
Sensors 2016, 16, 1238; doi:10.3390/s16081238 S1 of S19

Supplementary Materials: Passive Mixing
Capabilities of Micro- and Nanofibres When
Used in Microfluidic Systems
Lauren Matlock-Colangelo, Nicholas W. Colangelo, Christoph Fenzl, Margaret W. Frey
and Antje J. Baeumner

Figure S1. A typical electrospinning apparatus consisting of a syringe filled with a polymer spinning
dope, a high voltage power source, a grounded collector plate, and a syringe pump.

Figure S2. (A) Hot Embossing-A copper template with a raised channel structure is used to emboss
the channel design in a piece of PMMA. The PMMA is sandwiched between the copper template and a
blank piece of copper and placed on a Carver Laboratory Hot Press at 130 °C and 10,000 lbs (44,482 N)
of force. Inlet at outlet holes are drilled at the ends of the channels; (B) UVO Treatment—The
embossed PMMA and another piece of PMMA modified with electrospun fibers are both placed in a
UV-ozone oven and treated to allow for UVO-assisted thermal bonding; (C) Bonding—The UVO-treated
PMMA pieces are sandwiched together (with the fibers facing the embossed channels) and placed
between two blank pieces of copper. The assembly is placed on the hot press at bonded together at a
lower temperature and pressure than hot embossing; (D) Completed Device—Polyvinyl chloride
tubing is glued into the inlet and outlet holes of the completed device.

 S2 of S19

Figure S3. A confocal Z scan of a microfluidic channel during fluid mixing experiments. The flow
profile does not change as the focal point moves in the z direction, indicating that it is consistent
throughout the height of the microchannel. Channel images shown were taken at 1 µm intervals.

Data Analysis

We have added a step-by-step discussion of the calculation of the mixing index into the SI:

Data Analysis

The mixing index is calculated using the following formula: ݉݅݃݊݅ݔ ݔ݁݀݊݅ = ඨ1ܰ෍൬ܫ௄ − ைܫைܫ ൰ଶ

I
K
 = intensity of an individual pixel in a column;

I
O
 = average intensity of all pixels in a column;

N = number of pixels in a column.

The mixing index for each channel is a value between 0 and 1, where a value of 0 indicates
complete mixing within the channel. The mixing index was chosen to quantify the degree of mixing
because it allowed us to compare our mixing results with the results from other labs.

When calculating the mixing index, a fluorescent microscopy image of the channel was taken
during fluid flow. Images were taken either at the inlet (before the fiber mat) or at the outlet (after the
fiber mat):

 S3 of S19

In order to calculate the mixing index, we first needed to get the intensity of each individual
pixel in a column (blue arrow in above image) that extends along the width of the channel (these are
our Ik values) as well as the average intensity of all the pixels in that column (this is our Io value).
The length of the column in pixels is our N value. This was done for 50 consecutive columns in each
photo taken using the following ImageJ command:

run("ROI Manager...")
for (i=Xn; i<Xn+50;i++) {
makeLine (i,Y1,i,Y2);
roiManager("Add");
}
roiManager("Multi Plot");

where Xn is the x location of the first column being measured (where x is its location along the length
of the channel) and Y1 and Y2 are the y coordinates of the top and bottom of the channel (along the
width of the channel) that indicate where the column being measured:

Using this code, ImageJ produced a plot of the pixel intensity along each column as well as a list
of the intensities for all the columns measured. An example of the pixel intensity plot for a single
column is seen below:

 S4 of S19

The average intensity (Io) of the pixels in the column was calculated from the imageJ data and
then the mixing index was calculated for each column. The mixing index values for each of the
50 columns were then averaged to get the average mixing index for that channel. Mixing indices are
provided here with two decimal places to provide a more refined analyses of difference between the
channels and mats analyzed.

Figure S4. (A) Examples of flow profiles observed in thick nanofiber mat samples; (B) Variation in
nanofiber porosity and distribution along thickness of nanofiber mats. Confocal microscopy.

Figure S5. Outlet mixing index observed in 5 mm long two-layer mats at different flow rates.
3 channels were tested at each flow rate.

