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Abstract: This paper presents accurate urban map generation using digital map-based Simultaneous
Localization and Mapping (SLAM). Throughout this work, our main objective is generating a 3D and
lane map aiming for sub-meter accuracy. In conventional mapping approaches, achieving extremely
high accuracy was performed by either (i) exploiting costly airborne sensors or (ii) surveying with
a static mapping system in a stationary platform. Mobile scanning systems recently have gathered
popularity but are mostly limited by the availability of the Global Positioning System (GPS). We focus
on the fact that the availability of GPS and urban structures are both sporadic but complementary.
By modeling both GPS and digital map data as measurements and integrating them with other sensor
measurements, we leverage SLAM for an accurate mobile mapping system. Our proposed algorithm
generates an efficient graph SLAM and achieves a framework running in real-time and targeting
sub-meter accuracy with a mobile platform. Integrated with the SLAM framework, we implement
a motion-adaptive model for the Inverse Perspective Mapping (IPM). Using motion estimation
derived from SLAM, the experimental results show that the proposed approaches provide stable
bird’s-eye view images, even with significant motion during the drive. Our real-time map generation
framework is validated via a long-distance urban test and evaluated at randomly sampled points
using Real-Time Kinematic (RTK)-GPS.
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1. Introduction

The recent development of autonomous vehicles encompasses many key issues in robotics
problems, including perception, planning, control, localization and mapping. Among these problems,
this paper focuses on solutions for an accurate urban map generation, specifically targeting 3D and lane
maps for autonomous cars. Having an accurate map is an important issue for self-driving cars [1–3]
and many other areas such as virtual reality [4], visualization [5], recognition [6], localization and
navigation [7,8].

In conventional mapping approaches, aerial sensing has been heavily investigated. In these
approaches, the fusion of aerial images with aerial Light Detection and Ranging (LiDAR) and/or radar
is usually applied for an accurate digital map at the cm-level, including urban structures. This line
of studies focuses on undistorting building shapes from aerial sensors, which is mostly too costly
(ranging from $0.5 M to $1.4 M). To obtain cost-effective solutions for mapping, recent advances have
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appeared in mobile mapping systems. Using a car-like system with sensors mounted, 3D maps are
often generated from a set of point clouds, using LiDAR sensors to actively acquire accurate and
dense 3D point clouds of building façades or surfaces of objects. Mobile scanning is widely used for
modeling in architecture [4] and agriculture [9], as well as for urban and regional planning [10]. Many
studies combine a highly accurate GPS, a high precision Inertial Measurement Unit (IMU) and the
wheel/visual odometry of the vehicle to compute fully timestamped trajectories. The absence of the
GPS in constricted spaces is an exceptionally limiting factor for mobile scanning. It is more critical,
in a complex urban environment, and thus it is difficult to calculate accurate positions using a GPS
sensor due to blackouts or multipath problems. Generally, using a variety of sensors has became a
popular strategy to complement the drawbacks of a single sensor.

We propose a SLAM-based approach to localize the mobile sensor system mounted on a car-like
platform and generate an accurate urban map consisting of a large amount of 3D points. For accurate
localization, we use publicly available digital maps together with cameras, Light Detection and
Ranging (LiDAR)s, and inertial sensors. Using this accurate localization, motion compensated Inverse
Perspective Mapping (IPM) is applied for accurate lane-map generation. Given accurate localization,
projections of front-looking cameras follow the construction of the lane map. For the lane map
description, we propose an adaptive IPM algorithm to obtain accurate bird’s-eye view images from
the sequential images of forward-looking cameras. These images are often distorted by the motion of
the vehicle; even a small motion can cause a substantial effect on bird’s-eye view images.

To use a digital map in Simultaneous Localization and Mapping (SLAM), we incorporate a shape
file to extract structural and elevation information. Although digital maps with 1:1000 and 1:5000
scales offer sub-meter global average accuracy, only a subset of map data (e.g., buildings and road
boundaries which are globally static) are available for vehicle localization. In this paper, we introduce
a measurement model for both GPS and structural information, and leverage the digital map data as
observations to actively fuse digital maps in SLAM when GPS signals are sporadic.

The contribution of the proposed method can be summarized as follows.

• Digital map-based SLAM: Digital map information was incorporated with a building model,
road network and elevation model. This paper introduces a measurement model to add
global measurements for full 3D SLAM. Instead of addressing this problem as localization
to a prior map, our modeling handles the structural information in the digital map as sporadic
spatial measurements.

• Development of online mobile mapping system with sub-meter accuracy: Typical LiDAR-based
mapping system known to be slow, suffering from association problems. Despite a large number
of nodes and a long trajectory, the entire method runs in real-time using only 40% of the total
mission time. Not only the computational time, our algorithm provides memory-efficient
implementation. Wall information obtained from point cloud turns into an urban signature, which
then can effectively be used in the matching phase. Fully integrated single step implementation
allows us to build a 3D map over 9 km while driving.

• Thorough analysis for resulting 3D and lane maps accuracy: We perform a thorough analysis on
the resulting maps to evaluate the effects of digital maps. The addition of elevation and buildings
from digital maps enables accurate 3D urban mapping. We performed quantitative evaluation on
random sample points. Using RTK-GPS with 10-mm-accuracy, we analyzed the accuracy of the
points from buildings and lane maps.

2. Related Works

Conventional approaches in digital map generation rely on aerial sensors, including
high-resolution aerial images, Light Detection and Ranging (LiDAR)s, and radars. Toward accurate
building detection, point cloud data from aerial LiDAR has been widely used for a Digital
Building Model (DBM) [11–14]. One line of study used only aerial imagery to extract building
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information [15,16], while merging the high-resolution aerial imagery and aerial LiDAR [17] has
been introduced.

