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Abstract: In this paper, we present an offline map matching technique designed for indoor localization
systems based on conditional random fields (CRF). The proposed algorithm can refine the results of
existing indoor localization systems and match them with the map, using loose coupling between
the existing localization system and the proposed map matching technique. The purpose of this
research is to investigate the efficiency of using the CRF technique in offline map matching problems
for different scenarios and parameters. The algorithm was applied to several real and simulated
trajectories of different lengths. The results were then refined and matched with the map using the
CREF algorithm.
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1. Introduction

The importance of indoor navigation arises from the necessity of context-aware services that work
inside buildings, given that people spend most of their time indoors [1]. Although outdoor navigation
appeared prior to indoor navigation, the former techniques cannot be applied directly to the indoor
environment. This is firstly associated with the fact that outdoor navigation systems mostly depend
on Global Navigation Satellite Systems (GNSS) that function poorly indoors due to multipath and
attenuation losses, and secondly because pedestrian indoor movement is limited by building structure
and details that are totally different from those found on road maps [2].

As indoor environments possess spatial constraints that can be used to rule out certain incorrect
localization results, indoor maps have become an additional data source with which to improve the
accuracy and reliability of indoor localization systems. For instance, it is unreasonable that an estimated
walking trajectory passes through an area occupied by an obstacle such as a wall. The process of
utilizing map information in the localization processes of objects or persons is known as map matching.
Map matching can be used to find the correspondence between a sequence of points representing the
walking trajectory obtained via a localization system and a given map.

In outdoor transportation systems, map matching techniques vary from simple geometric search
methods to advanced complex probabilistic models [3]. Similarly, existing indoor map matching
techniques can be geometric, topological, or probabilistic. The differences between indoor and outdoor
map matching problems lie in the complex structure of indoor maps compared to road maps, as well
as in the randomness of pedestrian behavior compared to that of vehicles [2].
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Indoor map matching techniques that use advanced probabilistic models are usually based on
recursive Bayesian models such as Hidden Marcov Models (HMMs) and Particle Filters (PFs) [4-7].
However, recursive Bayesian models involve computing the joint probability distribution between
all states and observation variables, which makes them computationally expensive. The Conditional
Random Fields (CRFs), a probabilistic model that is widely employed in speech recognition, can also
be used in map matching [8,9]. It is a sequence-labelling algorithm that employs the observations and
context information as features to evaluate the conditional probability of state transitions. CRF is based
on calculating conditional probability which makes it computationally more efficient than Bayesian
models, besides being more flexible in handling arbitrary dependencies between observations [10].
However, CRF requires a backward phase in order to evaluate different path alternatives, which delays
the process and makes it less suitable for real-time applications. On the other hand, offline (Offline
localization systems: In localization systems, the expression “offline” has been used in the literature
with two different meanings: (1) those localization systems that are not real time, also known as global
systems, in which measurements are taken for the whole walk and an offline algorithm is then used
to estimate the track; and (2) those localization systems that use local resources and sensors without
having been connected to any global system or central server. In this paper, we use the term to refer
to the first meaning.) (i.e., not real time) map matching can allow for reduced performance in favor
of accuracy [11]. Offline map matching results can be used for both post-processing analysis and
modelling purposes. Many indoor applications that need behavioral analysis and data mining can
make use of offline map matched trajectories.

CRF was applied for the first time in pedestrian indoor localization by Xiao et al. in their
localization system MapCraft [12]. In MapCraft, the CRF map matching algorithm is tightly coupled to
the localization system that takes raw measurements directly from sensors such as Wi-Fi, Bluetooth and
inertial sensors as inputs to the algorithm, and fuses it together with the map information. What we
mean by what we call ‘tight coupling’ is that the CRF algorithm here is used to fuse all measurements
and spatial map information altogether at the same time; both positioning and map matching are
done together in one module. MapCraft aims to be used as real time map matching system; however
the delay produced by the backward phase of CRF is a real challenge that affects the efficiency of the
algorithm when used for real-time tracking; In MapCraft they overcome this problem by making the
compromise of converting the conditional probability discrete distribution obtained by the forward
phase to a Gaussian distribution and displaying it on the map in real-time [12]. This means less
accuracy as it does not give the optimal solution which can only be obtained in the backward phase;
that means that the CRF was not implemented completely in MapCraft for the online mode. We do
not know exactly to what degree that step affected the accuracy of their system when used online.
Nevertheless, their step can be a good example of that CRF is more suitable for offline usage. As they
mentioned clearly in their paper, the optimal path can only be calculated “in the case of delay tolerant
offline tracking” [12].