 S5 of S19

Table S1. Multiple linear regression variables and their outcome. The outlet mixing index values for
each PVA mat morphology was compared to the outlet mixing index for empty control channels using
linear regression. The linear regression controlled for the effect of flow rate on the mixing value.
It was determined that mixing was significantly increased in all of the fiber mats, with the greatest
mixing increase seen with the two-layer mats.

Variable Significant within Family of
Comparisons?

Average Change to
Mixing Value

p-Value

3 mm, 1 Layer Yes −0.182 1.7234 × 10−5
3 mm, 2 Layer Yes −0.285 2.3516 × 10−10
5 mm, 1 Layer Yes −0.209 3.5847 × 10−7
5 mm, 2 Layer Yes −0.344 4.4726 × 10−12

10 mm, 1 Layer Yes −0.136 2.3049 × 10−3
10 mm, 2 Layer Yes −0.340 6.6718 × 10−12

Table S2. Multiple linear regression variables and their outcome for analyzing the effect of
poly(vinyl alcohol) mat morphology. There were three families for comparison: (1) the different fiber
mat lengths, (2) having two layers, and (3) the flow rate. Having two layers and flow rate were each
considered to be significantly increased. However, the different fiber mat lengths did not appear to
have an effect on mixing index.

Variable Significant within Family of
Comparisons?

Average Change to
Mixing Index Value

p-Value

3 mm No -
Over all p = 0.24 5 mm No -

10 mm No -
2 Layers Yes −0.142 5.15 × 10−8

Flow Rate Yes 0.03 per (µL/s) 0.0045

Figure S6. Flow profiles observed in channels containing PS fiber mats. Flow at 1 µL/min. Black lines
indicate location of nanofiber mats within the channels. Leica Fluorescent Microscope. 5× objective.

 S6 of S19

Figure S7. Flow profiles at inlets of channels containing different PS fiber morphologies. Flow rate
was 1 µL/min.

Figure S8. Flow profiles at outlets of channels containing different PS fiber morphologies. Flow rate
was 1 µL/min.

 S7 of S19

Table S3. Multiple linear regression variables and their outcome. The different fiber mat types were
considered as one family for comparison, and the flow rate another using linear regression. The linear
regression controlled for the effect of flow rate on fluid mixing. 1 Layer 17.5%, 2 Layer 15%, and
2 Layer 17.5%, along with flow rate, were all considered to be significantly increased.

Variable
Significant within

Family of Comparisons?
Average Change to

Mixing Index Value p-Value

1 Layer, 12.5% No - -
1 Layer, 15% No - -

1 Layer, 17.5% Yes −0.128 0.0018
2 Layer, 12.5% No - -
2 Layer, 15% Yes −0.146 0.00046

2 Layer, 17.5% Yes −0.127 0.0021

Table S4. Multiple linear regression variables and their outcomes for analyzing effects of polystyrene
mat morphology on mixing index. The effect of fiber diameter, fiber mat height, and flow rate on
outlet mixing index was determined using multiple linear regression. The mixing increased with
increasing fiber diameter, fiber mat height, and decreased with increasing flow rate.

Variable Compared To
Significant within Family

of Comparisons?
Average Change to

Mixing Value p-Value

15% 12.5% No - 0.956
17.5% 12.5% Yes −0.078 0.0077
17.5% 15% Yes −0.077 0.0090

2 Layers 1 Layer Yes −0.084 5.17 × 10−4
Flow Rate - Yes 0.017 per (µL/min) 0.0481

MATLAB Code for Statistical Analysis of Fluid Mixing.

Code S1. PVA Analysis-Effect of Length and Number of Fiber Mat Layers

%Multiple Regression on PVA Data Separated by Length and Layer
%Author: Lauren Colangelo and Nicholas Colangelo
%Last Edit: 03-23-2015

%As long as data input into the Table appropriately, everything should be taken care of between
data sets except for the following,

%which should be done for each new data set:
%To do:
%1) Make sure boxplots and other plots represent the data to be analyzed.
%2) Make sure labels for plots are appropriate.
%3) Make sure Holm Test is using the appropriate data from the SortData Table.
%Clear memory of variables that may be used here:
 clear
%Load the data:
 Data = readtable(‘C:\MatlabPVASep.xlsx’);
 SortData = sortrows(Data,’Flow’);
 SortData.Type = categorical(SortData.Type,’Ordinal’,false);
 SortData.Length = categorical(SortData.Length,’Ordinal’,false);
 SortData.Layer = categorical(SortData.Layer,’Ordinal’,false);
 SortData.Channel = categorical(SortData.Channel,’Ordinal’,false);