The aforementioned approaches use costly aerial sensors and have limitations in generating maps
inside tunnels and multi-layered roads. For a cost-effective mobile mapping system, urban mapping
systems similar to ours have been introduced in the literature [18–21]. Blanco et al. [18] presented
a collection of outdoor datasets using a large and heterogeneous set of sensors comprising color
cameras, several laser scanners, precise GPSs, and an IMU. Their posterior research [19] introduced
a dataset gathered entirely in urban scenarios using a car equipped with one stereo camera and five
laser scanners, among other sensors. Elseberg et al. [20] used a commercial data logging system and
collected data with an experimental platform constructed by the RIEGL scanner [22]. Bok et al. [21]
used a mobile mapping sensor system mounted on a ground vehicle. A vertical 2D LiDAR scans
structures and the reconstruction is done by accumulating scanned data. All of the conventional
approaches cover a small region, assuming a 2D environment without taking altitude information
into account.

For these mobile mapping systems, cameras are the most popular sensors in detecting lanes.
For visual road-mark detection, IPM is often used in the vision-based perception of roads and lanes.
IPM produces bird’s eye-view images that remove the perspective effect by using information about
camera parameters and the relationship between the camera and the ground. The results of IPM can
provide post-processing algorithms with more efficient information, such as lane perception, mapping,
localization, and pattern recognition. Many researchers have studied IPM in many applications, such
as distance detection [23], production of bird’s eye-view images of a spacious area using a mosaic
method [24], provision of appropriate bird’s eye-view images for parking assistance [25], and lane-level
map generation [26].

The challenge for mobile mapping systems is to achieve a consistent map. Researchers investigated
the SLAM algorithm for accurate vehicle localization [27] and 3D mapping [28] using perceptual
sensors mounted on a vehicle. Using a digital map has also been recently investigated by many
researchers [29–31]. Schindler et al. [29] first proposed lane map generation and representation methods
using RTK GPS-based localization and showed high-precision digital map-based self-localization
in [30]. They showed an efficient Monte Carlo localization approach using a map model based on
smooth arc splines. Floros et al. [31] proposed an approach for global vehicle pose estimation that
combines visual odometry with map information from OpenStreetMaps [32] to provide accurate
estimates of the vehicle’s pose. Similarly, Pink and Stiller [33] described landmark (lane-based)
generation from aerial images with image classification geometric representation. This method used
aerial images for prior maps and focused on the way to match orthographic lane images to a global lane
map from aerial images. Guo et al. [26] presented a system for lane-level map generation from local
IPM images and the global OpenStreetMap (OSM) database. They locally constructed an orthographic
lane map, matched it with a segmented aerial map, and finally generated a global lane graph of
real-world roads.

As an accurate localization aspect, some previous works [34–36] used a lane map as a local
vehicle position estimation by matching pre-built local lane maps from IPM images and current
incoming raw images. Napier and Newman [34] proposed a vehicle localization method based on
synthesized local orthographic lane maps. They generated local orthographic images from a first run
and localized the vehicle by Mutual Information (MI) between live-stream images and synthesized
images. Schreiber et al. [35] constructed prior lane-based maps with extended sensors such as GPS/INS
and matched road markings and curbs for lane-level localization. Rose et al. [36] used lane maps for
lateral position estimations of a vehicle. These studies only applied localization or pose estimation
algorithms; no cases have generated 3D maps using the SLAM algorithm with a digital map. In this
paper, we are interested in using publicly available digital maps in a SLAM framework to leverage for
accurate lane map and 3D map generation.
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A similar approach to ours was reported in [37] which incorporated bundle adjustment using
monocular vision. Although extracting buildings from digital maps and using them as constraints were
introduced and conceptually similar to ours, their implementation relied mostly on vision, covering
a relatively small urban area. Unlike their approach, proposed algorithm focuses on using LiDAR
accomplishing real-time performance with a single-step mapping algorithm that can build an urban
map while driving.

3. System Overview

For accurate urban mapping, we developed a sensor suite called Urban Mapping System (UMS),
which is mountable to a car-like platform. As shown in Figure 1a, the platform used for mapping was
equipped with three Light Detection and Ranging (LiDAR) sensors, four cameras, a Global Positioning
System (GPS), an Inertial Measurement Unit (IMU), an altimeter, and wheel encoders. The detailed
specifications are summarized in Table 1. As in Figure 1, coordinates of each sensor were represented
with respect to the vehicle center coordinates (red, green and blue arrows).

(a) Overall UMS (b) Sensor configuration

Figure 1. Sensor system description. Our sensor suite includes two 2D LiDARs, four cameras, a GPS,
two wheel encoders, an IMU, and an altimeter. Note that the front LiDAR in (b) is only for moving
object detection, and thus excluded in Simultaneous Localization and Mapping (SLAM) framework.

Using a geometrical relationship between the vehicle center and LiDAR, the position of the
camera is computed using extrinsic calibration results of LiDAR and cameras. For more details, refer
to [38] the system configuration.

Table 1. Specifications of Urban Mapping System (UMS).