Regarding offline tracking and trajectory detection, it is possible to apply the CRF can be directly
to the raw sensors” measurements to estimate the location and match it with map; however this makes
the map matching dependent on the environment and highly customized, as the types of the available
sensors should be known; or we can separate the map matching part from localization; we can take
location trajectories obtained by any localization system and then match it with the map offline; the
map matching system will be independent of the sensors types and of the localization system, and can
be attached to (coupled with) any existing localization system as an independent module, separate
from the localization module; this modular structures means more flexibility.

In this paper, we present an offline CRF map matching algorithm that can be easily loosely
coupled to any existing localization system; it uses only the output estimated walking trajectory of the
localization system as an input and refines it based on only the map information, without the direct
use of raw sensor data. The adoption of loose coupling means that the map matching algorithm does
not need to know the implementation details of the primary localization system; this also then allows
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the map matching algorithm to be linked to any localization system as a separate module and to use
only its output. Any change in the localization system will not affect the implementation of the map
matching algorithm.

An example of using CRF as an offline map matching algorithm for outdoor systems can be
found in the work of Xu et al. [13]; in their work they use the GPS timestamped locations generated by
the vehicle as input trajectory for the map matching algorithm and the output is a sequence of road
segments traversed by the vehicle. As an outdoor map matching algorithm, the map model is based on
road segments. In our work with indoor systems, the map structure is different from the road network,
we used a grid based map model that divide the 2D map to squared cells. Our transition model is
based on the neighborhood between cells and the distribution of obstacles in the building, where in
outdoor environments the transition is dependent on the road network and topology. Instead of using
GPS locations as input, we use locations produced by a local positioning system as input as the GPS is
not effective inside buildings.

We will explain in details in Section 2.2 how the CRF algorithm functions; but for the purpose
of comparison we can say in brief that the CRF employs observations and context information
through features functions that relates the observation with state transitions. In MapCraft, they
used three feature functions depending on observations from sensors: (1) the first function uses
displacement and heading measurements from the inertial sensors; (2) the second function is to handle
correlations in heading errors of the inertial sensors; and (3) the third function uses the signal strength
observation in conjunction with fingerprint map [12]. In our map matching CRF algorithm, we do not
use observations from sensors as this supposed to be done by a pre-existing localization system; we
only make use of the spatial context provided by the map as presented by the model in addition to the
coordinates generated by the localization systems as observations. We use one feature function that
makes use of the map information and the input coordinates.

The rest of paper is organized as follows: Section 2 describes the system architecture and
components, as well as the proposed CRF model; the experimental results are presented and discussed
in Section 3; and finally the conclusions drawn from this research are presented in Section 4.

2. Overview of the System

In this section, the global architecture of the system is presented, as well as the implemented
algorithm. First, we give a brief description of the system architecture, components and behavior;
further details follow in Sections 2.1 and 2.2. The system architecture is illustrated in Figure 1. As can
be seen from this figure, the system is composed of three subsystems, with some interconnections
between them. The three components of the system are:

1. The primary localization system that produces the first estimated trajectory. This can be any
localization system that produces, as its output, a walking trajectory in the form of a time sequence
of estimated location coordinates. This trajectory will be the input of the map matching algorithm.

2. The semantic map generation system, a unit that models the floor plan obtained from CAD files
in a semantic format that can be used by the map matching algorithm. In our case, a grid-based
map model was employed in which the floor plan map is divided into square uniform-grid cells.
Each cell is associated with a semantic representation of its contents, for example if it contains
a wall or a free space.

3. The map matching algorithm that refines the estimated trajectory (path) using the CRF technique
and the semantic floor plan information.