%Box Plot:
 figure(1)
 subplot(2,2,1)

 S8 of S19

 boxplot(SortData.Mixing,SortData.Length)
 xh = xlabel(‘Length’);
 yh = ylabel(‘Mixing Value’);
 set([xh,yh],’fontweight’,’bold’);
 set(gca,’XTick’, 1:3)
 set(gca,’XTickLabel’,{‘3 mm’, ‘5 mm’, ’10 mm’});

 subplot(2,2,2)
 boxplot(SortData.Mixing,SortData.Layer)
 xh = xlabel(‘Layer’);
 yh = ylabel(‘Mixing Value’);
 set([xh,yh],’fontweight’,’bold’);

 subplot(2,2,3)
 boxplot(SortData.Mixing,SortData.Flow)
 xh = xlabel(‘Flow (\muL/sec)’);
 yh = ylabel(‘Mixing Value’);
 set([xh,yh],’fontweight’,’bold’);
%Regression:
 modelspec = ‘Mixing ~ Length + Layer + Flow’;
 lm = fitlm(table2dataset(SortData),modelspec);
 disp(lm);
 %Table of ANOVA Results:
 disp(anova(lm));
 %Show Number of Outliers as Determined by Cook’s Distance >= 3*MeanCooksDistance:
 Cook = sum(lm.Diagnostics.CooksDistance./mean(lm.Diagnostics.CooksDistance) >= 3);
 fprintf('Number of Values above Cook''s Distance %f', Cook)
%Obtain Parameters for Holm Test from the Regression
 %MSres
 MSres = double(lm.MSE);
 %Degrees of Freedom
 DF = double(lm.DFE);
%Length
 %Number of each length:
 for i = 1:max(double(SortData.Length)) %different types
 n(i) = sum(double(SortData.Length) == i);
 end %i
 %Input the number of types, less one (So it doesn't compare values against themselves)
 for i = 1:(max(double(SortData.Length)-1))
 %Input the total number of types, so it can make all the comparisons
 for j = (i+1):max(double(SortData.Length))
 %Comparison to Control
 if i == 1
 t(i,j) = (lm.Coefficients.Estimate(j) - 0)/ sqrt(MSres*(1/n(j)+1/n(i)));
 %Between types comparison
 else
 t(i,j) = (lm.Coefficients.Estimate(j) - lm.Coefficients.Estimate(i))/

sqrt(MSres*(1/n(j)+1/n(i)));
 end %if i
 end %j
 end %i
 %Now we take the t values to p values
 p1 = 2*(1-tcdf(abs(t),DF));

 S9 of S19

 %Organize p-values
 Sorted1 = sort(reshape(p1,1,size(t,1)*size(t,2)));
 %Holm test p-value for comparison with uncorrected p-value of p = 0.05:
 %Calculate number of comparisons:
 Comparisons = 0;
 i = 0;
 while i < max(double(SortData.Length))
 for i = 1:max(double(SortData.Length))
 Comparisons = Comparisons + (i-1);
 end %for i
 end %while i
 %Determine Significant Terms
 detect1 = 0;
 for i = 1:Comparisons
 pcomp = 0.05/(Comparisons-i+1);
 if Sorted1(i) <= pcomp
 Sig1(i) = 1;
 detect1 = 1;
 else
 break
 end
 end %i
 %Display p values in p matrix that are significant
 if detect1 == 1
 fprintf('\np1 matrix is:\n')
 format short e
 disp(p1.*(p1<=Sorted1(length(Sig1))))
 else
 fprintf('\np1 matrix has no significant values.\n')
 end %if
%Layer
 %A lot of this code is unnecessary as there is only two layers to
 %compare.
 %Number of each Layer:
 for i = 1:max(double(SortData.Layer)) %different types
 n2(i) = sum(double(SortData.Layer) == i);
 end %i
 %Input the number of types, less one (So it doesn't compare values against themselves)
 for i = 1:(max(double(SortData.Layer)-1))
 %Input the total number of types, so it can make all the comparisons
 for j = (i+1):max(double(SortData.Layer))
 %Comparison to Control
 %Note: Accessing the coefficient array must account for Length variables
 if i == 1
 t2(i,j) = (lm.Coefficients.Estimate(max(double(SortData.Length))-1+j) - 0)/