Item Specification

Dimensions 1.67 m × 1.36 m × 0.31 m (L×W×H )
Dry weight 35.8 kg

LiDAR SICK LMS291,200 (35 Hz)
Imaging sensor Point Grey Flea3, 1380× 1024 pixel, 12-bit CCD (30 Hz)

GPS HUACE B20 (1 Hz)
IMU sensor Xsens MTi (100 Hz)
Altimeter WITHROBOT myPressure (1 Hz)

Wheel encoder Autonics E68S, rotary encoder type (100 Hz)
Processor Intel(R) Core(TM) i7-3790 CPU@3.4 GHz

Battery Delkor 80 Ah, 12 V , lead–acid type

In the proposed configuration, LiDAR sensors are facing each side of the vehicle, while the
sweeping direction is orthogonal to the ground. This configuration allows us to capture surrounding
data line-by-line. Motion induces accumulation of lines, and a 3D point cloud is obtained by stacking a
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sequence of point cloud lines. Researchers using similar configurations recommended a vehicle speed
of approximately 15–30 km/h [39], which we also adopted in the experiments.

The objective of the proposed platform is to build an accurate 3D and lane map given various
sensors and digital maps. The process of generating urban lane maps with 3D point clouds involves
four main stepsas shown in Figure 2: (1) sensor data logging; (2) generating a node and the
factor; (3) optimizing using an Incremental Smoothing and Mapping (iSAM) SLAM back-end; and
(4) generating the final lane map based on the optimized trajectory from the SLAM results and IPM
images. Measurements from odometry, digital map information, elevation, and GPS are all used.

Odometry
client

Wall Extraction
Digital map 
Correction

Elevation
correction

GPS
correction
using DCS

Wheel
encoder

LiDAR

Inertial 
measurement

unit

Digital
Map

GPS

Digital
Elavation Model

Altimeter

iSAM

SLAM
back-end

3D Map
Generator

Camera Adaptive IPM

Lane Map
Generator

Figure 2. Software design diagram. The 3D point cloud map generation involves four main steps.

4. Pose-Graph Simultaneous Localization and Mapping (SLAM)

4.1. State Definition

We estimate the vehicle’s full 6-degree of freedom (DOF) pose, x = [x, y, z, φ, θ, ψ]>. The
augmented state representation is expressed as follows for n keyframes,

X =
[
x>1 , · · · , x>i , · · · , x>n

]>
(1)

while each of the pose samples (xi) correspond to the time instance ti of a keyframe. For the SLAM
back-end, we use iSAM [40] to find an optimized solution of the trajectory, from which we build
the urban map. Factors from each sensor measurement are collected as in Figure 3. The attitude
measurements and altitude are given as absolute factors per node, with all nodes sequentially
connected by odometry measurements. Loop-closing factors are mainly generated by walls that
we generate from LiDAR when we add building measurement from digital maps. GPS availability is
quite sporadic in urban area, and measurements are intermittently applied to a node using Dynamic
Covariance Scaling (DCS).
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Figure 3. Depiction of the pose-graph SLAM factors. Odometry constraints (odo) are sequential
whereas wall loop constraints (wall) can be non-sequential. Absolute constraints (abs) includes digital
map correction and altimeter. GPS factors may occur irregularly. When wall is created, we also provide
a digital map correction factor.

4.2. Odometry Modeling

The system has two rotary encoders, as shown in Figure 1a, which are mounted to record wheel
revolution counts and the resulting rotation angles (Cl and Cr) of each wheel. We define vehicle pose
in 2D space, x = [x, y, θ]> for odometry measurements. We calculate the relative pose difference as a
function of left/right wheel diameter (Dl , Dr), left and right wheel rotation angle (Cl and Cr), wheel
diameter (Dl , Dr), and wheel base (Wb).

zodo =

∆x
∆y
∆θ

 =

Lavg cos(∆θ)

Lavg sin(∆θ)

Ldi f f W−1
b

 (2)

Here, Lavg is the average and Ldi f f is the difference of two travel distances from the left and right wheel.

4.3. Altitude and IMU Modeling

We also provide z-directional measurements from the altitude sensor. When mapping hilly terrain,
this leverages the localization performance by providing both absolute and relative measurements
on height. We used theWITHROBOT MyPressure (WITHROBOT, Seoul, Korea) altitude sensor [41],
which has accuracy within 1 cm. Attitude information was obtained via IMU. A MTI Xsens [42] was
mounted into the system to provide roll, pitch, and yaw in 100 Hz. Altitude and attitude information
is used as absolute measurement factors and fed into the SLAM back-end.

The proposed implementation produces loop-closure on height term based on wall information
Section 5.3. When a loop-closure happens in wall-to-wall matching (i.e., when a wall is revisited), we
apply a relative constraint on two associated nodes so as for them to be the same height.

4.4. GPS Modeling

GPS becomes extremely unreliable in highly complex urban environments. Signals are lost or
deteriorate in urban canyons. Despite these limitations, GPS still provides valuable information to
ground vehicles. For our GPS measurement error modeling, we mainly used the GPS Pseudorange
Noise Statistics (GPGST), which include the standard deviation of longitude/latitude errors. The error
measurement is the most sensitive, depending on the complexity of the environment, showing high
error values in complex urban area.

Outlier handling in SLAM determines the robustness of the entire framework, since a single wrong
measurement may critically deteriorate the results. To tackle this issue, Sünderhauf and Protzel [43]
introduced Switchable Constraints (SC) and switching variables (Sij ∈ [0, 1]) for the robust SLAM
back-end. This research area was further developed by Agarwal et al. [44], who solve for a closed

form solution to determine these switching variables Sij = min.
(

1, 2Φ
Φ+χ2

ij

)
As can be seen, the choice

depends on χ2
ij, which represents the error for each loop closing constraint. By considering the induced

error by a factor, the associated covariance is dynamically scaled. This substantially improves the
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results when a certain measurement may be unreliable during the mission, such as GPS. In this
implementation, we adopted DCS to cope with intermittent and unreliable GPS signals.