System operation proceeds as follows: once the primary estimated trajectory is obtained by
the localization system, map matching is carried out by applying the CRF model that also uses the
information obtained from the map to produce a refined (corrected) trajectory. The goal is to estimate
the most feasible trajectory, taking into account the constraints provided by the map such as walls and
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other obstacles that are obtained from a semantic map generation system, a separate unit that extracts
map data from CAD files and represents it in a model so it can be used by the algorithm.

Localization System

Sensor »[Estimated Map Matching
Data Trajectory | Algorithm
(CRF) __>Corrected

[Trajectory

Semantic Map Generation System

CAD Map Symantic Map

(DXF Format) Information ] ?

Figure 1. System Architecture, illustrating the coupling between the proposed map matching algorithm
and the localization and semantic map systems.

2.1. The Semantic Map Generation System

Indoor maps can be available in different formats, like images, PDF files, or CAD files. These
formats are not suitable to be directly used by the map matching algorithm; two tasks should be
performed, the map information should be extracted from the available map files, then this information
should be represented in another format usable by the map matching algorithm. The most commonly
used map models in indoor localization are the grid models and the graph models [2]. In the grid
models, the space is partitioned into regular cells with semantics. The graph models [14] reconstruct
the space as a graph where nodes represent entities or places of interest in the building. In [12], for
example, they obtained graphs from maps in image formats using standard edge detecting algorithms
to extract edges from the image, then a grid-based map model was used with cell size of 0.8 m to
model the map information. In our system, we preferred to use the CAD files because CAD is very
widely used in architectural design, and we modelled the map using a grid-based model.

The semantic map generation unit extracts the map data from the CAD files and models it in
a semantic model suitable for the map matching algorithm. We use the CAD data encoded in the
Drawing Interchange File format (DXF). DXF files are standard ASCII text files that are offered by
CAD and that can be easily read by other programs [15,16]. However, map information obtained from
DXEF files is not suitable for localization applications, as it is not enhanced with semantic information
that allows computers to understand the architectural structure of the building and to distinguish
between different architectural objects such as walls and stairs [17]. Instead, DXF-derived map
information comprises only line, curve, circle, and polyline drawing data, which means that it requires
more processing in order to be used by the proposed map-matching algorithm. We extract the DXF
information and represent it using our map model, which is based on dividing the map into square
cells and determining the possible transitions of the pedestrian from one cell to another depending on
the existing obstacles. We extract the simple entity information from the DXF files and locate it in the
grid cell representation model of the floor plan.

As we will explain in Section 2.2, the CRF model is a classifier that requires pre-defined
states/labels. To this end, the proposed map model is designed to suit this specific purpose by
representing the map as a group of square cells, with each cell representing a squared area in the
building; to the algorithm, this represents a state/label that can be used to specify the position of the
pedestrian. In the model, each cell has its own characteristics, be it representing a free space in the
building or be it occupied by an obstacle such as a wall or furniture. For the purpose of representing
state transitions, each cell knows its neighbor cells and the neighbors of neighbor cells. A transition
graph/table is generated in such a way that the transition is only possible between neighbor cells that
do not contain any obstacle; for more flexibility, a transition to a neighbor of a neighbor cell is also
allowed under the condition that there are no obstacles impeding that transition. The search region for
the next location from the current location is known as the buffer [2], with the maximum transition
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distance allowed in each direction known as the buffer size. Allowing transitions to neighbor cells
and neighbors of neighbors results in a buffer size of 2 cells in each direction, as shown in Figure 2a.
Figure 2b presents an example of possible transitions based on the existence of obstacles.

zfr_

M Current cell M Cells blocked by obstacles
[ 1st degree neighbours M current cell

[0 2nd degree neighbours [ [0 possible next cells

(a) (b)

Figure 2. Search region for the next location, including allowed transitions in the next step (a) and
allowed steps in the presence of obstacles (b).

2.2. The Map Matching Algorithm

A CRF model is used as the base model in the developed system. As undirected probabilistic
graphical models developed for labelling data [8], CRF models are used for an input set of observations
x to predict a vector of hidden variables 37 Unlike generative models such as HMMs that model

the joint probability P (?, ?) by applying Bayes’ rule, CRFs are discriminative models that model

the conditional distribution P (? ‘ ;) over the hidden variables ? given observation vector X;
a comparison of generative and discriminative models can be found in [18]. In linear chain CRFs,
a special form of CRF graphs that model the output variable as a sequence [9], the conditional
probability of states given observations P (? ‘ ?) is proportional to the product of potential functions
that link observations to consecutive states. Figure 3 shows a representation of the linear chain CRF
model. The hidden states g are dependent on input observation vector ¥; each hidden state depends
not on one input value, but rather on the whole input vector. As a result, they can be affected by input
observations from different time steps; which is considered an advantage of the CRF technique.