sqrt(MSres*(1/n2(j)+1/n2(i)));
 %Between types comparison
 else
 t2(i,j) = (lm.Coefficients.Estimate(max(double(SortData.Length))-1+j) -

lm.Coefficients.Estimate(i))/ sqrt(MSres*(1/n2(j)+1/n2(i)));
 end %if i
 end %j

 S10 of S19

 end %i
 %Now we take the t values to p values
 p2 = 2*(1-tcdf(abs(t2),DF));
 %Organize p-values
 Sorted2 = sort(reshape(p2,1,size(t2,1)*size(t2,2)));
 %Holm test p-value for comparison with uncorrected p-value of p=0.05:
 %Calculate number of comparisons:
 Comparisons2 = 0;
 i = 0;
 while i < max(double(SortData.Layer))
 for i = 1:max(double(SortData.Layer))
 Comparisons2 = Comparisons2 + (i-1);
 end %for i
 end %while i
 %Determine Significant Terms
 detect2 = 0;
 for i = 1:Comparisons2
 pcomp = 0.05/(Comparisons2-i+1);
 if Sorted2(i) <= pcomp
 Sig2(i) = 1;
 detect2 = 1;
 else
 break
 end %p(i)
 end %i
 %Display p values in p matrix that are significant
 if detect2 == 1
 fprintf('\np2 matrix is:\n')
 format short e
 disp(p2.*(p2<=Sorted2(length(Sig2))))
 else
 fprintf('\np2 matrix has no significant values.\n')
 end %if

%Residuals
figure(2)
 gscatter(double(SortData.Type),lm.Residuals.Raw,SortData.Flow)
 yh = ylabel(‘Residuals’);
 xh = xlabel(‘Types’);
 legh = legend;
 htitle = get(legh,’Title’);
 set(htitle,'String','Flow (\muL/sec)’)
 set([xh,yh],’fontweight’,’bold’);
 set(gca,’XTick’, 1:6)
 set(gca,’XTickLabel’,{‘3 mm 1 Layer’, ‘3 mm 2 Layer’, ‘5 mm 1 Layer’, ‘5 mm 2 Layer’, ’10 mm

1 Layer’, ’10 mm 2 Layer’})

%Test Normality
figure(3)
normplot(lm.Residuals.Standardized)
xh = xlabel(‘Standardized Residuals’);
yh = ylabel(‘Normal Probability Scale’);
set([xh,yh],’fontweight’,’bold’);

 S11 of S19

Code S2. PVA Analysis-Comparison of each PVA mat type

%Multiple Regression on PVA by Type
%Author: Lauren Colangelo and Nicholas Colangelo
%Last Edit: 03-23-2015
%As long as data input into the Table appropriately, everything should be taken care of between

data sets except for the following,
%which should be done for each new data set:
%To do:
%1) Make sure boxplots and other plots represent the data to be analyzed.
%2) Make sure labels for plots are appropriate.
%3) Make sure Holm Test is using the appropriate data from the SortData Table.

%Clear memory of variables that may be used here:
 clear
%Load the data:
 Data = readtable(‘C:\MatlabPVAType.xlsx’);
 SortData = sortrows(Data,’Flow’);
 SortData.Type = categorical(SortData.Type,’Ordinal’,false);
 SortData.Channel = categorical(SortData.Channel,’Ordinal’,false);
%Box Plot:
 figure(1)
 subplot(2,1,1)
 boxplot(SortData.Mixing,SortData.Type)
 xh = xlabel(‘Type’);
 yh = ylabel(‘Mixing Value’);
 set([xh,yh],’fontweight’,’bold’);
 set(gca,’XTick’, 1:7)
 set(gca,’XTickLabel’,{‘Control', ‘3 mm 1 Layer’, ‘3 mm 2 Layer’, ‘5 mm 1 Layer’, ‘5 mm 2 Layer’,

