
sensors

Article

A Matrix-Based Proactive Data Relay Algorithm for
Large Distributed Sensor Networks

Yang Xu *, Xuemei Hu, Haixiao Hu and Ming Liu

School of Computer Science and Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China; huxuemei1990@126.com (X.H.); 201511060118@std.uestc.edu.cn (H.H.);
mingliu.uestc@gmail.com (M.L.)
* Correspondence: xuyang@uestc.edu.cn; Tel.: +86-189-8094-7876

Academic Editor: Xue-Bo Jin
Received: 21 June 2016; Accepted: 2 August 2016; Published: 16 August 2016

Abstract: In large-scale distributed sensor networks, sensed data is required to be relayed around
the network so that one or few sensors can gather adequate relative data to produce high quality
information for decision-making. In regards to very high energy-constraint sensor nodes, data
transmission should be extremely economical. However, traditional data delivery protocols are
potentially inefficient relaying unpredictable sensor readings for data fusion in large distributed
networks for either overwhelming query transmissions or unnecessary data coverage. By building
sensors’ local model from their previously transmitted data in three matrixes, we have developed
a novel energy-saving data relay algorithm, which allows sensors to proactively make broadcast
decisions by using a neat matrix computation to provide balance between transmission and
energy-saving. In addition, we designed a heuristic maintenance algorithm to efficiently update
these three matrices. This can easily be deployed to large-scale mobile networks in which decisions
of sensors are based on their local matrix models no matter how large the network is, and the local
models of these sensors are updated constantly. Compared with some traditional approaches based
on our simulations, the efficiency of this approach is manifested in uncertain environment. The results
show that our approach is scalable and can effectively balance aggregating data with minimizing
energy consumption.

Keywords: proactive data relay; information fusion; large distributed sensor networks;
matrix-based computing

1. Introduction

Large distributed sensor networks have been widely used in both military and civilian
applications [1], such as target tracking [2], disaster response [3] and field surveillance [4]. In these
applications, although each sensor is able to get some crude information, the data is usually imprecise
or noisy with very low fidelity. As a consequence, the data in this form cannot be directly used for
automatic planning or supporting human decisions, and has to be fused with other relevant data [5].

To fuse distributed data in a network, the key is to relay multiple-source data and aggregate
enough amount of data to a single node in order to achieve high confidence information fusion [6].
However, with the progress of the development of state-of-the-art mobile sensor applications, networks
emerge with new characteristics that pose challenges to existing information fusion approaches. The
astronomical growth of networks involving thousands of sensors is a typical challenge in this respect.
In these large networks, no single sensor can respond as the center and gain complete statistic of
states of the entire network. In addition, because these networks are dynamically changing due to
the mobility of sensors, or movements as a result of the surrounding air or ocean currents [7], node

Sensors 2016, 16, 1300; doi:10.3390/s16081300 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2016, 16, 1300 2 of 19

failures are not rare. Additionally, most sensors in these large networks have lightweight processing
units, which make high constraint of energy consumption ideal for their operations.

Following the importance of information fusion, many data relay protocols have been developed
to diffuse data in sensor networks. Flooding [8] adopts a straightforward protocol for sensors to
rebroadcast any new data received, but suffers from the intrinsic excessive energy consumption and
network congestion due to the large number of duplicated messages. Traditional hierarchical [8] or
centralized routing [9–12] approaches, which are designed for fixed structure or where only sink
nodes respond to information fusion are not also ideal for data fusion in mobile sensor networks.
The predefined backbone nodes in these approaches will exhaust their power very quickly because
of the heavy transmission burden and enormous cost on routing maintenance. To avoid these
problems, many other distributed approaches have been developed for cases whereby all nodes
can be treated as sink nodes. Those approaches include Information via Negotiation(SPIN) [13],
Scalable Broadcast Algorithm (SBA) [14], The Lightweight and Efficient Network Wide Broadcast
(LENWB) [15], Dominant Pruning [16] and Dynamic Probabilistic Flooding Algorithm [17]. Even
though these approaches can guarantee a high quality information fusion, not all sensors would
need all the data because any piece of information can only be fused by the sensor that aggregates
enough relative data first. Therefore, the unnecessary data coverage may end with huge amount of
energy consumption and redundant communication cost. SPIN can address this limitation to some
extent by negotiating before broadcast, and allows sensors to transmit only data that others would
need. Unfortunately, it is a reactive protocol, and a large number of negotiated messages makes it
time-consuming and cost-ineffective for distributed data fusion. Some algorithms [18] can proactively
relay data by forecasting the needs before a given set of data is broadcast. For example, a sensor would
rather like to rebroadcast the data that is relative to the data of its neighbors only. However, when
sensors cannot gain a complete view over an entire network, an intelligent proactive algorithm could
be very difficult to implement [19].

In this paper, we present a novel matrix-based energy-saving and proactive algorithm to relay data
in large distributed sensor networks. To deliver the core competence of this approach, we employ no
querying process, and each node proactively forwards data to its neighbors by estimating the needs of
neighbors based on its local knowledge about itself and the neighbors. From this viewpoint, we encode
local knowledge of sensors into three neat matrices: local connection matrix (C); local data distribution
matrix (D); and utility matrix (U) to encode utility of adding data into a data set. With these matrices, a
compact and light-weight algorithm is proposed, where each node makes a series of simple all-in-one
matrix computation to evaluate the benefits and cost of actions. Comparing the benefits against cost
allows serious decisions to be made whether a piece of sensor data should be broadcast to make a
good tradeoff between data relay to get high quality information and prolonging the lifetime of the
network. In addition, energy consumption in data relay is taken into consideration towards cautious
decision-making processes. As sensors do not have global knowledge of the network, a heuristic
algorithm is proposed to maintain the size and value of these matrices from incoming messages to
adapt to sensor mobility. By introducing matrix computations, and as our matrices only store local
knowledge and updated in time, our approach is lightweight and can easily be deployed in large
mobile sensor networks. Further, to manifest feasibility of this approach, we discuss the simulations
carried out, and the results show that our approach can perform well in dynamic environments to
effectively balance aggregating data with minimizing energy consumption.

2. Related Work

Many data relay protocols have been designed for distribute data fusion in wireless sensor
network [20–22]. They can be categorized as two groups according to where the fusion occurs.

One strand of protocols are based on fix or predefined sink nodes. They are designed for multiple
sensors to forward data to specific sink nodes for data fusion, such as Directed Diffusion [9], in
which a sink floods its interests to build reverse paths from all potential sources to the sink. Rumor

Sensors 2016, 16, 1300 3 of 19

Routing [10], Constrained anisotropic diffusion routing (CADR) [11] and GRAdient Broadcast [12]
are some variations of Directed Diffusion. In Rumor routing, sink floods queries while sensors flood
events which make Rumor routing performs better than Directed Diffusion when number of events is
small. CADR introduces an information utility measure to select which sensors query and dynamically
guide data routing. GRAB builds and maintains a cost field to provide sensors the direction to forward
sensing data. It is a robust data delivery algorithm addressed nodes failures and link failures. However,
since these protocols are based on single-gateway architecture that makes them not fit for large scale
mobile sensor network [21]. First of all, sensors near sink nodes have heavy burden to relay data and
their energy will be exhausted in short time. Second, sensors are typically not capable of long-haul
communication and the latency in communication can not be ignored. Third, energy on finding ways
to sink nodes is huge which makes them not suitable for mobile networks where network topology
dynamically changes.

