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Abstract: This paper addresses the problem of integration of Inertial Navigation System (INS)
and Global Navigation Satellite System (GNSS) for the purpose of developing a low-cost, robust
and highly accurate navigation system for unmanned surface vehicles (USVs). A tightly-coupled
integration approach is one of the most promising architectures to fuse the GNSS data with INS
measurements. However, the resulting system and measurement models turn out to be nonlinear,
and the sensor stochastic measurement errors are non-Gaussian and distributed in a practical system.
Particle filter (PF), one of the most theoretical attractive non-linear/non-Gaussian estimation methods,
is becoming more and more attractive in navigation applications. However, the large computation
burden limits its practical usage. For the purpose of reducing the computational burden without
degrading the system estimation accuracy, a quaternion-based adaptive unscented particle filter
(AUPF), which combines the adaptive unscented Kalman filter (AUKF) with PF, has been proposed
in this paper. The unscented Kalman filter (UKF) is used in the algorithm to improve the proposal
distribution and generate a posterior estimates, which specify the PF importance density function
for generating particles more intelligently. In addition, the computational complexity of the filter
is reduced with the avoidance of the re-sampling step. Furthermore, a residual-based covariance
matching technique is used to adapt the measurement error covariance. A trajectory simulator
based on a dynamic model of USV is used to test the proposed algorithm. Results show that
quaternion-based AUPF can significantly improve the overall navigation accuracy and reliability.

Keywords: unscented particle filter; INS/GPS integration; USV; tightly-coupled integration; quaternion

1. Introduction

The development of unmanned surface vehicles (USVs) for scientific, military and commercial
purpose in applications such as oil and gas exploration, oceanographic data collection, hydrographic,
oceanographic and environmental survey, mine counter measure, surveillance and reconnaissance,
anti-submarine warfare and fast inshore attack craft for combat training require the corresponding
development of navigation systems [1]. The need of the robustness, accuracy and reliability is
a guarantee of long duration, unmanned operations for USVs. The sensor units on board, which serve
as environment perceptions, are of critical importance for automation operation. A reliable and
accurate navigation system is very important for a USV.

The integration of Global Navigation Satellite System (GNSS) and Inertial Navigation System
(INS) is widely used for positioning and attitude determination for vehicles. The development of
micro-electromechanical system (MEMS) technology has brought low-cost INS/GNSS integration
approaches into practice [2,3]. A growing number of research groups are developing integrated
navigation systems utilizing INS and GNSS due to the complementary nature of INS and GNSS
principles. The INS/GNSS integration can be classified into loosely-coupled, tightly-coupled and
deeply-coupled [4]. For the loosely-coupled manner, independent redundant solutions are available
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from the GNSS receiver and INS process. However, the disadvantage is that typically four satellites
have to be in view to obtain position and velocity solutions from the GNSS receiver. In addition,
cascaded filtering problems may occur when one local Kalman filter (KF) is used in GPS data processing
and the other is used in integration. These problems can be easily solved in tightly-coupled integration.
In tightly-coupled integration, a centralized KF is employed. The pseudorange and delta pseudorange
(or Doppler) measurements are used as observations to update the navigation filter. Furthermore,
the system does not need a full GNSS solution to assist the INS. This means that the error correlation
of inertial measurement unit (IMU) measurements can maintain the update of the estimated solution
by the INS even if the number of the tracked satellites is less than four. However, the resulting system
observation model turns out to be nonlinear, which should be carefully treated in the design of the
integration KF.