’10 mm 1 Layer’, ’10 mm 2 Layer’});
 subplot(2,1,2)
 boxplot(SortData.Mixing,SortData.Flow)
 xh = xlabel(‘Flow (\muL/min)’);
 yh = ylabel(‘Mixing Value’);
 set([xh,yh],’fontweight’,’bold’);
%Regression:
 modelspec = ‘Mixing ~ Type + Flow’;
 lm = fitlm(table2dataset(SortData),modelspec);
 disp(lm);
 %Table of ANOVA Results:
 disp(anova(l m));
 %Show Number of Outliers as Determined by Cook's Distance >= 3*MeanCooksDistance:
 Cook = sum(lm.Diagnostics.CooksDistance./mean(lm.Diagnostics.CooksDistance) >= 3);
 fprintf('Number of Values above Cook''s Distance %f', Cook)
%Obtain Parameters for Holm Test from the Regression
 %TBL(3,3) = MSres
 MSres = double(lm.MSE);
 %TBL(3,2) = Degrees of Freedom
 DF = double(lm.DFE);
 %Number of each type:
 for i = 1:max(double(SortData.Type)) %different types
 n(i) = sum(double(SortData.Type) == i);
 end %i

 S12 of S19

%Holm Test
 %Input the number of types, less one (So it doesn't compare values against themselves)
 for i = 1:(max(double(SortData.Type)-1))
 %Input the total number of types, so it can make all the comparisons
 for j = (i+1):max(double(SortData.Type))
 %Comparison to Control
 if i == 1
 t(i,j) = (lm.Coefficients.Estimate(j) - 0)/ sqrt(MSres*(1/n(j)+1/n(i)));
 %Between types comparison
 else
 t(i,j) = (lm.Coefficients.Estimate(j) - lm.Coefficients.Estimate(i))/

sqrt(MSres*(1/n(j)+1/n(i)));
 end %if i
 end %j
 end %i
 %Now we take the t values to p values
 p = 2*(1-tcdf(abs(t),DF));
 %Organize p-values
 Sorted = sort(reshape(p,1,size(t,1)*size(t,2)));
 %Holm test p-value for comparison with uncorrected p-value of p=0.05:
 %Calculate number of comparisons:
 Comparisons = 0;
 i = 0;
 while i < max(double(SortData.Type))
 for i = 1:max(double(SortData.Type))
 Comparisons = Comparisons + (i-1);
 end %for i
 end %while i
 %Determine Significant Terms
 detect = 0;
 for i = 1:Comparisons
 pcomp = 0.05/(Comparisons-i+1);
 if Sorted(i) <= pcomp
 Sig(i) = 1;
 detect = 1;
 else
 break
 end %if Sorted
 end %if i
 %Display p values in p matrix that are significant
 if detect == 1
 fprintf('\np matrix is:\n')
 format short e
 disp(p.*(p<=Sorted(length(Sig))))
 else
 fprintf('\np1 matrix has no significant values.\n')
 end %if
%Residuals

figure(2)
 gscatter(double(SortData.Type),lm.Residuals.Raw,SortData.Flow)
 yh = ylabel('Residuals');
 xh = xlabel('Types');

 S13 of S19

 legh = legend;
 htitle = get(legh,’Title’);
 set(htitle,’String’,’Flow (\muL/min)’)
 set([xh,yh],’fontweight’,’bold’);
 set(gca,’XTick’, 1:7)
 set(gca,’XTickLabel’,{‘Control’, ‘3 mm 1 Layer’, ‘3 mm 2 Layer’, ‘5 mm 1 Layer’, ‘5 mm 2 Layer’,

’10 mm 1 Layer’, ’10 mm 2 Layer’})

%Test Normality with a Normal Probability Plot
figure(3)
 normplot(lm.Residuals.Standardized)
 xh = xlabel(‘Standardized Residuals’);
 yh = ylabel(‘Normal Probability Scale’);
 set([xh,yh],’fontweight’,’bold’);

Code S3. PS Analysis- Effect of polymer weight percent and number of layers

%Multiple Regression on Polystyrene Data Separated by Weight and Layer
%Author: Lauren Colangelo and Nicholas Colangelo
%Last Edit: 03-23-2015
%As long as data input into the Table appropriately, everything should be taken care of between

data sets except for the following,
%which should be done for each new data set:
%To do:
%1) Make sure boxplots and other plots represent the data to be analyzed.
%2) Make sure labels for plots are appropriate.
%3) Make sure Holm Test is using the appropriate data from the SortData Table.