Figure 3. Linear Chain CRF model (adapted from [8]).

In the map matching problem, the hidden state vector ? represents the sequence of locations to
be calculated, i.e., the corrected walking trajectory; our Linear Chain CRF algorithm uses the cells in
the map model as the hidden states/labels. Vector X represents the system input that can be either
coordinates of the locations on an estimated trajectory obtained by some localization system, as in the
case of our algorithm, or direct measurements from sensors.

The CRF algorithm consists of two phases: the forward phase and the backward phase. Following
the calculation of the conditional probabilities of all cells in all time steps during the forward phase,
inference is carried out in the second phase (backward phase),with the optimal trajectory chosen from
among different candidate trajectories.
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During the forward phase, the CRF algorithm evaluates the possible transitions at each time
step according to the input trajectory and the transition graph obtained from the map model; this
involves calculating the probabilities of transition from all cells of the current time step to all cells of
the next time step. A probability value is assigned to each cell in the map at each time step; this value
represents how probable it is that the pedestrian is located in that cell at that time step (for example,
the probability of pedestrian movement to a cell occupied by a wall is zero). This probability is also
a conditional probability calculated using so-called feature functions that compute to what degree
the input observations support the choice of a cell to be on the trajectory at that time step. However,
cell selection depends not only on its probability value at the current time step, but also on the
previous time steps, i.e., the path history, and how this cell is related to others in the path. Hence,
choosing the cell with the highest probability is not enough; the probability of a whole trajectory
should be calculated.

The feature functions specify how the transition between two states is supported by the set of
observations x. The potential function of a cell is calculated at each time step by calculating the
exponential of the summation of all feature functions that support the selection of this cell multiplied
by the transition probability of moving to this cell from the current cell at the current time step.
The higher the potential function value, the higher the probability of the cell to be the next cell. At each
time step, j the potential function is the exponential of the summation of all feature functions f; at that
time step, and can be written as:

Pj (??) = exp(i%‘fz’ (]/j—lzl/j/ ?)) ¢))

where m is the number of features and A; is the feature weight that can be determined by training the
model. The conditional probability P (? ‘ ;) of each cell is calculated by normalizing the potential
function as follows:

] i=1

where 7 is the number of output states/cells and Z is the normalization factor, with
— L - =
Z(x) zzntpj(x,y) 3)
B

If N is the number of cells, then at every time step the potential functions should be calculated
N x N times; however, knowing that transition can only happen between neighbor cells, one need only
calculate the potential function of those neighbors. Thus, the calculation number at each step is O(N)
and the complexity of the whole procedure is O(NT), where T is the number of time step observations.

For each observation, each cell stores only one conditional probability value (the highest), while
the previous cell that gave this value is also stored as the best parent. This is necessary for the following
inference step.

During the backward phase, inference is implemented in order to estimate the location over time,
with the most likely sequence of hidden states calculated by maximising the sum of the conditional
probability function. After the potential function for all cells is calculated for each observation, the
optimal path is determined. This is carried out via a backward process using dynamic programming
and the Viterbi algorithm [19]. The optimal path is obtained by maximizing the sum of conditional
probabilities along the path:

; * = argmax P (?‘?) . 4)
v
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Although this process might be assumed to be of high complexity, as we need to choose between
all possible trajectories, it is actually linear because for each time step we only save one value of the
conditional probability for each cell. Hence, the number of candidate paths equals the number of cells
(N). The backward process is O (NT), as we start a backward process for each cell by determining the
best parent, which is the neighbor cell with the highest conditional probability at the previous time
step, before summing these conditional probabilities along the path until reaching the first parent in
the path. The path with the highest sum is then chosen. The forward and backward phases of the map
matching CRF algorithm are shown in Algorithm 1.