5. Digital Map-Based SLAM

We introduce using a digital map with Light Detection and Ranging (LiDAR) sensor to correct
the navigation error even under unreliable Global Positioning System (GPS). We first create walls from
a 3D point cloud generated by LiDAR. Using this point cloud as a prior reference, the building edges
are automatically detected to correct navigation error. In this section, we introduce the generation of
walls, matching with a digital map, and matching between walls for loop-closure.

5.1. Digital Map

We leverage publicly available digital maps for SLAM application. Specifically, we focus on
vectorized digital maps widely used in a geospatial information system. Studies that automatically
generate the digital map have been continued in recent years [11–17,45–48] but it has mostly relied
on aerial sensors. For the digital map data format, we chose to use a shapefile format developed by
ESRI [49]. The shapefile stores non-topological geometry and attribute information for the spatial
features as a set of vector coordinates. Vector features including points, lines, and polygons are
described in the shapefile format. The format also represents area features via closed loop and
double-digitized polygons. Each attribute record has a one-to-one relationship with the associated
shape record. Among many types of records, we focus on polygons that contain information about
structural buildings.

As illustrated in Figure 4a, a polygon consists of one or points that form a closed,
non-self-intersecting loop. A polygon may contain more closed curves. A closed curve is a connected
sequence of four or more multiple outer closed curves. The order of vertices or orientation for a closed
curve indicates which side of the closed curve is the interior of the polygon. Recording contents of
this polygon data type are shown in Table 2. Figure 5b presents an example of a building extracted
from polygon data in a shapefile. In this paper, shapefiles from National Geographic Informaion
Institue (NGII) are used for building extraction.

Table 2. Description on polygon record contents. The fields for a polygon type are box, numParts,
numPoints, parts, and points. Box means the bounding box for the polygon stored in the order Xmin,
Ymin, Xmax, Ymax. The number of closed curves in the polygon is described by NumParts. NumPoints
is the total number of points for all closed curves. parts means an array of length numParts. For each
closed curve, the index of its first point stored in the points array. Points are array of length numPoints.
The points for each closed curve in the polygon are stored end to end.

Position Field Value Type Number Byte Order

Byte 0 Shape Type 5 Integer 1 Little
Byte 4 Box Box Double 4 Little

Byte 36 NumParts NumParts Integer 1 Little
Byte 40 NumPoints NumPoints Integer 1 Little
Byte 44 Parts Parts Integer NumParts Little
Byte X† Points Points Point NumPoints Little

†X = 44 + 4 × NumParts
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(a) Polygon map (b) Contour map

(c) Shape-map (d) Digital Elevation Model (DEM)

Figure 4. Shape file representations for building and contour. An example of polygon data type
structure is in (a), and an example of contour map is in (b). (c) is sample shape-map (building) in the
campus data. (d) is sample shape-map (DEM) in the campus data.

Building

Ground

Tree

Vehicle heading

Vertical line of
point cloud

(a) Accumulated points from LiDAR (b) Sample wall extraction

Figure 5. (a) Illustration of point cloud accumulation from vertically installed side scanning LiDAR.
We only collect a single scan line per vehicle pose, and accumulate lines into a local point cloud set
via motion. (b) An example of wall represented by digital map and point cloud map (white points
in green box). For wall segmentation, we use 5-point Random Sample Consensus (RANSAC)-based
plane fitting.
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We also incorporate DEM for elevation information. For certain topographies, regions contain
substantial elevation change. In general, the height of the terrain is represented by the contours. As
presented in Figure 4d, points are connected by contour lines indicating the same height. The absolute
height value of the contour is described in the attribute information of the shape-file. When
the trajectory of the vehicle passes a contour, SLAM algorithm optimize position using absolute
measurement of Z-direction from this absolute height.

5.2. Wall Segmentation

Given building information parsed from the digital maps, we now extract walls from the mobile
sensor system. Building façades and other structures’ surfaces are major features of the urban area.
As digital maps are widely available these days, we propose a matching algorithm that uses a digital
map and an accumulated local point cloud. In general, use of the point-to-point Iterated Closest
Point (ICP) algorithm is popular but it is time-consuming and gives rise to issues when point clouds
are not sufficiently dense.

We define a point cloud P = {p1, p2, p3, ...} as consisting of LiDAR points, while each point
indicates a 3D position pk = [xk, yk, zk] in the global coordinate frame. From the LiDAR 3D point cloud
in the sensor frame, (Ps) is obtained by converting each beam ranging from i = 0 to 360. The angular
resolution of SICK LMS291 is Nres = 0.5◦, covering a 180◦ field of view for each size. Sensor frame
point cloud Ps is then converted to vehicle frame point cloud Pv using a coordinate transformation.

After the transformation, we obtain a vertical line of the point cloud as described in Figure 5a.
As the vehicle proceeds, these lines are accumulated and form a local point cloud set. Given a single
scan line of LiDAR and odometry information from the wheel encoder and IMU, the set of the line
forms a local point cloud-based on the estimated pose. During the local point cloud forming, we
evaluate the wall criteria to see if the set can be segmented to a wall. When a wall is registered, the
algorithm creates a node in the SLAM graph as a keyframe. Dropping the node clears the accumulated
local point cloud and starts a new accumulation of incoming scan lines.