%Clear memory of variables that may be used here:
 clear
%Load the data:
 Data = readtable(‘C:\MatlabPolyStySep.xlsx’);
 SortData = sortrows(Data,’Flow’);
 SortData.Type = categorical(SortData.Type,’Ordinal’,false);
 SortData.Weight = categorical(SortData.Weight,’Ordinal’,false);
 SortData.Layer = categorical(SortData.Layer,’Ordinal’,false);
 SortData.Channel = categorical(SortData.Channel,’Ordinal’,false);

%Box Plot the data:
 figure(1)

 subplot(2,2,1)
 boxplot(SortData.Mixing,SortData.Weight)
 xh = xlabel(‘Weight’);
 yh = ylabel(‘Mixing Value’);
 set([xh,yh],’fontweight’,’bold’);
 set(gca,’XTick’, 1:3)
 set(gca,’XTickLabel’,{‘12.5%’, ‘15%’, ‘17.5%’});
 subplot(2,2,2)
 boxplot(SortData.Mixing,SortData.Layer)
 xh = xlabel(‘Layer’);
 yh = ylabel(‘Mixing Value’);
 set([xh,yh],’fontweight’,’bold’);
 subplot(2,2,3)
 boxplot(SortData.Mixing,SortData.Flow)

 S14 of S19

 xh = xlabel(‘Flow (\muL/sec)’);
 yh = ylabel(‘Mixing Value’);
 set([xh,yh],’fontweight’,’bold’);

%Regression:
 modelspec = ‘Mixing ~ Weight + Layer + Flow’;
 lm = fitlm(table2dataset(SortData),modelspec);
 disp(lm);
 %Table of ANOVA Results:
 disp(anova(lm));
 %Show Number of Outliers as Determined by Cook's Distance >= 3*MeanCooksDistance:
 Cook = sum(lm.Diagnostics.CooksDistance./mean(lm.Diagnostics.CooksDistance) >= 3);
 fprintf('Number of Values above Cook''s Distance %f', Cook)
%Obtain Parameters for Holm Test from the Regression
 %MSres
 MSres = double(lm.MSE);
 %Degrees of Freedom
 DF = double(lm.DFE);

%Weight Percentage
 %Number of each weight percentage:
 for i = 1:max(double(SortData.Weight)) %different types
 n(i) = sum(double(SortData.Weight) == i);
 end %i
 %Input the number of types, less one (So it doesn't compare values against themselves)
 for i = 1:(max(double(SortData.Weight)-1))
 %Input the total number of types, so it can make all the comparisons
 for j = (i+1):max(double(SortData.Weight))
 %Comparison to Control
 if i == 1
 t(i,j) = (lm.Coefficients.Estimate(j) - 0)/ sqrt(MSres*(1/n(j)+1/n(i)));
 %Between types comparison
 else
 t(i,j) = (lm.Coefficients.Estimate(j) - lm.Coefficients.Estimate(i))/

sqrt(MSres*(1/n(j)+1/n(i)));
 end %if i
 end %j
 end %i
 %Now we take the t values to p values
 p1 = 2*(1-tcdf(abs(t),DF));
 %Organize p-values
 Sorted1 = sort(reshape(p1,1,size(t,1)*size(t,2)));
 %Holm test p-value for comparison with uncorrected p-value of p=0.05:
 %Calculate number of comparisons:
 Comparisons = 0;
 i = 0;
 while i < max(double(SortData.Weight))
 for i = 1:max(double(SortData.Weight))
 Comparisons = Comparisons + (i-1);
 end %for i
 end %while i
 %Determine Significant Terms
 detect1 = 0;

 S15 of S19

 for i = 1:Comparisons
 pcomp = 0.05/(Comparisons-i+1);
 if Sorted1(i) <= pcomp
 Sig1(i) = 1;
 detect1 = 1;
 else
 break
 end
 end %i
 %Display p values in p matrix that are significant
 if detect1 == 1
 fprintf('\np1 matrix is:\n')
 disp(p1.*(p1<=Sorted1(length(Sig1))))
 format short e
 else
 fprintf('\np1 matrix has no significant values.\n')
 end %if