The EKF (extended Kalman filter) is known as state-of-the-art for fusion INS and GNSS data in
tightly-coupled integration. The linearization should be implemented in both the nonlinear system
model and the observation model first in order to apply EKF. This approximation will result in
large errors when EKF calculates a posterior mean and covariance, which may lead to suboptimal
performance or even divergence of the filter. UKF (unscented Kalman filter) is a recursive MMSE
(Minimum Mean Square Error) estimator based on optimal Gaussian approximation Kalman filter
framework. Unlike the EKF, the UKF uses the true nonlinear model and approximates the distribution
of the state random variables [5]. The state distribution in the UKF is specified using a minimal set of
deterministically chosen sample points to capture the posterior mean and covariance accurately to
2nd order for any nonlinearity. It is based on the assumption that it is much easier to approximate
a Gaussian distribution than to simulate an arbitrary nonlinear function [6]. Recently, with the
development of the computer technology, particle filter (PF) turns out to be more attractive for
nonlinear and non-Gaussian applications, and has been successfully used in [7] to recursively update
the posterior distribution by sequential importance sampling and resampling. However, the large
computational burden impeded the practical use of PF. In addition, the sample impoverishments
accompanying the degeneracy of the system performance are primary disadvantages of the basic
PF [8]. To overcome these problems, in [3], the strategy of combining the UKF with PF was proposed.

To achieve better performance from the KF framework, the stochastic information provided to
the filter must be as accurate as possible. It is therefore necessary to adapt the stochastic model to
accommodate for changes in vehicle dynamics and environment conditions. Insufficient or incorrect
knowledge about statistics may lead to degradation of the system performance or even divergence
of the filter. In [9], a filter innovation sequence based on adaptive Kalman filtering (AKF) was
introduced, which showed a major improvement in adjusting process noise error covariance and sensor
measurement error covariance adaptively. In this paper, an adaptive unscented particles filter (AUPF)
algorithm based on quaternion is proposed using a residual-based covariance matching technique.

In the remainder of this paper, the content is organized as follows. In Section 2, a trajectory simulator
with corresponding sensors measurements allocated in a USV is developed. In Section 3, quaternion-based
propagation and an observation model are introduced. Furthermore, a quaternion-based GPS/INS
integration algorithm using AUPF is proposed. Simulation results are analyzed and compared to
illustrate the performance of the proposed AUPF algorithm.

2. Sensor Measurement Simulation

In this part, a USV trajectory simulator is designed. We briefly summarize the different component
parts of the USV platform. These include the mathematical dynamic state-space models used for the
simulator, the sensors subsystem and the controller design. The core components of such a simulator
are schematically depicted in Figure 1, which include a control system, a guidance system and a
navigation system (GNC). The GNS system takes the noisy GPS and MEMS-IMU measurements
as inputs, and then fuses them from the dynamics model of USV to estimate the optimal vehicle
navigation state solutions. There state estimations together with desired trajectories from guidance
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systems are then adopted by the controller, which generates an optimal control law to drive the thruster
of the USV.
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Figure 1. Schematic diagram of the simulation system.

2.1. Trajectory Simulator of the USV

As in [10], the marine craft equations of motion in six degrees of freedom can be written in
vectorial setting form:

.
η “ JΘ pηq ν (1)

M
.
ν`C pνq ν`D pνq ν` g pηq “ τwave ` τwind ` τcurrents ` τ (2)

where η P R6 denotes the position and the orientation vector. ν P R6 denotes the linear and angular
velocity vectors that are decomposed in the body-fixed reference frame. τ P R6 describes the forces
and moments acting on the craft in the body-fixed fame. The generalized position, velocity and force
vectors have the form that represented as Equation (3):

η “

«

pn
b{n

Θnb

ff

, v “

«

υb
b{n

ωb
b{n

ff

, τ “

«

fb
mb

ff

(3)

The same notation as in [10] is used, pn
b{n P R

3 is the position expressed in the north east down

(NED) frame, {N}. Θnb P S3 represents the Euler angles. υb
b{n and ωb

b{n represent the linear and angular

velocity of body frame expressed in{B} frame with respect to {N} frame. fb P R3 and mb P R3 are
the forces and moments acting on the vehicle, respectively. R3 and S3 denote the Euclidean space of
dimension three and the sphere, respectively. JΘ pηq is the transformation matrix. M, C pvq, and D pvq
represent the inertial, Coriolis-Centripetal and damping matrices, respectively. g pηq represents the
restoring forces and moments.

A sliding mode trajectory tracking controller is designed to track the reference trajectory for USV
as in [11]. All relevant position, orientation, linear and angular velocities, acceleration and forces
describing the USV’s trajectory are calculated.