To allow the system to be able to cover a large area of interest without degrading the service,
networking clustering has been pursued in some routing approaches. LEACH [21] and LEACH
series [23] are hierarchical routing algorithms for sensor networks. Cluster heads change randomly
over time in order to balance the energy dissipation of nodes. Each node transmits directly to the
cluster-head. They are completely distributed and requires no global knowledge of network. However,
they use single-hop routing where each node transmits directly to the cluster-head and the sink.
Therefore, it is not applicable to networks deployed in large regions . Further more, the idea of
dynamic clustering brings extra overhead, e.g. head changes, advertisements etc., which may diminish
the gain in energy consumption.

For the second strand of protocols, there is no predefined sink nodes, sensors are teated equally as
probable sink nodes, and data fusion can be done by any sensor unless it aggregates enough relative
data. The most straight forward protocol is flooding [8], in which sensors rebroadcast any new data it
receives. Apparently, FLOODING consumes too much energy on the transmission of redundant data.
To reduce the redundant data of flooding, some reactive and proactive protocols are proposed. Sensor
Protocols for Information via Negotiation(SPIN) [13] is a reactive protocol which avoids redundant
data transmission by meta-data negotiation with neighbors. sensors only forward data to the neighbors
that need it. However, it is infeasible for distributed fusion where the size of meta-data is close to useful
data because the frequent query data transmission is not cost-effective and introduces non-negligible
time delay.

Proactive protocols do not need queries to avoid redundant data transmission but proactively
decide if rebroadcasting data received based on the local topology and static information of redundant
data, such as Scalable Broadcast Algorithm (SBA) [14], The Lightweight and Efficient Network Wide
Broadcast (LENWB) [15], Dominant Pruning [16] and Dynamic Probabilistic Flooding Algorithm [17].
SBA and Dominant Pruning maintain the local network topology by hello messages. In SBA, sensors
only rebroadcast the data that at least one of its neighbors do not know. In Dominant Pruning,
rebroadcasting nodes proactively choose one or more of its neighbors as rebroadcasting nodes by
Greedy Set Cover algorithm. In Dynamic Probabilistic Flooding Algorithm, sensors obtain neighbor
information by basic flooding and divide neighbors into three types: parent (upper level), sibling
(same level), and child (lower level) nodes. A node with the more children nodes and less siblings
needs the lower retransmission probability. These three protocols try to cover all the nodes with
all the data to guarantee at least one node aggregates enough relative data to fuse into information.
However, in large sensor network, too much energy is consumed on unnecessary coverage of such
a huge number of sensor nodes, for a piece of information is only needed to be fused by one sensor.
In addition, in mobile sensor network, too much energy is consumed on the transmission of hello
message to maintain local topology.

Sensors 2016, 16, 1300 4 of 19

3. Problem Description

A typical scenario of a large scale mobile sensor domain is illustrated in Figure 1, where distributed
sensors are randomly deployed for remote operations in a large unstructured geographical area to
detect events. For their limited communication ranges and wide distribution, each of them can only
relay data to a few of the others directly. But for the low quality of those sensor readings, data has to
be transmitted until a single node get enough relevant data to produce high confident information,
which denoted as a double circled sensor in the figure.

Data Relay of Data1
for an Event i
Data Relay of Data2
for an Event i
Data Relay of Data3
for an Event i

Figure 1. An overlook on the large-scale sensor network deployment and the real topology.

Let G(V, E) be the topology graph of this network. V={v1, v2, ..., vi, ...} denotes the set of mobile
sensor nodes such as sonics, microwave, infrared and x-ray sensors. E = {eij|∀vi, vj ∈ V, P(vi, vj) > 0}
consists of edges between any two sensors, where P(vi, vj) is the connection probability between
two sensors. Supposed that each sensor has an identical communication range r, P(vi, vj) can be
calculated according to the channel propagation model [24,25]: P(vi, vj) = (1− f (dij, 1/r)) where
dij is the distance between vi and vj. Based on E, the neighbor set N(vi) of each sensor vi ∈ V is
{vj|∀vj ∈ V, eij ∈ E}.

Let us consider a case of sensors deployed to track multiple stationary or moving targets
Target = {T1, T2, ..., Tm}. It is possible that a given target Tk can be detected by multiple sensors
at the same time. For example, when a hostile vehicle is moving through a given intersection, a shock
sensor detects the vibration when it passes and an infrared sensor nearby receives the infrared signal
from the vehicle. After detecting a target, sensor vi will analyze the raw data(vibrates, infrared
signal and so on), and generates a data dj about this target. Data dj can be denoted as a tuple
< sourceID, identity, location, timestamp, path >:

• sourceID is the ID of the sensor that senses this data.
• identity is the confidence hypotheses about the target identities Tk, which can be expressed as

cdj = {cdj
(T1), cdj

(T2), ..., cdj
(CLUTTER), }. An example is shown in Table 1.

• location is the geographical location of the target when detected.
• timestamp is the system time when the target is detected.
• path records sensors that pass this data.

Table 1. An example of the body of a piece of data.

Target Confidence Target Type Confidence

USSR T80 0.4 US M977 0.001
WSSR T72M 0.3 US M35 0.001
US M1 0.1 US AVENGER 0.001
US M1A1 0.05 US HMMWV 0.001
USSR 2S6 0.02 USSR SA9 0.001
USSR ZSU23 0.03 CLUTTER 0.095

Sensors 2016, 16, 1300 5 of 19

The location and timestamp of a target are used to determine if two pieces of data are referring
to the same target. If that is the case, they are called relevant. Since the data from a sensor is always
noisy, uncertain and cannot be used directly for automatic planning or supporting human decisions,
data should be relayed around the network to meet more relevant data to produce a higher quality
information [26].

The basic distributed data relay process for a given sensor vi can be briefly described by
Algorithm 1. Each sensor keeps a local data set Li to store the up-to-date data it receives and senses.
For any data dj sensed or received by vi, dj is first put into the local data set Li of vi. Next, vi tries to
fuse this data with relevant data in Li based on pre-selected fusion rules such as Bayesian inference
method [27] and Dempster-Shafer theory [28]. The fusion rules are out of the scope of this paper, and
so no explanation to that effect is provided. If the quality of these fused data is beyond the predefined
threshold, vi will stop the propagation of this data and fuse them into a piece of valuable information
Ih with a credible confidence about a target Tk. Otherwise, vi will add the data into the pending queue
pendingQuei, and make communication decisions for all data in this queue.

Algorithm 1 Distributed data relay process.

1: while true do

2: Li ← data received or sensed by vi
3: for all data dj received or sensed by vi do

4: Try to fuse it with relevant data in Li;
5: if the quality of the fused data meets the threshold then

6: Fuse them into a piece of information;
7: Inform other nodes data dj is outdated;
8: else

9: PendingQuei ← dj;

10: Make communication decisions for each data in PendingQuei;

The objective of data relay is to aggregate relevant data to some single node to fuse more high
quality information while minimizing the energy consumption of the network. However, sensors
cannot take optimal actions since they do not have global view of the network. They make data
communication decisions based on local knowledge to maximize incremental quality of relevant
data set of neighbors in local data set, and minimize the energy cost. For data dj, there are two

communication choices, broadcast act
dj
vi = 1, or not act

dj
vi = 0. If broadcasting, it is not absolutely sure

that all the neighbors will receive this data because of the uncertainty of network connection. We can
explain the objective function of data relay as following:

argmax

act
dj
vi

act
dj
vi × (∑

vk∈N(vi)

P(vi, vk)× ∆Q(dj, Lk)− β× Energy(vi, dj)) (1)

where ∆Q(dj, Lk) is the incremental quality of knowledge base Lk after receiving data dj. Energy(vi, dj)

is the energy consumption on transmitting dj, and β is a coefficient to balance the energy cost and
information cost in decisions.