%Layer
 %A lot of this code is unnecessary as there is only two layers to
 %compare.
 %Number of each Layer:
 for i = 1:max(double(SortData.Layer)) %different types
 n2(i) = sum(double(SortData.Layer) == i);
 end %i
 %Input the number of types, less one (So it doesn't compare values against themselves)
 for i = 1:(max(double(SortData.Layer)-1))
 %Input the total number of types, so it can make all the comparisons
 for j = (i+1):max(double(SortData.Layer))
 %Comparison to Control
 %Note: Accessing the coefficient array must account for weight variables
 if i == 1
 t2(i,j) = (lm.Coefficients.Estimate(max(double(SortData.Weight))-1+j) - 0)/

sqrt(MSres*(1/n2(j)+1/n2(i)));
 %Between types comparison
 else
 t2(i,j) = (lm.Coefficients.Estimate(max(double(SortData.Weight))-1+j) -

lm.Coefficients.Estimate(i))/ sqrt(MSres*(1/n2(j)+1/n2(i)));
 end %if i
 end %j
 end %i
 %Now we take the t values to p values
 p2 = 2*(1-tcdf(abs(t2),DF));
 %Organize p-values
 Sorted2 = sort(reshape(p2,1,size(t2,1)*size(t2,2)));
 %Holm test p-value for comparison with uncorrected p-value of p=0.05:
 %Calculate number of comparisons:
 Comparisons2 = 0;
 i = 0;
 while i < max(double(SortData.Layer))
 for i = 1:max(double(SortData.Layer))
 Comparisons2 = Comparisons2 + (i-1);
 end %for i

 S16 of S19

 end %while i
 %Determine Significant Terms
 detect2 = 0;
 for i = 1:Comparisons2
 pcomp = 0.05/(Comparisons2-i+1);
 if Sorted2(i) <= pcomp
 Sig2(i) = 1;
 detect2 = 1;
 else
 break
 end %p(i)
 end %i
 %Display p values in p matrix that are significant
 if detect2 == 1
 fprintf('\np2 matrix is:\n')
 format short e
 disp(p2.*(p2<=Sorted2(length(Sig2))))
 else
 fprintf('\np2 matrix has no significant values.\n')
 end %if
%Residuals
figure(2)
 gscatter(double(SortData.Type),lm.Residuals.Raw,SortData.Flow)
 yh = ylabel(‘Residuals’);
 xh = xlabel(‘Types’);
 legh = legend;
 htitle = get(legh,’Title’);
 set(htitle,’String’,’Flow (\muL/sec)’)
 set([xh,yh],’fontweight’,’bold’);
 set(gca,’XTick’, 1:6)
 set(gca,’XTickLabel’,{‘3 mm 1 Layer’, ‘3 mm 2 Layer’, ‘5 mm 1 Layer’, ‘5 mm 2 Layer’, ’10 mm

1 Layer’, ’10 mm 2 Layer’})

%Test Normality
figure(3)
 normplot(lm.Residuals.Standardized)
 xh = xlabel('Standardized Residuals');
 yh = ylabel('Normal Probability Scale');
 set([xh,yh],'fontweight','bold');

Code S4. PS Analysis- Comparison of each type of PS fiber mat

%Multiple Regression on Polystyrene Data by Type
%Author: Lauren Colangelo and Nicholas Colangelo
%Last Edit: 03-23-2015

%As long as data input into the Table appropriately, everything should be taken care of between
data sets except for the following,

%which should be done for each new data set:
%To do:
%1) Make sure boxplots and other plots represent the data to be analyzed.
%2) Make sure labels for plots are appropriate.
%3) Make sure Holm Test is using the appropriate data from the SortData Table.