Algorithm 1. CRF Algorithm for the Map Matching Problem

1 Input : Observation = a vector of coordinates of the input estimated trajectory

2 Output: CorrectedPath = a vector of coordinates of the output corrected trajectory

3 Forward Phase:

4 For each observation (Observation;)  %Observation ; = coordinates of the input at time step j

5 For all cells (i)

6 For all neighbor cells of i (k)

7 fais = T(i,k)/Distance (k,Observation;)%T(i,k): transition possibility from cell i to cell k {0,1}
8 Potential(k,Observation;) = exp(fy;s);

9 Z = sum(Potential(:,j)) % normalization factor

10 ConditionalProbabilty (k,Observation;) = Potential(k,Observation;)/Z

11 If (ConditionalProbabilty (i,Observation; 1) > ConditionalProbabilty (bestParent (k))
12 then CorrectedParent(k) =i

13 End

14 End

15 End

16  End

17 Backward Phase

18  #CandidatePaths = #Cells

19  For p =1 > #CandidatePaths % p is the last cell in the CandidatePaths

20 k=p % k is the current cell in the CandidatePath

21 Construct each CandidatePath:

22 For all observations (j > 1)

23 CandidatePath(j) = k; %add cell K to the path at time step j

24 sum(CandidatePath) = sum(CandidatePath) + ConditionalProbabilty(k,j)

25 k = BestParent(k,j) % choose the best parent of k to be the next cell in the path
26 End

27  End

28  CorrectedPath = CandidatePath with highest sum of ConditionalProbabilities

The main feature that we use in our CRF map matching algorithm is the Euclidean distance
(in meters) between the centre of the candidate cell and the estimated position derived from the
primary localization system; a smaller distance means a higher value of the potential function given
that the transition to this cell is possible, as determined by the transition graph obtained from the map
model. The proposed feature function can thus be defined as follows:

__T(i)
fdzs " Distance (xj,yj) (5)
Minimum distance = cell size/2

where T is a function that indicates the transition possibility from the current cell to the candidate
cell, depending on the transition table, and which can be either 0 or 1, j is the time step and x is
the current observation, which is the current location estimated by the primary localization system.
This feature means that cells close to the current input locations have higher probabilities than far cells,
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on the condition that transition to the cell is possible from its neighbor cells and no obstacle forbids
this transition.

3. Results and Discussion

The algorithm was tested using both simulations and data obtained from real measurements.
Map information for the 4th floor of the DeustoTech building at the University of Deusto (Spain)
was extracted from AutoCAD files and modelled as a grid-based map model. Section 3.1 presents
the results of the conducted simulations, while the results obtained using the real measurements are
presented in Section 3.2.

3.1. Simulations

A base trajectory (shown in Figure 4) was constructed as the ground truth, with different
unmatched trajectories then created randomly as the input (observations) of the map matching
algorithm. In real-life applications, the input trajectory is the output of an existing localization system
that represents the primary estimations (as we will show in Section 3.2). The map matching system is
applied to refine the estimated trajectory by avoiding crossing obstacles; the most feasible trajectory is
the sequence of positions that violates the fewest constraints [12]. After matching the input trajectory
to the map using the CRF algorithm, the matched (corrected) trajectory was compared to the ground
truth in order to measure the precision, using the Cumulative Distribution Function (CDF) of the errors
obtained by calculating the Euclidean distance between the actual position in the ground truth and the
corresponding corrected position.

70

60

50

40

meters

30
20
actual trajectory ”
10 m #* start and end points .—-Ig !I 1

0 20 40 60 80 100 120
meters

Figure 4. The Ground Truth, the arrows indicate the direction of walking.

To simulate different possible input trajectories with different qualities, different levels of noise
were added to the base track by allowing different degrees of deviation (distances) and randomness
around the ground truth. A low noise level was used to represent a primary estimation (input)
trajectory with low error (mean error of about 1.3 m and standard deviation of about 1 m for noise
level 1); a simulated input with a high noise level was used to represent an input trajectory with high
error (mean error of about 2.5 m and standard deviation of about 1.8 m for noise level 4). Table 1 shows
approximate values of the mean and standard deviations of the four different noise levels obtained by
simulating 25 random samples of each noise levels. Examples of different simulated trajectories with
different noise levels are shown in Figure 5.
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Table 1. Means and standard deviations for the different level of noise used in simulations.