3.1. Information Quality

We use Lh
i ⊆ Li to express the subset of data that is relevant, and indicates information by Ih. The

quality Q(Lh
i) of fused data in subset Lh

i can be calculated based on the fusion rule of sensors. Let us
take Dempster-Shafer rule [28] as an example,

Q(Lh
i) = max

Tk∈T
cLh

i
(Tk) + cLh

i
(CLUTTER) (2)

Sensors 2016, 16, 1300 6 of 19

where cLh
i
(Tk) and cLh

i
(CLUTTER) are elements of cLh

i
= {cLh

i
(T1), .., cLh

i
(TM), cLh

i
(CLUTTER)},

representing the basic probability assignment for the fused data indicating information Ih. This
can be calculated as cLh

i
= ⊕dk∈Lh

i
cdk

, where ”⊕ ” is the operator in D-S rule of combination. If the
number of these data reaches the minimum number threshold ωn and the quality of fused data is more
than the minimum value threshold ωQ: Q(Lh

i) > ωQ &|Lh
i | > ωn, these data will be fused into a piece

of information Ih. The quality of the whole local data set is the sum of the quality of data sets:

Q(Li) = ∑
Lh

i ⊆Li

Q(Lh
i) (3)

As data is only fused with relevant data, adding one piece of data to a local dataset can only
affect the quality of its related data set. The incremental quality of a database after receiving dj can be
calculated as

∆Q(dj, Li) = Q(Li ∪ {dj})−Q(Li) = Q(Lh
i ∪ {dj})−Q(Lh

i) (4)

Maintaining a precise value of the incremental quality based on Equation (4) for each neighbors is
computational high. However, it is unnecessary to keep it so precise and an estimation of this value
is enough for the relay decision. What we need is to obtain those data that have higher confidence
and have more relevant data in the local data set. To simplify, we use the utility of a data set to
approximately estimate the quality of same. The utility can easily be calculated as the sum of utility
between data:

U(Li) = 1/2 ∑
dj∈Li

∑
dl∈Li

U(dj, dl) ∝ Q(Li) (5)

where U(dj, dl) is the utility between data. The value can be computed either according to the fusion
rule of sensors, or given by an expert knowledge system. For example, utility can be looked up in a
utility table stored in sensors as their domain knowledge. Particularly, U(dj, dj) = 0, and if dj and dl
are not relative, U(dj, dl) = 0. Therefore the incremental quality can be approximately represented by
the incremental utility:

∆Q(dj, Li) ∝

∆U(dj, Li) = U(Li ∪ {dj})−U(Li) =

{
∑dl∈Li

U(dj, dl) if dj /∈ Lk;

0 if dj ∈ Li

(6)

If vi already has observation about dh, this data becomes redundant and makes no contribution to
fusion, and as such, the benefit of broadcasting is 0. If vi does not have this data, it may be helpful to
sensor vi to increase the fusion probability. The benefit in this case can be represented by the sum of
utility between this data and other data in local data set.

3.2. Energy Consumption on Communication

In a deployed sensor network, the sensor nodes are usually battery powered [29], and they have
to operate on an extremely frugal energy budget. Since communication is the major source of energy
consumption in sensor networks, to prolong the lifetime of the sensor network requires a careful
consideration of the energy cost in each transmission.

For each sensor vi, the energy cost on communication is mainly composed of two parts: the
energy of broadcasting data dj: Eb(vi, dj), and the energy of receiving data dj: Er(vi, dj). They can be
computed as follows [24]:

Eb(vi, dj) = (Eelec(vi) + Eamp(vi))× dj.length

Er(vi, dj) = Eelec(vi)× dj.length
(7)

Sensors 2016, 16, 1300 7 of 19

where Eelec(vi) is the energy consumed by vi’s transmit electronics or receive electronics for digital
coding, modulation and filtering of the signal, Eamp(vi) is the energy consumed by its TX amplifier,
and dj.length (bits) is the length of data pieces. Suppose that the sensors are homogenous, and the size
of data is identical. The energy cost of broadcasting and receiving a piece of data can be substituted by
two constants Eb and Er respectively. The energy consumption on transmitting a piece of data is the
sum of energy on broadcasting and all neighbors’ receiving:

Energy(vi, dj) = Eb + Er× ∑
vj∈N(vi)

Pr(vi, vj) (8)

4. Matrix-Based Data Relay Algorithm

In large-scale distributed sensor networks, because of the huge system size and energy constraints
of sensors, sensors are unlikely to have a global observation to support optimal communication
decisions. Sensors only make rational communication decisions soley based on their local dataset
from their previously transmitted messages around the network. To make rational communication
decisions, sensors need local topology of the network to indicate who are potential receivers, the local
data distribution to indicate what data neighbors have, and the utility between data pieces to figure
out the benefit of broadcasting one piece of data.

In this section, a Proactive Energy-Saving Data Relay algorithm CDU will be proposed to help
sensors compute the benefit and cost for all the data in pendingQue by neat matrix computations. The
framework is shown in Figure 2. First, sensors need local states to support their decisions. In our
model, three parts are necessary to a sensor: connection matrix C denotes its local network topology,
data distribution matrix D about the local data distribution of the sensor and its neighbors and the
data Utility matrix U. For each time step t, each sensor i is required to update CDU matrixes by the
model maintenance function introduced in the next section. Next, a neat computation with the CDU
matrixes can produce the expected benefit of transmitting pending data Bt

i . In addition, connection
matrix Ct

i also be used to predict the cost of transmitting data Et
i . By balancing between Bt

i and Et
i , if

the sensor find that the expected utility Ft
i is positive, it will broadcast the data as the network will be

benefit of more likely fusing valuable information.

Benefit

Energy

Balance

Bi
t

Ei
t

Di
t

Ci
t

Ui
t

Fi
t

Matrix computation

>0

<0

?

d
ecisio

n
s

pending queue

Figure 2. The frame of matrix-based Data Relay algorithm.

4.1. Basic Matrix Model

Before introducing these three matrices, we first need one data structure Ni to store the sensors
known by vi, and it can be updated by the path of messages it receives. Since sensors have different
local information, we take sensor vi as an example to describe these three matrices.

C : 1× |Ni| → [0, 1] is the connection matrix to illustrate the connections between vi and other
sensors recorded in Ni. Each element Cvi ,vk represents the connection probability between vi and vk
estimated by vi. Especially, ∀vi ∈ V, Cvi ,vi = 0.

D : |Ni| × |Li| → [0, 1] is the local data distribution matrix, and each element Dvk ,dj
shows the

probability of dj in vk’s local data set by vi’s estimation.