 S17 of S19

%Clear memory of variables that may be used here:
 clear
%Load the data:
 Data = readtable(‘C:\MatlabPolyStyType.xlsx’);
 SortData = sortrows(Data,’Flow’);
 SortData.Type = categorical(SortData.Type,’Ordinal’,false);
 SortData.Channel = categorical(SortData.Channel,’Ordinal’,false);

%Box Plot:
 figure(1)
 subplot(2,1,1)
 boxplot(SortData.Mixing,SortData.Type)
 xh = xlabel(‘Type’);
 yh = ylabel(‘Mixing Value’);
 set([xh,yh],’fontweight’,’bold’);
 set(gca,’XTick’, 1:7)
 set(gca,’XTickLabel’,{‘Control’, ‘1 Layer 12.5%’, ‘1 Layer 15%’, ‘1 Layer 17.5%’, ‘2 Layer 12.5%’,

‘2 Layer 15%’, ‘2 Layer 17.5%’});

 subplot(2,1,2)
 boxplot(SortData.Mixing,SortData.Flow)
 xh = xlabel(‘Flow (\muL/min)’);
 yh = ylabel(‘Mixing Value’);
 set([xh,yh],’fontweight’,’bold’);
%Regression:
 modelspec = ‘Mixing ~ Type + Flow’;
 lm = fitlm(table2dataset(SortData),modelspec);
 disp(lm);
 %Table of ANOVA Results:
 disp(anova(lm));
 %Show Number of Outliers as Determined by Cook's Distance >= 3*MeanCooksDistance:
 Cook = sum(lm.Diagnostics.CooksDistance./mean(lm.Diagnostics.CooksDistance) >= 3);
 fprintf('Number of Values above Cook''s Distance %f', Cook)
%Obtain Parameters for Holm Test from the Regression
 %TBL(3,3) = MSres
 MSres = double(lm.MSE);
 %TBL(3,2) = Degrees of Freedom
 DF = double(lm.DFE);
 %Number of each type:
 for i = 1:max(double(SortData.Type)) %different types
 n(i) = sum(double(SortData.Type) == i);
 end %i

%Holm Test
 %Input the number of types, less one (So it doesn't compare values against themselves)
 for i = 1:(max(double(SortData.Type)-1))
 %Input the total number of types, so it can make all the comparisons
 for j = (i+1):max(double(SortData.Type))
 %Comparison to Control
 if i == 1
 t(i,j) = (lm.Coefficients.Estimate(j) - 0)/ sqrt(MSres*(1/n(j)+1/n(i)));
 %Between types comparison
 else

 S18 of S19

 t(i,j) = (lm.Coefficients.Estimate(j) - lm.Coefficients.Estimate(i))/
sqrt(MSres*(1/n(j)+1/n(i)));

 end %if i
 end %j
 end %i
 %Now we take the t values to p values
 p = 2*(1-tcdf(abs(t),DF));
 %Organize p-values
 Sorted = sort(reshape(p,1,size(t,1)*size(t,2)));
 %Holm test p-value for comparison with uncorrected p-value of p=0.05:
 %Calculate number of comparisons:
 Comparisons = 0;
 i = 0;
 while i < max(double(SortData.Type))
 for i = 1:max(double(SortData.Type))
 Comparisons = Comparisons + (i-1);
 end %for i
 end %while i
 %Determine Significant Terms
 detect = 0;
 for i = 1:Comparisons
 pcomp = 0.05/(Comparisons-i+1);
 if Sorted(i) <= pcomp
 Sig(i) = 1;
 detect = 1;
 else

 break
 end %if Sorted
 end %if i
 %Display p values in p matrix that are significant
 if detect == 1
 fprintf('\np matrix is:\n')
 format short e
 disp(p.*(p<=Sorted(length(Sig))))
 else
 fprintf('\np1 matrix has no significant values.\n')
 end %if

%Residuals
figure(2)
 gscatter(double(SortData.Type),lm.Residuals.Raw,SortData.Flow)
 yh = ylabel(‘Residuals’);
 xh = xlabel(‘Types’);
 legh = legend;
 htitle = get(legh,’Title’);
 set(htitle,’String’,’Flow (\muL/min)’)
 set([xh,yh],’fontweight’,’bold’);
 set(gca,’XTick’, 1:7)
 set(gca,’XTickLabel’,{‘Control’, ‘1 Layer 12.5%’, ‘1 Layer 15%’, ‘1 Layer 17.5%’, ‘2 Layer 12.5%’,

‘2 Layer 15%’, ‘2 Layer 17.5%’})

%Test Normality with a Normal Probability Plot
figure(3)

 S19 of S19

 normplot(lm.Residuals.Standardized)
 xh = xlabel(‘Standardized Residuals’);
 yh = ylabel(‘Normal Probability Scale’);
 set([xh,yh],’fontweight’,’bold’);