2.2. GPS Date Simulation

There are three kinds of measurements from GPS receiver, i.e., pesudorange, Doppler and carrier
phase. In this subsection, we will introduce the measurement mode of pesudorange and Doppler.
The first step is to develop the GPS constellation model, which can be used to generate the position of
the satellites in the simulation. GPS archive data are available from the website of the International
GNSS service (IGS). The next step is to model the signal transmission from the satellites. The main
GPS measurement errors include ionospheric errors, tropospheric errors, etc. Further details can be
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found in [12]. Considering all of these aspects, the biased pseudorange measurement from one satellite
vehicle at one instance is formulated as:

rρ “ ρ` c ptu ´ tsq ` Tiono ` Ttropo ` ερ (4)

where rρ denotes a measured range of user to satellite, ρ is a true range of user to satellite, tu and ts

denote receiver clock bias and satellite clock bias, respectively, Tiono and Ttropo denote ionospheric
delay and tropospheric delay, respectively, ερ denotes other un-modeled errors, i.e., multipath delay.

The relative motion between the satellite and the receiver results in change of the observed
frequency of satellite signal. The Doppler can be used to estimate the user velocities from the satellite
velocities. As in [3], the Doppler shift can be written as a projection of the relative velocity vector on
the satellite line-of-sight vector:

r

.
ρ “ pIs

uq
T
pvs ´ vuq ` c

.
tu ` ε .

ρ (5)

where Is
u is the use-to-satellite line-of-sight unit vector, vs and vu represent the satellite and receiver

velocity respectively. Is
u can be expressed as:

Is
u “

1
||ps ´ pu||

rxs ´ xu, ys ´ yu, zs ´ zus
T (6)

where ps “ pxs, ys, zsq and pu “ pxu, yu, zuq denote the position vector of satellite and receiver
expressed in Earth-Central Earth Fixed (ECEF) coordinate.

2.3. IMU Date Simulation

For the purpose of simulating IMU data, raw measurements of accelerometer and gyroscope are
needed. The trajectory simulator data are used as the basis in simulating the sensor data. Moreover,
the velocity and angular rate data for the USVs are used.

The IMU measurements are provided by extracting the acceleration and angular velocity from
the simulator model of USVs, which can be modeled as:

fIMU “ Rb
n pΘq

´ .
vn

nb ´ gn

¯

` f bias
b ` εb

acc (7)

ωIMU “ ωb
nb `ωbias

b ` εb
gyro (8)

where gn represents gravity expressed in a navigation frame. εb
acc and εb

gyro denote the zero mean
Gaussian distribute noise. f bias

b and ωbias
b are bias errors of the specific forces and angular rate

measurements, respectively. For the low cost MEMS-IMU, the sensor errors have the non-Gaussian
characteristics. The bias errors in the gyroscope and accelerometer measurements in body frame will
be transformed to be the position and velocity drifts in the navigation frame.

3. Quaternion-Based INS/GNSS Integration

3.1. Quaternion-Based Propagration and Observation Models

Define the vector form of quaternions as q “

”

q0 qT
ıT

with one real part q0 and three

imaginary parts given by the vector q “
”

q1 q2 q3

ıT
. Quaternions are represented as a complex

number with four bases and are used to compute the rotation from navigation frame to body frame.
Based on Euler’s theorem, every change in the relative orientation of two rigid bodies or reference
frame can be produced by means of a simple rotation from one frame to another along fixed axes.
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Given the invariant axis (rotation axis) and rotation angle (with magnitude ||ϕ||), the quaternion
vector can be represented as:

q “

«

cos p0.5||ϕ||q
sin p0.5||ϕ||q u

ff

, with u “
“

ux, uy, uz
‰T (9)

where u denotes the unit vector along the invariant axis. Apparently, q has the normality property,
that is to say ||q|| “ 1. It can be concluded that the quaternion vector has only three degrees of
freedom, although q has four elements. Given a rotation vector ϕ“ rϕ1, ϕ2, ϕ3s