Sensors 2016, 16, 1300 8 of 19

U : |Li| × |Li| → [0, c] is the utility matrix of data known by vi, and each element Udl ,dk
= U(dl , dk)

shows the incremental utility when adding dl meets {dk}.

4.2. Benefit of Broadcasting

The benefit of broadcasting one piece of data dj is the sum of increased expected utility of all
receivers. By multiplying Equation (1) by (1− Dvk ,dj

), the increased expected utility of vk receiving dj
can be calculated in a unified manner by matrix computation.

∆EU(dj, Lk) =(1− Dvk ,dj
) · ∑

dl∈Lk

Udh ,dl

=(1− Dvk ,dj
) · ∑

dl∈Li

Dvk ,dl
·Udh ,dl

=(1− Dvk ,dh
) · (−−→Dvk ,∗ ·

−−→
U∗,dh

)

(9)

The benefit of broadcasting dh is the sum of increased information utility of sensors that can receive
this data. However, for vi, it does not know which sensor exactly receives this piece of data broadcast.
Only the connection probability stored in matrix C indicates the probability of receiving this data.
Therefore, the benefit of vi broadcasting dh can be computed as:

Bene f it(vi, dh) = ∑
vk∈Ni

Cvi ,vk · ∆EU(dh, Lk) = C · ((−→Λ −−−→D∗,dk
) ◦ (D · −−→U∗,dk

)) (10)

where Dvk ,∗ is a row vector of matrix D,
−→
Λ = [1]|Ni |×1 is a column vector of ones, the operator ” ◦ ”

is the Hadamard product that takes two matrices with identical dimensions but only produces their
corresponding elements. In matrix representation, one sensor can compute the benefit of broadcasting
any of its data by a single matrix computation:

B =C · ((Γ− D) ◦ (D ·U)) (11)

where B = [Bene f it(vi, dh)]1×|Li |, and Γ = [1]|Ni |×|Li |.

4.3. Energy Cost of Transmission

The energy cost of transmission is composed of two parts: cost of broadcasting, and cost of
receiving. The broadcast energy cost of a piece of data is Eb. Before transmission, vi does not know
exactly which sensor can receive this data, and can only estimate the whole receiving energy cost
according to the connection probability in matrix Ci. The cost of vi transmitting dh can be estimated
as follows,

Energy(vi, dh) = Eb + ∑
vk∈Ni

Cvi ,vk · Er = Eb + Er · (C · −→Λ) (12)

Let matrix E = [Energy(vi, dh)]1·|Li |, which represents the energy cost of vi for transmitting any data in
pendingQuei. Thus, this matrix can be calculated as follows:

E = (Eb + Er · (C · −→Λ)) · −→Λ T (13)

Sensors 2016, 16, 1300 9 of 19

4.4. The Balance

To make communication decisions for each sensor data in pending queue, sensors balance the
benefit of broadcasting with the energy cost as follows.

F =B− βE = C× ((Γ− D) • (D×U))− β · (Eb + Er · (C×−→Λ))×−→Λ T (14)

where F is a 1 × |Li| matrix and each element in F indicates the difference between the benefit
and the energy cost of transmitting each data. Essentially, this can also be calculated in a single
matrix computation.

In the decision process, for each data in pendingQuei, if Fvi ,dh
> 0, which represents the benefit of

broadcasting this data is bigger than the energy cost, this data is worth to be broadcast at this moment.
Otherwise, it may not be broadcast. By ensuring a balance between increasing the quality of receivers
and saving energy,

• the data that has higher confidence (that can make a higher contribution to fuse into an
information) has a higher priority to be broadcast, which can avoid the energy consumption on
unnecessary data retransmission.

• the data that is more relative to data of neighbors has a high probability to be broadcast. This
guarantees that the related data are only transmitted in a small part of the whole network and
aggregated toward some node rather than blind coverage.

5. Model Maintenance Algorithm

Sensors can make rational decisions by comparing the benefits and energy consumption of
broadcast through matrix computation introduced in the previous section. Because of the mobility of
sensors, and the dynamic changing nature of data distribution, the three matrices C,D and U need to
be updated in time. The more precise the model is, the better the decisions. However, in large sensor
networks, considering the massive energy cost on communication, no single sensor can get the precise
and global connection and data distribution model but only partial observations.

In this section, considering the intrinsic energy cost in the operations of these networks, we
propose heuristic updating approaches to maintain a local model for each sensor from its incoming
messages. With these updating approaches, an integrated decision algorithm is considered to help
each sensor make rational decisions with partial observations.

5.1. Initialization

Before deployment in large scale sensor networks, locations of sensors are not pre-determined,
and the network topology is unknown to any sensor. Sat this stage, the three matrices of each sensor are
initialized to empty matrices. After deployment, sensors start the introduction phase by broadcasting
hello messages for once to initialize their connection matrix C.

5.2. The Rules to Maintain The Dimensions

As we described in Section 3, the size of these three matrices is related to Ni and Li. The column
number of C and row number of D correspond to the size of Ni. The column number of D and the
row and column number of U also correspond to the size of Li. When an element is added into any of
these two sets, one column or row of 0 will be added to the corresponding matrices. If one element is
moved out of these sets, the corresponding column or row of matrices will be deleted. Therefore, the
principles to maintain these two sets are paramount, and given below:

• vi will add an element vj in set Ni: when receiving a data dk and vj ∈ dk.path is not in Ni.
• vj will be removed from Ni: when vi neither has positive connection probability with it nor has

any knowledge of it, Cvi ,vj =0 and ∑dh∈Li
Svj ,dh

=0.
• vi will add an element dk into Li:

Sensors 2016, 16, 1300 10 of 19

– when receiving data dk that is not in Li.
– when generating data dk based on its detection.

• vi will delete the element dk from Li: when dk ∈ dataO, where dataO stores data that has been
fused or outdated.

5.3. Updating the Connection Matrix C

In wireless sensor networks, the connection matrix C is initialized by hello messages. However,
because of the dynamically changing nature of the network topology, the connections between sensors
may change. In this subsection, some heuristic rules are proposed to update matrix C from sensors’
incoming messages. When sensor vi receives a piece of data from sensor vj, first, it indicates that vj is
well connected with it:

Cvi ,vj = σ

where σ is a high probability that the two sensors are connected. Second, any two adjacent sensors
in dk.path are well connected for their successful transmission in the last time step. The connection
between them can be updated by σ2 such that ∀vj ∈ dh.path, vk = dh.path.next(vj), and

Cvj ,vk = Cvk ,vj = σ2

Also, vi will assume any connection probability in C fades as sensors move and failure of sensors
occurs. This implies, the connection probability decays for a given period of time T. We can describe
this process as follows:

C ← C ◦ C

5.4. Updating the Data Distribution Matrix D

The better sensors have knowledge about the knowledge bases of their neighbors, the better
decisions they can make. In this subsection, we focus on the data distribution updating approaches
based on the data pieces sensors sense, broadcast and receive.