Noise Level Mean (m) Standard Deviation (m)

1 1.3 1

2 1.6 1.1
3 2.0 1.3
4 2.5 1.8

g DR T
HIT][TT]

11

0

s (Sround Truth
MNoise Level =1
—+— Noise Level =2
—&— Noise Level =3
—#— Noise Level =4
Start and End

[

—
]
J_‘

Figure 5. Trajectories with different noise levels.

The results of matching different input trajectories with the map are shown in Table 2. We can
see that in all the 300 samples that we have run the number of obstacles crossed by the map matched
trajectory is zero. This is an important proof of the efficiency of the algorithm. Mathematically, the best
path is the path with highest some of scores, the path might have the highest sum of score while one of
these scores is zero; one single zero score might not affect much the whole sum. If at some point, the
score of the cell was zero because there is an encounter with an obstacle, it still can be in the path if the
sum of all points on the path is still high. However, such situation is very rare as our algorithm and
features are designed to minimize the chance of crossing obstacles; what prevents crossing obstacles is
that normally there are other free cells with higher potential scores to choose instead of occupied cells.
That’s why the probability to cross obstacles is almost zero. No encounter with obstacles will happen
unless it is necessary and there is no other choice; in odd cases like the in the case of the divergence
(stuck) problem that happens when the trajectory is trapped in a small area; the path might cross the
wall to get out of the trap. To explain that, in some cases of divergence, the input location becomes so
far from the current cell to be evaluated (big distance), when we calculate the feature (1/distance), and
the probability (Equation (2)) it will be of very small value (near to zero). That means no big difference
of probability between free cells and blocked cells; both would have very low scores because all are
distant from the real place. In this case, it is possible that the path will cross an obstacle to get out
from the trap, as again at the end the path is evaluated with the sum of probability along it not on a
single obstacle cross. According to our observations, this case of crossing obstacles happens very rarely
and does not happen in most of divergence problem cases, but few of them. The divergence problem
itself happens rarely as we will see below. To study the effect of cell sizes and noise level, Table 2 was
constructed with different parameter combinations. To measure the precision, the cumulative error for
50% and 90% of positions on the trajectory was calculated for different parameter values, in this case,
cell size and noise level. For each parameter combination, the algorithm was run on 25 random input
trajectories and the average cumulative error registered for 50% and 90% of positions.
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Table 2. Simulated trajectory results using feature fg;. Path length = 352 m.

. . Number of Cumulative Error (m)
Cell Size (m)  Noise Level Crossed Obstacles 0% 90%
1 0 0.9867 2.6699
0.8 2 0 2.682 19.7820
: 3 0 5.7945 32.464
4 0 6.5158 32.3861
1 0 1.1574 3.078
1 2 0 1.2463 3.8172
3 0 1.4853 5.1879
4 0 2.1409 11.1061
1 0 19.4403 70.7003
15 2 0 16.6941 61.6751
’ 3 0 17.7461 68.5491
4 0 20.0473 71.8129