T , the quaternion vector
can be computed as:

||ϕ|| “
b

ϕ2
1 `ϕ2

2 `ϕ2
3, u “

ϕ

||ϕ||
, q “

«

cos p0.5||ϕ||q
sin p0.5||ϕ||q ϕ

||ϕ||

ff

(10)

Conventionally, with a sufficiently small time interval, the quaternion vector is updated using
vectors added together in discrete time domain. However, it should be noticed that the unit sphere
defined by quaternion is not a Euclidean vector space. That is to say, the common definition of addition
and scaling cannot be applied directly. In the AUPF algorithm, we will apply the quaternion product
rule to update the quaternion vector. Thus, the system propagation model in discrete time domain can
be expressed as:

pn,k`1 “ pn,k ` vn,k ¨ T
vn,k`1 “ vn,k `

”

Rn
b pqkq f b

ib,k ` gn

ı

¨ T

qk`1 “ qk b p∆qkq

f bias
b,k`1 “ f bias

b,k `w f

ωbias
b,k`1 “ ωbias

b,k `wω

c∆tk`1 “ c∆tk ` c∆
.
tk ¨ T`wcbk

c∆
.
tk`1 “ c∆

.
tk `wcdk

(11)

where b denotes the quaternion product. pn,k and vn,k denote the position and velocity in the
navigation frame at epoch k. gn represents gravity expressed in navigation fame, which is assumed
to be constant for local navigation. c∆

.
tk denotes the receiver clock drift error, which is modeled as

a random walk process. c∆tk represents the range equivalent of the receiver clock bias, which is the
integration of clock drift error. T is the system propagation time interval. w f , wω, wcbk and wcdk are
Gaussian nose terms. Rn

b pqq denotes the rotational transformation matrix from the body frame to the
navigation frame, which can be formulated using the parameters of quaternion as:

Rn
b “

»

—

–

1´ 2
`

q2
2 ` q2

3
˘

2 pq1q2 ´ q0q3q 2 pq1q3 ` q0q2q

2 pq1q2 ` q0q3q 1´ 2
`

q2
1 ` q2

3
˘

2 pq2q3 ´ q0q1q

2 pq1q3 ´ q0q2q 2 pq2q3 ` q0q1q 1´ 2
`

q2
1 ` q2

2
˘

fi

ffi

fl

(12)

∆qk represents the quaternion rotation of body frame during the time interval:

∆qk “

«

cos p0.5||θk||q
sin p0.5||θk||q θk

||θk||

ff

(13)

where θk denotes the integral of the body frame angular rate measurements.
Equation (11) forms the propagation model of the system. In the tightly-coupled integration,

the system observation model is formulated as Equation (14). Where j denotes the number of satellites
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in view, Ij represents the estimated line-of-sight unit vector pointing from the initial estimate of the
user position to the j-th satellite:

»

—

—

—

—

—

—

—

—

—

—

–

ρ̂1,k ´ rρ1,k
...

ρ̂j,k ´ rρj,k
.̂
ρ1,k ´

r

.
ρ1,k

...
.̂
ρj,k ´

r

.
ρj,k

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

´

´IT
1,k

¯

1ˆ3
01ˆ3 01ˆ9 1 0

...
...

...
...

...
´

´IT
j,k

¯

1ˆ3
01ˆ3 01ˆ9 1 0

01ˆ3

´

´IT
1,k

¯

1ˆ3
01ˆ9 0 1

...
...

...
...

...

01ˆ3

´

´IT
j,k

¯

1ˆ3
01ˆ9 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

2jˆ17

¨

»

—

—

—

—

—

—

—

—

—

—

–

δpn
k

δvn
k

δΨk

δ f b,error
ib,k

δωb,error
ib,k

cδtk

cδ
.
tk

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

` εk (14)

where ρ̂j,k is the predicted pseudorange measurement from the j-th satellite, and:

ρ̂j,k “

c

´

xn
j,k ´ x̂n

u,k

¯2
`

´

yn
j,k ´ ŷn

u,k

¯2
`

´

zn
j,k ´ ẑn

u,k

¯2
` c∆t̂k (15)

where x̂n
u,k, ŷn

u,k, ẑn
u,k are the USV position estimates expressed in NED frame. xn

j,k, yn
j,k, zn

j,k are the j-th
satellite position coordinates expressed in NED frame.