Algorithm 2 presents the updating process of data distribution matrix D for sensor vi, where dataG,
dataB, and dataR are data sets, which respectively store data sensed , data broadcast and data received
by vi as well as outdated data. First, for each data generated by vi based on its own detection, obviously,
it will update element Dvi ,dh

to 1 (line 1–2). Second, for each data broadcast by vi, and for any neighbor
vj, the probability of receiving this data is Cvi ,vj . Therefore, according to the standard probability
function, vj’s probability of having data dh should be updated, Dvj ,dh

= 1− (1− Dvj ,dh
)(1− Cvi ,vj)

(line 3–4). Third, for each data received by vi, vi, update Dvi ,dh
to 1 (line 6). Also, all nodes on dj.path

have this data (line 8), and the nodes that are neighbors of nodes on the path have a probability
of having this data, which can be calculated according to the standard probability function (line 9).
Finally, for data, which relative information has been fused and outdated, its corresponding column in
D should be deleted to save storage (line 10–11).

Algorithm 2 updateD(D, C, dataG, dataR, dataB).
1: for all dh ∈ dataG do

2: Dvi ,dh
← 1;

3: for all dh ∈ dataB do

4:
−−→
D∗,dh

← −→Λ − (
−→
Λ −−−→D∗,dh

) ◦ (−→Λ −−−→Cvi ,∗);
5: for all dh ∈ dataR do

6: Dvi ,dh
← 1;

7: for all vj ∈ dh.path do

8: Dvi ,dh
← 1;

9:
−−→
D∗,dh

← −→Λ − (
−→
Λ −−−→D∗,dh

) ◦ (−→Λ − Cvj ,∗);

Sensors 2016, 16, 1300 11 of 19

5.5. Updating The Utility Matrix U

When generating or receiving a new piece of data, the utility between this data and the data in Li
can be looked up in a table, which is stored as background knowledge before sensor vi was deployed
according to their identity, location and timestamp. The corresponding elements in matrix U will then
be updated. The details are shown as Algorithm 3. When receiving new data dh, first, vi will judge if it
is relative to the data in Li(line 2,3) based on their timestamp and location. If that is the case, the utility
between it and any relative data can be looked up in a table according to their identity (line 4). Else,
the corresponding utility will be set to 0 since they indicate different information (line 6).

Algorithm 3 updateU(U, dataG, dataR, utilityTable).
1: for all dh ∈ dataG ∪ dataR do

2: for all dj ∈ Li; do

3: if relative(dh, dj) then

4: Udh ,di
← utility(dh, di, utilityTable);

5: else

6: Udh ,di
← 0;

The example below shows the update process of the utility matrix. At time t, the data set of v1

is Li = {d1.d2}, and the sensor set in the knowledge of v1 is Ni = {v2, v3}. The details of d1, d2 are
shown as follows:

d1 =< v4, (TA, 0.5)(TB, 0.2)(CLUTTER, 0.3), (1.1, 2.1), 2013/05/08/16 : 00, path = {v4, v2} >,
d2 =< v7, (TA, 0.4)(TB, 0.5)(CLUTTER, 0.1), (3.2, 7.1), 2013/05/08/13 : 00, path = {v7, v3} >.
As the location and timestamp of these two data pieces are different, they are not relevant, and

matrix U =

 d1 d2

d1 0 0
d2 0 0

. At time t + 1, v1 receives d3 from v3, and d3 is shown in details as follows:

d3 =< v8, (TA, 0.6)(TB, 0.3)(CLUTTER, 0.1), (1.3, 2.0), 2013/05/08/16 : 03, path = {v8, v5, v3} >.
According to its location : (1.3, 2.0) and timestamp : 2013/05/08/16 : 03, which is close to

d1 but not d2, v1 can confirm that d3 is related to d1 but not d2. It becomes obvious now that
Ud3,d2 = Ud2,d3 = 0. Right from here, v1 will look up the utility between d3 and d1 in its reward table
according to their identity.

• For target A, cd1(TA) = 0.5, cd3(TA) = 0.6. After checking utilitytable, v2 can get value(TA) = 5.5.
Doing the same for target B, v2 can get value(TB) = 3.5

• The utility is a function of these two values. One possible way:

Ud3,d1 = value(TA) + ω · value(TB) = 5.5 + 0.3 · 3.5 = 6.55

Finally, the matrix U =

d1 d2 d3

d1 0 0 6.55
d2 0 0 0
d3 6.55 0 0

 is obtained.

5.6. Integrated Algorithm

With these updating algorithms, network connection, data distribution and utility matrix can be
updated to help sensors get local observations to support rational communication decisions even in
dynamically changing networks. The whole data relay process with local knowledge can be seen in
Algorithm 4.

This algorithm consists of two parts. In the first part, sensors update these three matrices based
on the approaches mentioned in last three subsections (line 1–7). In the second part, vi will try to fuse
with these new data and make communication decisions for those that have not been fused (line 8–21).
Principally, vi checks them one by one to see if any new information can be fused (line 8–11). If the
quality of the new information exceeds the predefined threshold, data related to this information will

Sensors 2016, 16, 1300 12 of 19

be fused and added into the outdated data set. vi will then inform other sensors to stop propagation of
these outdated data pieces (line 11–13). If no information can be fused, this data will be added into the
pending queue(line 15). After the information fusion process completes, vi makes decisions for data
in pending queue based on our lightweight matrix computation (line 16) by balancing between the
benefits and energy cost of broadcasting. If the benefit is higher than the energy cost (line 18), vi will
add itself onto the path of this data and broadcast it (line 19–20), and update the data set dataB with
this data. Otherwise, this data will be ignored (line 21).

Algorithm 4 Data relay process for a sensor vi.

1: while true do

2: dataG ← sensedData();
3: dataR← receivedData();
4: dataO← outdatedData()
5: updateC(C, dataR);
6: updateD(D, dataG, dataR, dataB, dataO);
7: updateU(U, dataG, dataR, utilityTable);
8: for all dh ∈ dataG ∪ dataR do

9: if dh /∈ Li then

10: Li ← Li ∪ {dh};
11: if Quality(Ij|Li) ≥ τj) then

12: fuse into information Ij;
13: dataO← datarelatedtoIj;
14: else

15: pendingQue.add(dh);

16: F ← C · ((Γ− D) ◦ (D×U))− β · (Eb + Er(C · −→Λ));
17: for all dh ∈ pendingQue do

18: if F(dh) > 0 then

19: dh.path.add(vi);
20: broadcast(dh);
21: dataB.add(dh)

6. Experimental Section

In this section, we evaluate the performance of our proactive data relay algorithm CDU through
simulations. In most scenarios, we used a field size of 600 × 600 m2 where 500 mobile nodes were
randomly scattered for target detection, and fused data detected into information. For each time step,
1% of sensors were made to move. Sensors communicated with each other in a broadcast medium, and
the power of sensor radio transmitter was fixed so that any node within a 25 meter radius was within
communication range. Sensor nodes within a communication range of another sensor are described
as the neighbors. The power consumption (0.66 W in transmit mode, 0.395 W in receive mode) were
chosen based on data from currently available radios [12]. The transmission time for a packet was
fixed at 10ms. In each run, 100 events about targets randomly occurred. Each target could be detected
by 9 sensors, and each detection generated a piece of data with a confidence c, c ∈ [0, 1] is related to
the distance between detected sensor and target [25]. For each event, one piece of information can be
fused only when more than 6 data related to this target is aggregated by one sensor and the combined
confidence is higher than 0.75.