It is clear from Table 2 that a cell size of 1m provides good results, and even when adding high
levels of noise to the input the results still acceptable. At a low noise level (equal to 1), for 50% of the
trajectory the average cumulative error is 1.16 m and for 90% the average cumulative error is 3.078 m,
based on a total track length of 352 m. Using a larger cell size of 1.5 m length results in more cells
occupied by obstacles and thus blocked to movement; this explains the high level of error observed in
the respective results, as illustrated by the example shown in Figure 6a. Figure 6b illustrates how the
corridor is blocked because it contains cells occupied by side walls. Besides being high in error we also
notice the results of this cell size are also totally random in relation with the noise level, higher error
of low noise level is just due to the random input samples, using different samples would result in
different numbers, that explains the available results of 70.7003 m using noise level 1 while smaller
error 61.6751 m error is obtained using noise level 2, which might look strange but it is normal; noise
level in this specific situation is irrelevant and does not have a significant impact on the results as the
error that results from the blocked corridors is much higher than the error that results from the noise.
We have run other samples and we got results which looks normal (smaller error for less noise level)
but we kept the current result to illustrate the irrelevance of the noise level in this case. Although the
use of a cell size of 0.8 m would be expected to lead to more precise results, the obtained results show
that this is correct only for low noise input; at higher noise levels the error was high, likely due to
what we call the stuck or divergence problem. This particular problem occurs when the corrected
trajectory enters a room or small area and cannot leave; an example of such a situation is shown in
Figure 7. Although with smaller cells it is more likely that certain cells will contain no obstacles, some
of these empty cells could form entrances to small areas, allowing the trajectory to pass through them
and become trapped. The stuck problem recorded in 0.8 m cell size simulations resulted in high error
values in about 16% of samples, with the remainder achieving good results (average cumulative error
of 4.2522 m for 90% of observations at a noise level of 2). It should be noted that the values shown in
Table 2 indicate the average cumulative errors in all samples, including those experiencing the stuck
problem, which explains the high value of some of these averages. Figure 8 displays examples of the
results obtained for different cell sizes and different noise levels.
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Figure 7. Stuck problem scenario, cell size = 0.8 m, noise level = 4.
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Figure 8. Ground truth, estimated and corrected trajectories obtained using different cell sizes and noise
levels. (a) Cell size = 1 m, noise level = 2; (b) Cell size = 1 m, noise level = 3; (c¢) Cell size =1m,
noise level =4; (d) Cell size = 0.8 m, noise level = 1; (e) Cell size = 0.8 m, noise level = 2;
(f) Cell size = 0.8 m, noise level = 3.

A moderate walking speed is thought to be around 1.67 steps/s (1.67 Hz) [20], with an average
step length of 0.7 m for women and 0.78 m for men [21], resulting in a movement speed of around
1.3 m/s. Assuming a frequency of input of 1 estimation/s (1 Hz), i.e., a time step equal to 1 s, the subject
would move 1.3 m every time step, 2.6 m in 2 steps, etc. As the proposed map model employs discrete
values for movement (cell units), allowing only one cell transition, for example, in each time step
(buffer size equal to 1 cell) would mean that the system would not be able to capture the movement of
a pedestrian walking at moderate speed; it is therefore more suitable to have flexibility of movement
by allowing 0, 1, or 2 cell moves in each time step by allowing transition to neighbor cells and to
neighbors of neighbors (buffer size equal to 2), which is necessary in order to obtain a correct trajectory
assuming a cell size of 1 m. If the input frequency was 2 Hz (2 estimations/s), this would mean an
estimation every half-second time step. During this time period, a pedestrian moving at moderate
speed moves around 0.65 m in each time step, a distance smaller than the cell size (1 m). In this case, if
only one cell transition was allowed there should not be a problem, while allowing more possibilities
(1 or 2 cells) should also work. In some systems there is no fixed frequency for estimations, with the
location registered at each step whatever the speed. In the present case, if we assume a moderate
walking speed the average frequency will be around 1.67 Hz, meaning that a buffer size of 1 cell would
be suitable. However, in all cases a buffer size of 2 cells is still more flexible in capturing any speed
variations and in dealing with other types of movement such as running.

The results shown in Table 2 are those for a buffer size of 2 cells and assuming that the estimations
of the primary localization system are registered at a frequency of 1 Hz. To experimentally test the
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effect of buffer size and estimation frequency on the proposed algorithm, further simulations were
carried out using a cell size equal to 1 and noise level equal to 1; the results of these simulations are
shown in Table 3. It is clear from this table that the results were worse when using a small buffer size
(1 cell) and 1Hz frequency, with 33.1054 m error for 90% of data compared to the 3.078 m recorded
for a buffer size of 2 cells and the same 1 Hz frequency. This discrepancy is due to the inability of the
trajectory to reach the correct destination using small steps, as the estimated trajectory was moving
faster. Furthermore, the adoption of a 2 Hz measurement frequency achieved better results, even when
using a small buffer. Nevertheless, a high buffer size always provides more flexibility.

Table 3. Simulated trajectory results for different step lengths and measurement frequencies using cell
size = 1 m and noise level = 1. Path length = 352 m.