The predicted pseudorange-rate measurements are calculated as:

.̂
ρj,k “ In,n

j,k

´

xn
j,k ´ x̂n

u,k

¯

` In,e
j,k

´

yn
j,k ´ ŷn

u,k

¯

` In,d
j,k

´

zn
j,k ´ ẑn

u,k

¯

` c∆
.̂
tk (16)

where
In,n
j,k “

´

xn
j,k ´ x̂n

u,k

¯

{d̂j,k, In,e
j,k “

´

yn
j,k ´ ŷn

u,k

¯

{d̂j,k, In,d
j,k “

´

zn
j,k ´ ẑn

u,k

¯

{d̂j,k

d̂j,k “

c

´

xn
j,k ´ x̂n

u,k

¯2
`

´

yn
j,k ´ ŷn

u,k

¯2
`

´

zn
j,k ´ ẑn

u,k

¯2

where
.̂
ρj,k is the predicted delta range measurement from the j-th satellite.

.̂
x

n
u,k,

.̂
y

n
u,k,

.̂
z

n
u,k are the USV

velocity estimates expressed in NED frame.
.
xn

j,k,
.
yn

j,k,
.
zn

j,k are the j-th satellite velocity coordinates
expressed in NED frame.

Due to introducing the quaternion, there exists dimension mismatch among the state vector and
the state error covariance matrix. The reason is that the degree of freedom of a quaternion vector is
three rather than four. When the state vector includes quaternion vector elements, the dimension
of the state vector is 18 ˆ 1; however, the dimension of the state error covariance matrix is 17 ˆ 17.
In order to solve the problem of dimension mismatch, we introduce the rotation vector in the rotation
space, which is transformed from the corresponding quaternion vector error.

3.2. Quaternion-Based Integration Using UPF

The idea of UKF comes from the fact that it is much easier to approximate a Gaussian distribution,
rather than to simulate a nonlinear function. The particles for UPF are generated using the UKF a
posterior estimates. The state vector and its associated errors are defined as:

x̂`k “

»

—

—

—

—

—

—

—

—

—

—

—

–

p̂`n,k
v̂`n,k
q̂`k

f̂ bias`
b,k

ω̂bias`
b,k

c∆t̂`k
c∆

.̂
t
`

k

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

18ˆ1

, δx̂`k “

»

—

—

—

—

—

—

—

—

—

—

—

–

p̂`n,k ´ pn,k

v̂`n,k ´ vn,k

ϕ̂`k
f̂ bias`
b,k ´ f bias

b,k
ω̂bias`

b,k ´ωbias
b,k

c∆t̂`k ´ c∆tk

c∆
.̂
t
`

k ´ c∆
.
tk

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

–

δp̂`n,k
δv̂`n,k
ϕ̂`k

δ f̂ bias`
b,k

δω̂bias`
b,k

cδt̂`k
cδ

.̂
t
`

k

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

17ˆ1

(17)



Sensors 2016, 16, 1215 7 of 15

where ϕ̂`k is the rotation vector corresponding to q`k b pqkq
´1. The state error covariance P`k can be

formulated as:

P`k “

»

—

—

—

—

—

—

—

—

—

—

—

–

σ2
δ p̂ 03ˆ3 03ˆ3 03ˆ3 03ˆ3 03ˆ3 03ˆ3

03ˆ3 σ2
δv̂ 03ˆ3 03ˆ3 03ˆ3 03ˆ3 03ˆ3

03ˆ3 03ˆ3 σ2
δϕ̂ 03ˆ3 03ˆ3 03ˆ3 03ˆ3

03ˆ3 03ˆ3 03ˆ3 σ2
δ f̂

03ˆ3 03ˆ3 03ˆ3

03ˆ3 03ˆ3 03ˆ3 03ˆ3 σ2
δω̂ 03ˆ3 03ˆ3

01ˆ3 01ˆ3 01ˆ3 01ˆ3 01ˆ3 σ2
cδt̂ 0

01ˆ3 01ˆ3 01ˆ3 01ˆ3 01ˆ3 0 σ2
cδ

.̂
t

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

17ˆ17

(18)