We mainly compare the performance of our algorithm CDU with the Flooding [8], the Scalable
Broadcast Algorithm (SBA) [14], and GRAdient Broadcast(GRAB) [12] algorithms. GRAB is on
behalf of routing algorithms where only predefined sink nodes are able to fuse while the other three
treat all sensors as potential sink nodes. Flooding is the most straightforward data relay algorithm,
where each sensor broadcasts whatever new data it receives immediately without any reasoning.
For SBA, only data that can reach new neighbors is broadcast. In SBA, neighbor knowledge in two
hops is maintained by periodic "hello" packages. Also, in GRAB, each sensor maintains a cost field,
and records the cost to the sink node in proportion to the distance to the sink node. Sensors only

Sensors 2016, 16, 1300 13 of 19

broadcast data received from the sensor where cost is higher and relay data to sink nodes to fuse.
Typical of most simulations, the network has one random sink node. When the number of nodes is
1000, 2 sink nodes are randomly chosen. In CDU, Flooding, and SBA, any sensor can fuse data into
information if enough data is aggregated, while in GRAB only sink node can fuse. The value of U
matrix in CDU is generated based on the D-S fusion rule [30]. Other relevant parameters defined are
σ = 0.97, β = 2.0, lengthO f Path = 2.

To test if CDU works well, we measured the Number of fused information by all the sensors,
the Total energy cost on communication of all sensors, and the efficiency = Number of fused
information/Total energy cost, calculated as the energy consumed on communicating to fuse each
piece of information. The efficiency indicates how the algorithms balance broadcasting to fusing more
information and minimizing energy consumption. Results for each experiment are based on one
hundred trials.

In the simulations, we first evaluate the impact of control parameters of CDU, including β and
the length of path. Then we compare the performance of CDU with the other three related algorithms
mentioned above in default settings with the progress of simulations. After that we compare these
algorithms while independently changing the following environmental factors: the size of the field to
test if CDU is scalable; the ratio of moved sensors to test if CDU can adapt to dynamic networks; and
the threshold of fused targets. Finally, since GRAB is one of the routing protocols, we compare the
final energy distribution between CDU and that of GRAB.

6.1. Different β and Different Length of Path

The value of β is a parameter used by CDU to balance forwarding data and minimizing energy
consumption, which is defined in Equation (1). The path is a data structure used in CDU to store the
sensor visited in each data. The length of path affects rich degree of the local matrix model.

To understand how β and the length of path affect efficient data relay, we varied β from 0 to 4,
and varied the length also from 1 to 4. Experimental results of a number of fused information, energy
cost on communication, and efficiency are illustrated in Figure 3. As we can see, the higher the
value of β, the definition of useless data becomes more strict, and more data will be stopped from
broadcasting especially those data with lower confidence or well known by neighbors. To some degree,
it affects the number of fused information. As shown in Figure 3a,b, the number of fused information
is proportional to β and the energy cost decreases as β increases. When β = 0, any data received will
be broadcast and all the information can be fused. Figure 3c shows the efficiency for different β. When
β = 2.0, the efficiency reaches a high position. The balance of data relay and saving energy is good.
When β > 2.0, the efficiency still keeps a high value. However, the information fused is much less.

-1 0 1 2 3 4 5 6 7 8

40

60

80

100

nu
m

be
r o

f f
us

ed
 in

fo
rm

at
io

n

beta

path=1
path=2
 path=3
 path=4

(a)

-1 0 1 2 3 4 5 6 7 8
0

1E5

2E5

3E5

4E5

5E5

6E5

to
ta

l e
ne

rg
y

co
st

 (m
J)

beta

 path=1
 path=2
 path=3
 path=4

(b)

-1 0 1 2 3 4 5 6 7 8

0.2

0.4

0.6

0.8

1.0

ef
fic

ie
nc

y

beta

path=1
path=2
path=3
path=4

(c)

Figure 3. Experimental results with different β and different length of path. (a) introduces the
comparisons of the number of fused information; (b) introduces the comparisons of the energy cost on
communication; (c) introduces the comparisons of the fusion efficiency.

Sensors 2016, 16, 1300 14 of 19

In the next simulations, the default value of β is 2.0. We notice that the performance of CDU is
slightly affected by the length of the path. Regardless of the value of β, when the length of path is
longer than 1, it performs better than when the length is 1. While the other values work almost the
same for sensors, broadcast decisions can only affect their neighbors, and neighbors’ neighbors have
higher probabilities to be neighbors than nodes far away with sensors moving around. However, the
longer the path, the more storage space needed to store these matrices. Therefore in the following
simulation, the default length of a path is 2.

6.2. Different Algorithms

In this experiment, we compared the performance of our data relay algorithm CDU, with the
Flooding algorithm, SBA and GRAB. 100 events about targets randomly occurred during 10th–95th
time steps. The results are shown in Figure 4. At the first 10 time steps, no events exist, and no
information is fused as Figure 4a shows. During this period, sensors in SBA broadcast hello messages
to maintain 2-hop neighbor knowledge [16] and sensors in GRAB maintain their cost field. Therefore,
in Figure 4b the cost of these two algorithms is more than 0. In the next 90 time steps, as time goes by,
information is fused as more and more energy is consumed on data relay.

0 20 40 60 80 100

0

20

40

60

80

100

nu
m

be
r o

f f
us

ed
 in

fo
rm

at
io

n

timestep

 CDU
 SBA
 GRAB
 FLOOD

(a)

0 20 40 60 80 100
0

1E6

2E6

3E6

4E6

5E6

6E6

7E6

to
ta

l e
ne

rg
y

co
st

(m
J)

timestep

 CDU
 SBA
 GRAB
 FLOOD

(b)

0 20 40 60 80 100

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ef
fic

ie
nc

y

timestep

 CDU
 SBA
 GRAB
 FLOOD

(c)

Figure 4. Experimental results for 500 sensors using different algorithms to fuse revelent data.
(a) introduces the comparisons of the number of fused information. (b) introduces the comparisons of
the energy cost on communication. (c) introduces the comparisons of the fusion efficiency.

In general, Flooding and SBA can fuse almost all the information. Correspondingly, their energy
cost is higher than CDU because of flooding’s no limitations on broadcast and SBA’s purpose to cover
all sensors with all data until it is possible to fuse them. GRAB fuse less information than CDU while
consuming more for the long path to relay data to the fixed sink node. The efficiency of CDU is the
highest of these algorithms for its effective constraining broadcast of the useless data.

6.3. Impact of Environmental Settings

6.3.1. Network Size

In this experiment, we studied how CDU scales to large networks for data relay. The number of
sensors in the system are 100, 500 and 1000 while the side length of the squares are 250, 600, 850 to
guarantee the same node density. The number of events is kept at 100. Figure 5 shows that regardless
of the network size, CDU can well balance the broadcasting and saving energy, and its efficiency is
always about 2 times as efficiency of the other algorithms.

Sensors 2016, 16, 1300 15 of 19

(a) (b) (c)

Figure 5. Experimental results with different network size using different algorithms. (a) introduces
the comparisons of the number of fused information; (b) introduces the comparisons of the energy cost
on communication; (c) introduces the comparisons of the fusion efficiency.

6.3.2. The Ratio of Moved Sensors

In this experiment, we evaluated the performance of these four algorithm to investigate if CDU
can adapt to the dynamic network. We varied the move ratio of sensors at each time step from 0
to 0.22.

In SBA, sensors update two hop neighbor knowledge by periodic hello messages. For GRAB,
sink nodes periodically broadcast advertisement messages, which help sensors update their cost field.
However, in CDU , there is no periodic hello messages. A sensor will not broadcast hello message until
it moves. Figure 6 shows that the performance of these four algorithms is unaffected by the variation
of move ratio and CDU is always way ahead in efficiency.