Scan Line Accumulation

LiDAR 
Single Scan Line

Accumulation and 
Distance Error Test for New Line

Building Wall
Normal & Position

Odometry
from Encoder

Wall Initialization
Criteria

Compute Plane Normal
5 - Point RANSAC

yes

no

Wall Merging
Criteria

yes

no

Figure 6. Block diagram for wall segmentation. The overall wall extraction algorithm can be divided
into two parts. The first part is to obtain the initial normal, the second is a part of the segmentation
wall to error distance test of the new incoming scan line by using initial normal information.
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We propose a fast wall segmentation algorithm-based on RANSAC when segmenting a wall from
a point cloud (summarized in Figure 6). For the incoming line of the point cloud, we fit a plane using a
5-point RANSAC. Our wall initialization criteria involve checking the wall width (initialization criteria
in Figure 6). If the width of the created wall reaches our threshold (minimum 3 m), the algorithm
initializes a wall and stores normal vector and error statistics for the wall. Once the initial wall is
established, a newly incoming scan line is evaluated to be merged to the initial wall (merging criteria
in Figure 6).

5.3. Wall-to-wall Loop Closing

For loop-closure, we use building wall patches by introducing a wall-to-wall measurement model.
This method provides an explicit relationship between the walls in the factor graph and produces
efficient maps using a data-rich 3D point cloud.

We parameterize the wall ßi = [nx
i , ny

i , nz
i , px

i , py
i , pz

i ]
> using normal vector ni = [nx

i , ny
i , nz

i ]
> and

the center point of the wall pi = [px
i , py

i , pz
i ]
>. Following wall coordinate transform operators � and �

introduced by Paul Ozog [50] we derive our wall-to-wall measurement model. The � and � operations
change the base coordinate frame that a plane is described in, which can be written as ßjk = xij � ßik
and xij � ßjk = 	xij � ßjk.

For two walls to be recognized as the same wall, they need to have the same normal vectors and
the distance between a point in one plane to another plane should be zero. We compute them by
evaluating the dot-product of two normals (en) and the distance from a center point on one wall to
another wall (ed).

zwall−wall =
[
en, ed

]>
(3)

Let a wall k seen at frame i to be ßik and the same wall revisited at frame j to be ßjk. To compare normal
vectors, ßik needs to be transformed to frame j using � operation. For simple notation we denote
this as ß′jk = xij � πik with associated normal n′jk and the center point p′jk. Then the error between

two normal vectors can be written as en = 1− (n′jk)
>njk. Similarly, the plane to point distance (ed) is

computed by measuring distance from ß′jk to a wall center point in j frame (pjk).
It should be noted that we intentionally excluded the center point’s coincident constraints. This is

because our point cloud density strongly depends on the vehicle’s motion as we accumulate line scans.
When a vehicle takes turns the density may increase or decrease, and the computed center point may
be varying with respect to the accumulated point cloud density.

5.4. Wall-Based Digital Map Localization

With odometry having a moderate accuracy, structural information from buildings can be used
as a feature to correct the accumulated navigation error. However, buildings usually deteriorate
the GPS signal reception. For a complex urban area, therefore, GPS and buildings can be exploited
complementary. The digital map contains a variety of local information and there are vectorized
building data among them.

An extracted wall from a point cloud represented by ßi consists of normal vector ni = [nx
i , ny

i , nz
i ]
>

and the center point of the wall pi = [px
i , py

i , pz
i ]
>.

Similarly, we can calculate wall information that consists of normal vector and a center position
from digital map di in global coordinates. Using � operation and current node pose, we write extracted
wall information from point cloud as ßik = xij � ßjk.

We obtain the measurement which consists of the dot-product of two normals (en) and the distance
from a center point on one wall to another wall (ed) in the same manner as in the Section 5.3.

zwall−digitalmap =
[
en, ed

]>
(4)
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5.5. Elevation-based Full 3D Mapping

For full 3D mapping, we use DEM that consists of contour lines by introducing a node-to-contour
measurement model. When the vehicle traverses a contour, the algorithm detects an intersection
between vehicle motion vector and a line segment from the contour.

Let the vehicle pose be x = [x, y, z, φ, θ, ψ]>. The DEM contour line, c, consists of
vertices ci = [cx

i , cy
i , cz

i ]
>. Then we can extract two line segments, vehicle motion induced line

(lx = [xi−1, yi−1, zi−1, xi, yi, zi]) that connects vehicle current node and previous node and contour
line segment (lc = [cx

k−1, cy
k−1, cz

k−1, cx
k , cy

k , cz
k]) from a nearby contour. Using these two segments, we

calculate the intersection point of these two line segments to determine the case when vehicle traverses
contour line. Given vehicle pose that meets the DEM, our proposed method produces absolute
measurement, which is described in the attribute information of the shape-file (Figure 7c).

(a) Matching results of digital map and wall (b) Matching results of wall to wall (cyan vertical lines)

(c) Matching results of DEM and node (yellow vertical lines)

Figure 7. Cont.
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(d) Matching results of DEM and node with point cloud

Figure 7. Result of digital map-based SLAM (a) Magenta line represents the correspondence of the
digital map and building wall (green) extracted by point cloud. (b) Loop closure of trajectory generated
using wall to wall matching showed by cyan line. (c) Correcting in the Z-axis direction, we use matching
of Digital Elevation Model (DEM) and SLAM node. the yellow line represents this correspondence.
(d) We can confirm the z-directional trajectory over the change of color.

6. Motion-Compensated Adaptive Lane Map Generation

Once we achieved an accurate localization by using a digital map-based SLAM, we apply IPM
to back project road images onto the SLAM-induced map. This section briefly presents the basic
IPM model [51] by using the physical parameters of a camera before illustrating an adaptive IPM
model. IPM is a mathematical technique that relates to coordinate systems with different perspectives.
More detailed derivation and explanation can be found in [52]. For lane map generation, we relate
undisturbed bird’s-eye view images and forward-facing distorted images (Figure 8).
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Figure 8. Coordinate the relationship between the camera, image and world. The unit of (û, v̂) is
the pixel measurement, and that of (r̂, ĉ) and (X̂, Ŷ, Ẑ) is the meter measurement. Reprinted, with
permission, from Jeong et al. URAI 2016; c©2016 IEEE.