The sigma-points are generated according to Equation (19)

x̂`k´1,i “ x̂`k´1 `
´b

nP`k´1

¯T

i
, i “ 1, . . . , n

x̂`k´1,i`n “ x̂`k´1 ´
´b

nP`k´1

¯T

i
, i “ 1, . . . , n

(19)

where 2n pn “ 17q equally weighted sigma-points are generated. The calculated sigma-points has
the form of:

x̂`k´1,i “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

p̂`n,k´1 ` ∆p̂`n,k´1,i
v̂`n,k´1 ` ∆v̂`n,k´1,i

δq
´

ϕ̂`k´1,i

¯

b q̂`k´1

f̂ bias`
b,k´1 ` ∆ f̂ bias`

b,k´1,i
ω̂bias`

b,k´1 ` ∆ω̂bias`
b,k´1,i

c∆t̂`k´1 ` ∆c∆t̂`k´1,i

c∆
.̂
t
`

k´1 ` ∆c∆
.̂
t
`

k´1,i

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, x̂`k´1,i`n “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

p̂`n,k´1 ´ ∆p̂`n,k´1,i
v̂`n,k´1 ´ ∆v̂`n,k´1,i

δq
´

´ϕ̂`k´1,i

¯

b q̂`k´1

f̂ bias`
b,k´1 ´ ∆ f̂ bias`

b,k´1,i
ω̂bias`

b,k´1 ´ ∆ω̂bias`
b,k´1,i

c∆t̂`k´1 ´ ∆c∆t̂`k´1,i

c∆
.̂
t
`

k´1 ´ ∆c∆
.̂
t
`

k´1,i

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(20)

Define the delta rotation angle rate in the quaternion form as:

δq
´

ϕ̂`k´1,i

¯

“

»

—

–

cos
´

0.5||ϕ̂`k´1,i||
¯

sin
´

0.5||ϕ̂`k´1,i||
¯

ϕ̂`
k´1,i

||ϕ̂`
k´1,i||

fi

ffi

fl

(21)

The a priori mean and the state error covariance matrix are computed through Equations (22) and (23):

x̂´k “
1

2n

2n
ÿ

i“1

fk´1

´

x̂`k´1,i

¯

(22)

P´k “
1

2n

2n
ÿ

i“1

”

fk´1

´

x̂`k´1,i

¯

´ x̂´k
ı ”

fk´1

´

x̂`k´1,i

¯

´ x̂´k
ı

T

`Qk´1 (23)

The same as in Equation (19), we generate the sigma-points for measurements update by
replacing P`k´1 with P´k . The sigma-points x̂´k,i are calculated according to Equation (20). With the
sigma-points propagation, the predicted measurement and covariance matrix are calculated according
to Equations (24)–(26):

ŷk “
1

2n

2n
ÿ

i“1

hk

´

x̂´k,i

¯

(24)

Pyy
k “

1
2n

2n
ÿ

i“1

”

hk

´

x̂´k,i

¯

´ ŷk

ı ”

hk

´

x̂´k,i

¯

´ ŷk

ı

T

` Rk (25)
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Pxy
k “

1
2n

2n
ÿ

i“1

”

x̂´k,i ´ x̂´k
ı ”

hk

´

x̂´k,i

¯

´ ŷk

ı

T

(26)

At each measurement epoch of GPS, we update the state estimate and the covariance as KF frame:

Kk “ Pxy
k

´

Pyy
k

¯´1

x̂`k “ x̂´k `Kk pryk ´ ŷkq

P`k “ P´k ´KkPyy
k KT

k

(27)

For the UPF, the a posterior estimates of x̂`k and P`k from Equation (27) are used to form the
importance density distribution for generating particles:

