The equivalent CRLB exploits more information. However,
it is a closed form formulation, which is not scalable and cannot fuse the relative height information.

Table 2. Algorithm comparisons.

Algorithm State Prior State NLOS Prior NLOS Relative Height Prior Height

Generalized CRLB
√ √

Conditional CRLB
√ √

Equivalent CRLB
√ √ √ √

Our Method
√ √ √ √ √ √

6. Conclusions

In this paper, we propose a scalable analyzing method for a WSN localization system, which
can fuse multiple heterogeneous information to indicate the optimal performance. Theoretically, we
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divide the estimated vector θ into three parts: the estimated state vector and two auxiliary vectors.
The recursive formulation of FIM is provided, which fully considers all of the possible factors that
may influence the estimation accuracy, and it exploits all of the available information to derive the
fundamental limits. It is a suitable tool to indicate the optimal estimation bound of practical systems.

We employ our theoretical contribution to analyze the TOA range-based WSN localization
system. The impacts of the height kt and NLOS range drift l are considered as the auxiliary vectors.
The target-anchor geometry, prior information and the recursive form are extensively analyzed in
the simulation. In addition, we employ a real test-bed and practical data to evaluate the overall
performance. In the simulation, we find that both the relative height and NLOS impact can heavily
degrade the estimation performance. However, many pieces of available information can improve it,
e.g., the prior state distribution, the prior knowledge of the building and multiple anchors.

According to the simulation and experimental demonstration, the proposed CRLB is a general
framework for analyzing the WSN localization systems, and it is not restricted to any specific
technique. Future work will use the scalable CRLB to exploit other localization techniques and
in other complicated environments to find potential factors that may influence the performance.
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