6.1. Basic Inverse Perspective Mapping (IPM) Model

The objective is to map pixel points (u, v) to the world coordinate points (X, Y, Z).
The notation ( ·̂ ) indicates a vectored version of the variables. We first define a unit vector X̂ to
set the camera’s viewing direction. Being orthogonal to X̂, we define another unit vector, Ŷ, that is
orthogonal to the camera-viewing direction on the ground. The IPM is to find the relation between
the world coordinate (X̂, Ŷ, Ẑ) and image coordinate (û, v̂) in order to map image pixels to the world
coordinate points. Note that two types of coordinates on an image are set as (û, v̂) and (r̂, ĉ), depending
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on the unit. The relation between an image point in a pixel space (û, v̂) and the same point in a meter
space (r̂, ĉ) is defined as follows

u(c) =
n + 1

2
+ Kc ←→ c(u) =

1
K
(u− n + 1

2
) (5)

v(r) =
m + 1

2
−Kr ←→ r(v) =

1
K
(

m + 1
2
− v) (6)

with a scale factor between pixel and meter (px/m ) K, the image width m, and the images height n.
The location of the camera’s optical center (P) is [0, 0, h] in the world coordinate system. The unit vector
of the optical axis ô is orthogonal to the image plane.

Using the top and side view in Figure 9 we can derive Equations (7) and (8) for a fixed camera case.

X(v) = h
tan(θ0)

(
1− 2 v−1

m−1

)
tan(αr)− 1

tan(θ0) +
(

1− 2 v−1
m−1

)
tan(αr)

(7)

Y(u, v) =
(

1− 2
u− 1
n− 1

)
tan(αc)X(v) (8)

The location of Y(u, v) in the world coordinate is dependent on (u, v) because Y(u, v) includes X(v).
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Figure 9. Side and top view of IPM model. In the illustration, fr and fc are the focal length of a camera;
θ0 is the pitch angle; αr and αc are the half angle of the vertical and horizontal field of view (FOV)
respectively. Reprinted, with permission, from Jeong et al. URAI 2016; c©2016 IEEE.

6.2. Adaptive IPM Model

When images are obtained from a moving vehicle, it is difficult for them to be transformed to the
accurate bird’s-eye view images because of the motion of the vehicle, especially its pitch direction.
To resolve this problem, oscillatory pitch angle (θp) of the camera is also added to original pitch
angle (θ0) in this model. This oscillatory pitch angle can be obtained either from sensors or via visual
odometry. In this work, we exploited IMU sensor for oscillatory pitch angle.

X(v, θp) = h
tan(θ0 + θp)

(
1− 2 v−1

m−1

)
tan(αr)− 1

tan(θ0 + θp) +
(

1− 2 v−1
m−1

)
tan(αr)

(9)

Y(u, v, θp) =
(

1− 2
u− 1
n− 1

)
tan(αc)X(v, θp) (10)

Finally, the adaptive Inverse Perspective Mapping (IPM) modeling Equations (9) and (10) can be
derived by adding θp. X(v, θp) is dependent on the pitch angle of the camera (θp) and Y(u, v, θp) is
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also dependent on it, which means that bird’s-eye view images are properly compensated against the
pitch angle.

6.3. Consistent Lane Map Processing

As described in Section 5, the algorithm drops nodes based upon the wall extraction events.
Depending on the circumstances, structure occurrence may be sparse and thus produce a large gap
between nodes. When the distance between two consecutive nodes are usually a couple of meters,
inter-node inconsistency for measurements becomes substantial. This is because the SLAM algorithm
only corrects navigation error for the nodes. Since only nodes are optimized through SLAM update,
uncorrected measurements needs post-processing for self-consistent maps. This discrepancy statistics is
shown in Table 3 that describes pose error prior to compensation. The error is computed as the distance
and angle between the node position that is generated by the proposed method and is the expected
pose by using the vehicle encoder. The cause of this discrepancy is encoder error from the wheel
slip and modeling error, and this large discrepancy clearly indicates the need for the compensation.
Smooth vehicle poses corrected with SLAM data are obtained after this compensation process.

Table 3. Discrepancy prior to the compensation (per unit meter).

Min Max Average

x (m) 7.98× 10−4 9.37× 10−2 1.99× 10−2

y (m) 3.64× 10−4 1.49× 100 4.13× 10−2

yaw (◦) 2.08× 10−3 2.47× 101 1.58× 100

The effect of compensation is presented in Figure 10. In our algorithm, valid SLAM nodes are
sparse, and thus are not compact enough to create a lane map via IPM. Interpolation is required for
a dense map by updating the navigation correction between the nodes using vehicle encoder data.
Figure 10a shows interpolated positions between nodes without any compensation. There are lots
of errors between expected positions using encoder data and nodes because all nodes are corrected
when wall extraction events occur. To overcome this problem, we apply a compensation rule, as
described below.

Ek =
pe − pn

n
k (11)

As shown in Figure 11, we compute the compensation value Ek per section between nodes.
For a section with two nodes on each end, we compared the Dead-Reckoned (DR) position pe and
the SLAM-corrected node position pn. When there are n number of images in the section we apply
compensation value Ek for the position associated with kth image. The result of this interpolation
is shown in Figure 10c,d. Note that the compensated projection demonstrates a more smooth and
consistent lane map.
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(a) No compensation (b) Encoder compensation

(c) Lane map generated without compensation (d) Lane map generated with compensation

Figure 10. Result of self-consistent lane map process. Left (a,c) and right (b,d) images show the result
of lane map.