χ`k,i “ x̂`k ` ∆x̂`k,i “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

p̂`n,k ` ∆p̂`n,k,i
v̂`n,k ` ∆v̂`n,k,i

δq
´

ϕ̂`k,i

¯

b q̂`k
f̂ bias`
b,k ` ∆ f̂ bias`

b,k,i
ω̂bias`

b,k ` ∆ω̂bias`
b,k,i

c∆t̂`k ` ∆c∆t̂`k,i

c∆
.̂
t
`

k ` ∆c∆
.̂
t
`

k,i

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, ∆x̂`k,i „ N
`

0, P`k
˘

(28)

where i “ 1, ¨ ¨ ¨ , N, N is the number of particles. The normalized importance weights are computed as:

w
´

χ`k,i

¯

“
p
´

ryk|χ
`
k,i

¯

N
´

χ`k,i; x̂´k , P´k
¯

N
´

χ`k,i; x̂`k , P`k
¯ (29)

w
´

χ`k,i

¯

“
w
´

χ`k,i

¯

N
ř

i“1
w
´

χ`k,i

¯

, with
N
ÿ

i“1

w
´

χ`k,i

¯

“ 1 (30)

where

p
´

ryk

ˇ

ˇ

ˇ
χ`k,i

¯

“
1

a

p2πqm ||Rk||
exp

$

’

&

’

%

´

”

ryk ´ hk

´

χ`k,i

¯ıT
R´1

”

ryk ´ hk

´

χ`k,i

¯ı

2

,

/

.

/

-

N
´

χ`k,i; x̂´k , P´k
¯

“
1

b

p2πqn ||P´k ||
exp

$

’

&

’

%

´

”

χ`k,i ´ x̂´k
ıT

`

P´k
˘´1

”

χ`k,i ´ x̂´k
ı

2

,

/

.

/

-

N
´

χ`k,i; x̂`k , P`k
¯

“
1

b

p2πqn ||P`k ||
exp

$

’

&

’

%

´

”

χ`k,i ´ x̂`k
ıT

`

P`k
˘´1

”

χ`k,i ´ x̂`k
ı

2

,

/

.

/

-

where m denotes the observer dimension which varies during the time and is based on the number of
satellites being tracked by the receiver.

The a posteriori mean and covariance estimates are computed as:

x̂`k “
p
ř

i“1
w
´

χ`k,i

¯

χ`k,i

P`k “
N
ř

i“1
w
´

χ`k,i

¯”

χ`k,i ´ x̂`k
ı ”

χ`k,i ´ x̂`k
ıT (31)
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where χ`k,i ´ x̂`k can be calculated as:
«

´

p̂`
n,k,i ´ p̂`

n,k

¯T
,
´

v̂`
n,k,i ´ v̂`

n,k

¯T
,
´

ϕ̂`
k,i

¯T
,
´

f̂ bias`
b,k,i ´ f̂ bias`

b,k

¯T
,
´

ω̂bias`
b,k,i ´ ω̂bias`

b,k

¯T
,
´

c∆t̂`
k,i ´ c∆t̂`

k

¯T
,
ˆ

c∆
.̂
t
`

k,i ´ c∆
.̂
t
`

k

˙T
ffT

.

ϕ̂`k,i is the rotation vector corresponding to q̂`k,i b
`

q̂`k
˘´1. Due to the fact that the unit quaternion is not

mathematically closed for addition and scalar multiplication, a normalization procedure is necessary
to ensure the constraint qTq “ 1 is satisfied in the presence of measurement noise and numerical
round-off errors. The normalization can be conducted by replacing q̂`k with q̂`k {||q̂`k ||.

3.3. Residual-Based AUPF

For the a posterior state estimations, a reliable resolution is proposed which greatly depends on
prior statistics of the system process and measurement noise. However, these statistics are hardly
known exactly in practice because they are based on the types of applications and process dynamics [13].
In addition, the estimation environment regarding INS/GNSS kinematic application is not always fixed
but subject to change [14]. In order to maintain the estimation accuracy, a residual-based covariance
matching technique is used to adaptively adjust the algorithm parameters and to track the changes in
the noise source. For the INS/GNSS integration, the IMU measurements are used in system model,
and the product manual specifies the sensor turn-on bias, temperature related variations in biases and
noises. In this paper, we assume that the process noise error covariance Q is approximately known,
and we focus on the adaptive estimation of sensor measurement error covariance R̂.