0.00 0.04 0.08 0.12 0.16 0.20 0.24

84

88

92

96

100

nu
m

be
r o

f f
us

ed
 in

fo
rm

at
io

n

moveRatio

 CDU
 SBA
 GRAB
 FLOOD

(a)

0.00 0.04 0.08 0.12 0.16 0.20 0.24

1E6

2E6

3E6

to
ta

l e
ne

rg
y

co
st

(m
J)

moveRatio

 CDU
 SBA
 GRAB
 FLOOD

(b)

0.00 0.04 0.08 0.12 0.16 0.20 0.24
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ef
fic

ie
nc

y

moveRatio

 CDU
 SBA
 GRAB
 FLOOD

(c)

Figure 6. Experimental results with different move ratio using different algorithms. (a) introduces the
comparisons of the number of fused information; (b) introduces the comparisons of the energy cost on
communication; (c) introduces the comparisons of the fusion efficiency.

6.3.3. Threshold

We first varied the minifusedNum from 3 to 8, while using a fixed 0.75 minifusedConfidence. Then,
we varied the minifusedConfidence from 0.4 to 0.85 while using a fixed 6 minifusedNum threshold.

Figure 7 shows that when the threshold of minifusedNum or minifusedConfidence is higher,
less information can be fused in the same 100 time steps. However, more energy consumption and
lower efficiency on data relay for a sensor is needed to aggregate more data to reach the number and
confidence threshold. Figure 7c,f show CDU has the highest efficiency of all these algorithms.

Sensors 2016, 16, 1300 16 of 19

3 4 5 6 7 8
60

65

70

75

80

85

90

95

100

nu
m

be
r o

f f
us

ed
 in

fo
rm

at
io

n

threshold-miniFusedNum

 CDU
 SBA
 GRAB
 FLOOD

(a)

3 4 5 6 7 8

0.0

5.0E6

1.0E7

1.5E7

2.0E7

2.5E7

3.0E7

3.5E7

to
ta

l e
ne

rg
y

co
st

(m
J)

threshold-miniFusedNum

 CDU
 SBA
 GRAB
 FLOOD

(b)

3 4 5 6 7 8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ef
fic

ie
nc

y

threshold-miniFusedNum

 CDU
 SAB
 GRAB
 FLOOD

(c)

0.4 0.5 0.6 0.7 0.8 0.9

81

84

87

90

93

96

99

nu
m

be
r o

f f
us

ed
 in

fo
rm

at
io

n

threshold-miniconfidence

 CDU
 SBA
 GRAB
 FLOOD

(d)

0.4 0.5 0.6 0.7 0.8 0.9

0

1E6

2E6

3E6

4E6

5E6

to
ta

l e
ne

rg
y

co
st

(m
J)

threshold-miniconfidence

 CDU
 SBA
 GRAB
 FLOOD

(e)

0.4 0.5 0.6 0.7 0.8 0.9
0.0

0.2

0.4

0.6

0.8

1.0

ef
fic

ie
nc

y

threshold-miniconfidence

 CDU
 SBA
 GRAB
 FLOOD

(f)

Figure 7. Experimental results for different threshold using different algorithms. (a) introduces the
comparisons of the number of fused information with minifusedNum from 3 to 8; (b) introduces the
comparisons of the energy cost on communication with minifusedNum from 3 to 8; (c) introduces the
comparisons of the fusion efficiency with minifusedNum from 3 to 8; (d) introduces the comparisons of
the number of fused information with minifusedNum from 0.4 to 0.85; (e) introduces the comparisons of
the energy cost on communication with minifusedNum from 0.4 to 0.85; (f) introduces the comparisons
of the fusion efficiency with minifusedNum from 0.4 to 0.85.

6.4. Energy Distribution

In this subsection, we compare the energy distribution between CDU and SBA, and the routing
protocol GRAB. Figure 8 shows the final energy distribution after relaying data for 100 and 200 events
while the network size is 500. As shown in these figures, the three algorithms all consume more energy
in Figure 8b, where more events happened than in Figure 8a. In SBA and CDU, energy consumption
is better distributed than in GRAB. For GRAB, data should be relayed to sink node to fuse and sink
nodes, and nodes near sink nodes distinctly consume more energy. However, in SBA, sensors try to
cover every node with data until fused, and the energy is much more than CDU.

Sensors 2016, 16, 1300 17 of 19

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000

0 200 400

0 200 400

CDU

200 400 600

GRAB
200 400 600

(b)The event number is 200

0 200 400

200 400

(a) The event number is 100

SBA

SBA GRAB CDU

Figure 8. Energy consumption distribution(mJ) for different scenarios. (a) introduces the comparisons
of the energy distribution after relaying data with 100 events; (b) introduces the comparisons of the
energy distribution after relaying data with 200 events.

7. Conclusions

Large scale multi-sensor fusion is a very important issue in future networks and internet of things,
especially in the domains of disaster response and military operations. However, previous centralized
data aggregation algorithms for small sensor network are no longer feasible in considering of huge
network expenses as well as the energy expenses for central nodes. In this paper, we have proposed
an extremely economic data relay algorithm that sensors could proactively make broadcast decisions
by neat matrix computation to balance transmission and save energy. By encoding sensors’ local
knowledge to three matrixes: network connection, data distribution and data utility matrix, they can
do the reasoning for all the pending data by only a neat matrix computation. We also built heuristic
algorithms for sensors to well maintain those matrixes with only a local view to the network so that
this design can be adaptive to the scalable and dynamic environment. Our experimental simulations
manifested that our approach is scalable and effectively balance between promoting data fusion
process and saving energy to prolong the life time of the whole network.

Acknowledgments: This study was funded by National Natural Science Foundation of China 61370151
and 61202211, National Science and Technology Major Project of China 2015ZX03003012, Central University
Basic Research Funds Foundation of China ZYGX2014J055, Huawei Technology Foundation YB2013120141,
YB2015070068, and the Science and Technology on Electronic Information Control Laboratory Project.

Author Contributions: Y.X. and H.X.M. conceived and designed the experiments; Y.X. and H.X.M. and H.H.X.
performed the experiments; Y.X. and H.X.M. and H.H.X. analyzed the data; Y.X. and M.L. contributed analysis
tools; H.X.M. and M.L. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2016, 16, 1300 18 of 19

References

1. Tifenn, R.; Bouabdallah, A.; Challal, Y. Energy efficiency in wireless sensor networks: A top-down survey.
Comput. Netw. 2014, 67, 104–122.

2. Maurizio, B.; Ossi, K.; Neal, P.; Suresh, V. Multiple target tracking with RF sensor networks. IEEE Trans.
Mobile Comput. 2014, 13, 1787–1800.

3. George, S.M.; Zhou, W.; Chenji, H.; Won, M.; Lee, Y.O.; Pazarloglou, A.; Stoleru, R.; Barooah, P.
DistressNet: A wireless ad hoc and sensor network architecture for situation management in disaster
response. IEEE Commun. Mag. 2010, 48, 128–136.