Figure 11. Compensation process of interpolated pose between DR computed node and iSAM node.

7. Experiments and Results

To validate the proposed method in the real world, we conduct an experiment covering a campus
area with 9.32 km path length. The dataset is the route around a campus environment including four
loop-closures by passing the center building repeatedly. The campus area is usually composed of
low-rise buildings and wide roads that offer sufficient but sporadic GPS signals. As can be seen in
Table 4, we have a 41.4% of GPS signal reception.

The overview of the entire campus area is as in Figure 12 depicted in the top-down and perspective
view with a scale marked. In total 9.32 km of path is covered in 32 min. Overall the campus shows an
altitude difference of 29.5 m between the northern and southern part. The final SLAM graph consists
of 1165 nodes, and the average distance between the nodes is 8.06 m.
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Table 4. Summary of Digital-Based SLAM results

Path Length Logging Time Computation Time GPS Node Wall Node Digital Map Node Total Nodes No. of Point

9322.35m 1952.06s 792.04s (40.57%) 482 (41.4%) 249 (20.09%) 136 (11.67%) 1165 23,017,120

(a) 3D map with point cloud (b) Data logging path

Figure 12. 3D mapping result and data logging path. (a) 3D map result represented by pseudo-colored
point cloud in digital map background. Nodes are color-coded by height varying from red (low) to
purple (high). (b) Illustration of data logging path performed in the experiments. Connection of the
trajectory represented by color shift from red (start) to purple (end). There are three circular paths
covering the eastern, the western, and the northern part of the campus.

7.1. SLAM Results

We first evaluate the SLAM results. Compared to Dead-Reckoned (DR), SLAM provides a more
consistent map as shown in Figure 13b. The position is a value converted to a standard reference
point (38◦00’00”N/129◦00’00”E), which follows the method of transverse Mercator coordinates.
The algorithm was capable of making four times of loop closure successfully (Figure 13c) using
a wall-to-wall loop-closing measurements. The node uncertainty propagation plot shows the SLAM
effectively bounds the uncertainty (Figure 13a). We plot both the entire covariance determinant ( 6

√
Σ in

m · rad) and the positional covariance determinant ( 6
√

Σxyz in m). DR shows approximately 10% of
the positional uncertainty, while SLAM results are mutually bounded by wall-to-wall loop closure,
GPS and digital map correction algorithm. In Table 4, the computation time with respect to the total
mission time is summarized. The entire method runs in real time using only 40% of the total mission
time. This is due to the fact that the low-rise building allowed more GPS signal reception , because the
number of the GPS and the wall node was the critical factor in terms of process time.

Figure 14 visualizes the nodes by the sensor types for the entire trajectory. As the environment is
with low level buildings, GPS signals (blue) are available for many nodes (41.4%). However, the signal
is sporadic and vulnerable to the surrounding structures. When the GPS signal becomes unreliable
we use complementarity available structural information and correct against the digital map (green).
DEM is also effective when altitude change is substantial within a region.
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Figure 13. Proposed digital map-based SLAM results. (a) Uncertainty versus path length . Whereas the
uncertainty of DR navigation (blue, dot) shows unbounded growth, the uncertainty of SLAM (red solid)
is bounded from wall-to-wall loop closures. The graph at the top of the pose uncertainty with log-scale
of y axis (unit: m · rad. The following [53–55], we use m · rad to show pose uncertainty), the bottom
graph shows the position uncertainty (unit: m). (b) Top-down view of the SLAM estimate (red line)
versus dead-reckoning trajectory (gray line). (c) The xy component of the SLAM trajectory estimate is
plotted versus time, where the vertical axis represents mission time. Green lines show wall-to-wall
matching for loop closure.
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Figure 14. Sensor availability graph. The nodes are colored by the sensor type associated with the
node. Blue dots are the GPS nodes and are in a smaller size for clear visualization for digital map nodes
(green and red). Cyan nodes are loop-closure nodes via LiDAR comparison.

7.2. Qualitative Urban Mapping Results

For further validation of the proposed method, we back-project 3D point clouds and images using
the accurate localization and mapping results. By doing so, we can generate a 3D urban map with
lanes potentially for autonomous car driving. By confirming the consistency in the back-projected
dataset, we validate the accuracy of the proposed method and application to urban map generation.
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7.2.1. 3D Point Cloud Map

Collected LiDAR points are locally accurate with respect to the vehicle pose under exact extrinsic
calibration. However, the entire map consistency may not be guaranteed if the estimated trajectory is
with errors. Using the SLAM refined trajectory, we use point cloud information in order to create a 3D
map of the urban environment. Figure 15 presents a qualitative result on two sample buildings created
from the back-projection. As can be seen in the sample buildings of Figure 15, the proposed method
is capable of detecting even highly complex walls The accuracy of the 3D modeling is significantly
affected by the trajectory estimation accuracy. The SLAM based method enables accurate estimation
even under a complex motion with many turns (Figure 15c).

(a) 3D map of large building with point cloud (b) Aerial view of building

(c) 3D map complex building with point cloud (d) Aerial view of building

Figure 15. 3D mapping result for sample buildings. Accumulated and refined point cloud using
SLAM trajectory is given. (a) and (c) are the 3D mapping of two samples. Points are colored by the
height, and green squares indicate the classified building walls. (b) and (d) are the aerial view of each
sample building.