Estimation Frequency = Buffer Size = Cumulative Error (Meters)

50% 90%
1Hz 1 cell 12.4931 33.1054
2Hz 1 cell 1.1348 2.4989
1Hz 2 cells 1.1574 3.078
2Hz 2 cells 1.3639 3.0044

3.2. Real Measurements

Testing was carried out on the 4th floor of the DeustoTech building at the University of
Deusto (Bilbao, Spain). Primary results were estimated via a step-and-heading based Pedestrian
Dead Reckoning (PDR) system using a wrist-worn inertial measurement unit composed of three
accelerometers and three gyroscopes. Heading drift was reduced by applying the method known as
improved Heuristic Drift Elimination (iHDE) [22], with the developed map matching algorithm then
applied offline. Estimation frequency was not constant but depended on the step, as the employed
PDR system calculated the location at each step. For the map model a cell size of 1m and a buffer size
of 2 cells were used. The estimated results of the primary localization system and the results corrected
by CRF map matching for one round walk of the DeustoTech area are shown in Figure 9b. Figure 9¢
displays the estimated trajectory for two rounds, with the corrected trajectory for this estimated
trajectory shown in Figure 9d; the ground truth is shown in Figure 9a.

actual trajectory

[]’J] # start and end points ]
=) e e N
A

meters

0 20 40 60 80 100 120 0 P a0 &0 0 100 120
meters meters

(a) (b)

Figure 9. Cont.
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Figure 9. Ground Truth, estimated trajectory obtained from real measurements using iHDE and
trajectory corrected using CRF. (a) Ground truth; (b) Estimated and corrected trajectories; (c) Estimated
trajectory for two circuits; (d) Corrected trajectory for two circuits.

Analysis of Figure 9 reveals that although the primary estimated trajectory crosses a number
of walls and obstacles, this was corrected successfully using the map matching algorithm and zero
obstacles was crossed by the map matched trajectory, see Table 4. As a consequence of matching
the trajectory with the map, the accuracy was also improved; even though the accuracy of the iHDE
trajectory was already good, the map matching using CRF has further improved the accuracy and the
cumulative error was decrease as shown in Table 4. Before applying the map matching, using only
the primary localization system (iHDE), the average cumulative error was 1.2861 m and for 50% of
the trajectory 2.6858 m for 90% of the trajectory. The cumulative error was reduced by applying the
CRF map matching algorithm to be 1.0634 m for 50% of the trajectory, and 2.2316 m for 90% of the
trajectory; which means improvement of 17.5% and 19.8%, respectively.

Table 4. Real measurement results using feature fy;s and cell size = 1 m. Path length = 347 m.

Cumulative Error (m)

Algorithm Number of Crossed Obstacles

50% 90%
iHDE 15 1.2861 2.6858
iHDE + CRF 0 1.0634 2.2316

4. Conclusions

The presented research has demonstrated the successful use of CRF as a model in the offline
map matching process. Our CRF algorithm is able to correct trajectories produced by localization
systems when given the appropriate map information. Grid cells of fixed length were used for the
map representation, with a cell size of 1 m producing acceptable results. The use of a larger cell size
achieved less accurate results, mainly due to obstacles blocking entire cells, a feature unsuitable for
sites with narrow areas such as corridors. On the other hand, although smaller cells should provide
more accurate results, they also potentially increase the occurrence of the divergence problem that
occurs when trajectories are stuck inside small semi-enclosed areas. Even though the experiments
were carried out with pedestrians in mind, the same algorithm can be applied to any object moving
within the normal pedestrian speed range; this is because the algorithm can be loosely coupled with
any localization system and is independent of that system implementation, instead dealing with only
its output coordinates.

Our future work will first involve finding methods with which to solve the stuck problem, possibly
by adding more semantic information such as rooms and doors to the map model. In addition, using
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more context information and adding more algorithm features can help to further improve the results;
people behavior related to the building structure can be another source of information that we intend
to employ in order to improve the accuracy. Exploring ways in which to use the CRF model efficiently
for online applications is another future task we will work on.
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GNSS Global Navigation Satellite System
CRF Conditional Random Fields

HMM Hidden Marcov Models

PDR Pedestrian Dead-Reckoning

DXF Drawing Interchange file format
CDF Cumulative Distribution Function
iHDE improved Heuristic Drift Elimination
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