4. Vicaire, P.; He, T.; Cao, Q.; Yan, T.; Zhou, G.; Gu, L.; Luo, L.; Stoleru, R.; Stankovic, J.A.; Abdelzaher, T.F.
Achieving long-term surveillance in vigilnet. ACM Trans. Sens. Netw. 2009, 5, doi:10.1145/1464420.1464429.

5. Alexei, M.; Hugh, D.W. Decentralized data fusion and control in active sensor networks. In Proceedings
of the Seventh International Conference on Information Fusion, Stockholm, Sweden, 28 June–1 July 2004;
pp. 479–486.

6. Ochoa, S.F.; Santos, R. Human-centric wireless sensor networks to improve information availability during
urban search and rescue activities. Inf. Fus. 2015, 22, 71–84.

7. Daniela, B.; Sytze, D.B.; Bregt, A.K. Value of information and mobility constraints for sampling with mobile
sensors. Comput. Geosci. 2012, 49, 102–111.

8. Borges, L.M.; Velez, F.J.; Lebres, A.S. Survey on the characterization and classification of wireless sensor
network applications. IEEE Commun. Surv. Tutor. 2014, 16, 1860–1890.

9. Intanagonwiwat, C.; Govindan, R.; Estrin, D. Directed diffusion: A scalable and robust communication
paradigm for sensor networks. In Proceedings of the 6th annual international conference on Mobile
computing and networking, Boston, MA, USA, 6–11 August 2000; pp. 56–67.

10. David, B.; Deborah, E. Rumor routing algorthim for sensor networks. In Proceedings of the 1st ACM
international workshop on Wireless sensor networks and applications, Atlanta, GA, USA, 28 September 2002;
pp. 22–31.

11. Chu, M.; Haussecker, H.; Zhao, F. Scalable information-driven sensor querying and routing for ad hoc
heterogeneous sensor networks. Int. J. High Perform. Comput. Appl. 2002, 16, 293–313.

12. Liu, M.; Xu, Y.; Mohammed, A.W. Decentralized Opportunistic Spectrum Resources Access Model and
Algorithm toward Cooperative Ad-Hoc Networks. Available online: http://journals.plos.org/plosone/
article?id=10.1371/journal.pone.0145526 (accessed on 3 August 2016).

13. Heinzelman, W.R.; Kulik, J.; Balakrishnan, H. Adaptive protocols for information dissemination in wireless
sensor networks. In Proceedings of the 5th Annual ACM/IEEE International Conference On Mobile
Computing and Networking, Seattle, WA, USA, 15–19 August 1999; pp. 174–185.

14. Peng, W.; Lu, X.C. On the reduction of broadcast redundancy in mobile ad hoc networks. In Proceedings of
the 1st ACM international symposium on Mobile ad hoc networking & computing, Boston, MA, USA, 11
August 2000; pp. 129–130.

15. John, S.; Ivan, M. An Efficient Distributed Network-Wide Broadcast Algorithm for Mobile Ad Hoc Networks.
Avaiable online: http://www.ece.rutgers.edu/~marsic/Publications/infocom2001nwb.pdf (accessed on
3 August 2016).

16. Hyojun, L.; Chongkwon, K. Multicast tree construction and flooding in wireless ad hoc networks.
In Proceedings of the 3rd ACM International Workshop on Modeling, Analysis and Simulation of Wireless
and Mobile Systems, Boston, MA, USA, 20 August 2000; pp. 61–68.

17. Hyocheol, J.; Hyeonjun, J.; Younghwan, Y. Dynamic probabilistic flooding algorithm based-on neighbor
information in wireless sensor networks. In Proceedings of the International Conference on Information
Network 2012, Bali, India, 1–3 Feburary 2012; pp. 340–345.

18. Williamson, S.A.; Gerding, E.H.; Jennings, N.R. Reward shaping for valuing communications during
multi-agent coordination. In International Foundation for Autonomous Agents and Multiagent Systems,
Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems, Budapest,
Hungary, 10–15 May 2009; Volume 1, pp. 641–648.

19. Raphen, B.; Alan, C.; Victor, L.; Shlomo, Z. Analyzing myopic approaches for multi-agent communication.
Comput. Intell. 2009, 25, 31–50.

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145526
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145526
http://www.ece.rutgers.edu/~marsic/Publications/infocom2001nwb.pdf

Sensors 2016, 16, 1300 19 of 19

20. Karthikeyan, N.; Palanisamy, V.; Duraiswamy, K. Performance comparison of broadcasting methods in
mobile ad hoc network. Int. J. Future Gener. Commun. Netw. 2009, 2, 47–58.

21. Akkaya, K.; Younis, M. A survey on routing protocols for wireless sensor networks. Ad Hoc Netw. 2005,
3, 325–349.

22. Chen, W.; Guha, R.K.; Kwon, T.J.; Lee, J.; Hsu, Y.Y. A survey and challenges in routing and data dissemination
in vehicular ad hoc networks. Wirel. Commun. Mobile Comput. 2011, 11, 787–795.

23. Nishi, S.; Vandna, V. Energy efficient LEACH protocol for wireless sensor network. Int. J. Inf. Netw. Secur.
2013, 2, 333–338.

24. Heinzelman, W.B. Application-Specific Protocol Architectures for Wireless Networks. Ph.D. Thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA, 2000.

25. Eriksson, O. Error Control in Wireless Sensor Networks: A Process Control Perspective. Ph.D. Thesis,
Uppsala University, Uppsala, Sweden, 2011.

26. Bin, Y.; Paul, S.; Katia, S.; Yang, X.; Michael, L. Scalable and reliable data delivery in mobile ad hoc sensor
networks. In Proceedings of the Fifth International Joint Conference On Autonomous Agents and Multiagent
Systems, Hakodate, Japan, 8–12 May 2006; pp. 1071–1078.

27. Ondrej, K.; Neuzil, J.; Smid, R. Quality-based multiple-sensor fusion in an industrial wireless sensor network
for MCM. IEEE Trans. Ind. Electron. 2014, 61, 145–157.

28. Wang, H.T.; Jia, Q.S.; Song, C.; Yuan, R.; Guan, X. Building occupant level estimation based on heterogeneous
information fusion. Inf. Sci. 2014, 272, 145–157.

29. Ling, D.; Weili, W.; James, W.; Lidong, W.; Zaixin, L.; Wonjun, L. Constant-approximation for target coverage
problem in wireless sensor networks. In Proceedings of the 31st Annual IEEE International Conference on
Computer Communications, Orlando, FL, USA, 25–30 March 2012; pp. 1584–1592.

30. Bin, Y.; Katia, S. Learning the quality of sensor data in distributed decision fusion. In Proceedings of the
2006 9th International Conference on Information Fusion, Florence, Italy, 10–13 July 2006; pp. 1–8.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Related Work
	Problem Description
	Information Quality
	Energy Consumption on Communication

	Matrix-Based Data Relay Algorithm
	Basic Matrix Model
	Benefit of Broadcasting
	Energy Cost of Transmission
	The Balance

	Model Maintenance Algorithm
	Initialization
	The Rules to Maintain The Dimensions
	Updating the Connection Matrix C
	Updating the Data Distribution Matrix D
	Updating The Utility Matrix U
	Integrated Algorithm

	Experimental Section
	Different and Different Length of Path
	Different Algorithms
	Impact of Environmental Settings
	Network Size
	The Ratio of Moved Sensors
	Threshold

	Energy Distribution

	Conclusions