7.2.2. Lane Map via IPM

We also generate a lane map for urban mapping. Using the Simultaneous Localization and
Mapping (SLAM) results and the previously introduced adaptive Inverse Perspective Mapping (IPM)
model, we produce precise bird’s eye view images compensating for vehicle motion. To generate dense
and precise lane map, additional vehicle positions are required because the average distance between
nodes of SLAM result is 8.06 m. Additional vehicle position and heading angle are interpolated by
using vehicle encoder data from nodes that generated by SLAM. Figure 16 shows the entire campus
lane map with four representative samples (shown in a zoomed view). Note the consistency of the
generated map by the IPM images back-projection.
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(a) Straight section 1 (b) Straight section 2

(c) Intersection (d) Speed bump

Figure 16. Generated lane map. (a) and (b) is a narrow straight section without and with parked car
respectively. (c) is intersection and (d) includes speed bump and crosswalk.

7.3. Accuracy Analysis

In the previous section, we have demonstrated consistency and qualitative evaluation. We also
performed quantitative evaluation on the mapping results. Using RTK-GPS with 10 mm-accuracy,
we analyzed the accuracy of the points from both sample buildings and lane maps. We use GRX2
by Topcon [56] in the RTK mode to measure ground truth point sampling. As shown in Figure 17,
we measure sample points from both buildings and lanes.

(a) Sample building corners. (b) Sample lane points

Figure 17. Accuracy analysis on sample points using VRS-GPS. (a) Four corners of the building rooftop
are measured with building walls compensation. (b) Sample points on road marks are measured.

We analyze the effect of each measurement model for the entire map generation. Our evaluation
process is described in Figure 18. Four building corners measured by RTK-GPS are connected to
complete the boundary of a building (red square in Figure 18a. By measuring a perpendicular distance
from LiDAR-extracted wall to the ground truth, we compute the Root Mean Square Error (RMSE)
mapping error for 3D structures. The error analysis is summarized in Table 5. GPS-based method
shows about a meter accuracy due to the sensor accuracy and unreliable availability. Compared
to GPS-based mapping, the digital map-based SLAM shows substantial improvement over the
conventional approach.
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(a) Overlaid ground truth (b) Error measurement (c) Topview

Figure 18. (a) Red square drawn from four sample ground truth corners. (b) By measuring
perpendicular distance (purple line) from 3D point cloud to ground truth (red line) error is measured.
(c) shows the topview for a clear illustration.

Table 5. Positional error measurement between the 3D building point cloud and RTK-GPS measured
building corners. The map error is computed from average of RMSE between the ground truth wall
generated from RTK measured sample points and LiDAR 3D points in the mapped wall. Note that this
error is over 9.32 km of travel distance.

Sample No. of 3D Map Points
Average RMSE

GPS Only [m] Digital Map-Based [m]

Set 1 3352 0.437 0.190
Set 2 1967 1.010 0.193
Set 3 227 2.070 0.347
Set 4 3314 1.407 0.136

Similarly, we examine accuracy on a lane map from a set of sample points on road markings.
In total, 16 points from five different sets are measured. Among them, Figure 19 presents validation
process for a sample set with six sample points. Six RTK-GPS positions are obtained and used as
ground truth (Figure 19a). In this analysis, we compare the proposed lane map with aerial image and
digital map. Overlaying ground truth on aerial images (Figure 19c) reveals substantial discrepancy
due to distortion without compensation from other sensors. In digital maps, road boundaries are
accurate but road marking and lanes are missing. Compared to digital and aerial maps, the proposed
method (Figure 19b) demonstrates substantial accuracy improvement.

Table 6 lists accuracy analysis for the proposed method for all five test sets. As in the 3D map
analysis, we compare the RTK-GPS measured ground truth with aerial image and proposed method.
Unlike the 3D structural map error, the SLAM error is not the only error source for this road marking
error. When manually selecting a pixel from distorted and stitched road images, other factors related
to image processing influences (e.g., image resolution, image quality, image distortion, manual pixel
selection accuracy, and interpolated motion error). Lane parameterization and online conversion will
surely improve overall lane results from fine refinement. In this work, however, we mainly aim to
validate the SLAM result accuracy by examining error from structural and lane mapping results.
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Table 6. Error analysis for the proposed method on road marking. Each dataset has two to six sample
points respectively. For set 2, no road marking in the aerial map and excluded in the comparison.
The proposed method’s error is also written as a ratio to the aerial image for clear comparison.

Sample No. of Lane Points
Average RMSE

Aerial Image [m] Proposed Method [m]

set 1 2 7.180 1.000 (13.927%)
set 2 2 - 1.055 ( - %)
set 3 2 8.948 1.699 (18.989%)
set 4 6 8.044 0.622 (7.727%)
set 5 2 11.261 0.610 (5.418%)

(a) Street view (b) Proposed lane map

(c) Lanes in aerial map (d) Lanes in digital map

Figure 19. Six sample points having accurate global position are measured by RTK-GPS, and they are
plotted on (a) street view, (b) lane map, (c) aerial map and (d) digital map. (c) Substantial position error
with ground truth in aerial map, (d) Small position error with ground truth occurs, but lacking in detail
such as road mark and cross walk. (b) Proposed method has position accuracy with global ground
truth and detail information.

8. Conclusions

This paper proposes a seamless way to incorporate publically available digital maps and sensors
mounted on a mobile platform. For accurate urban mapping, we focus on 3D structural and lane
mapping. The proposed method tackles the accurate map building problem by integrating global
measurements with local sensor measurements via Simultaneous Localization and Mapping (SLAM).
The results validate the accuracy of the created map. As the ground truth is not available we have
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conducted accuracy analysis by measuring a set of sample points using RTK-GPS. The proposed
method has proven itself capable of balancing unreliable GPS and digital map information to create an
accurate map.
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