Different from [2], which proposed an adaptive EKF algorithm, for the UKF, modified
measurement noise error covariance matrices are adaptively updated as:

R̂k “ Ĉvk ` Pyy`
k , where Ĉvk “

1
N

k
ÿ

j“j0

zjzT
j (32)

where Pyy`
k is calculated as:

Pyy`
k “

1
2n

2n
ÿ

i“1

”

hk

´

x̂`k,i

¯

´ ŷ`k
ı ”

hk

´

x̂`k,i

¯

´ ŷ`k
ıT

(33)

where ŷ`k “ 1
2n

2n
ř

i“1
hk

´

x̂`k,i

¯

. The x̂`k,i denotes the sigma-points drawn from the UKF a posterior

estimates. The sigma-points are generated as:

x̂`k,i “ x̂`k `
´
b

nP`k
¯T

i
, i “ 1, . . . , n

x̂`k,i`n “ x̂`k ´
´
b

nP`k
¯T

i
, i “ 1, . . . , n

(34)

x̂`k,i “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

p̂`n,k ` ∆p̂`n,k,i
v̂`n,k ` ∆v̂`n,k,i

δq
´

ϕ̂`k,i

¯

b q̂`k
f̂ bias`
b,k ` ∆ f̂ bias`

b,k,i
ω̂bias`

b,k ` ∆ω̂bias`
b,k,i

c∆t̂`k ` ∆c∆t̂`k,i

c∆
.̂
t
`

k ` ∆c∆
.̂
t
`

k,i

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, x̂`k,i`n “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

p̂`n,k ´ ∆p̂`n,k,i
v̂`n,k ´ ∆v̂`n,k,i

δq
´

´ϕ̂`k,i

¯

b q̂`k
f̂ bias`
b,k ´ ∆ f̂ bias`

b,k,i
ω̂bias`

b,k ´ ∆ω̂bias`
b,k,i

c∆t̂`k ´ ∆c∆t̂`k,i

c∆
.̂
t
`

k ´ ∆c∆
.̂
t
`

k,i

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(35)
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The calculated sigma-points have the form of Equation (35). The delta rotation angle rate in the
quaternion form can be formulated as:

δq
´

ϕ̂`k,i

¯

“

»

—

–

cos
´

0.5||ϕ̂`k,i||
¯

sin
´

0.5||ϕ̂`k,i||
¯

ϕ̂`
k,i

||ϕ̂`
k,i||

fi

ffi

fl

(36)

The flowchart of the proposed AUPF is illustrated in Figure 2.
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possible, different error types including the Gaussian model and random bias were induced in the 
simulated IMU. Raw GPS pseudorange and Doppler measurements were simulated at a 1 Hz rate, 
while the IMU raw data were simulated at a 100 Hz rate. The sensor error characteristics of 
MEMS-IMU are given in Table 1. The program is implemented in MATLAB R2013a using Intel Xeon 
E31270 CPU and 8 GB RAM. 
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Figure 2. Adaptive unscented particle filter (AUPF) algorithm flowchart.

4. Simulation Results

A simulator with the module of USV trajectory simulation and the raw measurements simulation
for IMU and GPS was developed. The trajectory used in this simulation scenario is illustrated in
Figure 3. We assume that the USV is operating at sea level. The sliding mode controller in [15] drives
the USV fallowing the designed trajectory. To represent a real MEMS-IMU as closely as possible,
different error types including the Gaussian model and random bias were induced in the simulated
IMU. Raw GPS pseudorange and Doppler measurements were simulated at a 1 Hz rate, while the
IMU raw data were simulated at a 100 Hz rate. The sensor error characteristics of MEMS-IMU are
given in Table 1. The program is implemented in MATLAB R2013a using Intel Xeon E31270 CPU and
8 GB RAM.

Table 1. Error characteristics of the simulated MEMS-IMU.

Gyroscope (Angular Rates) Accelerometer (Specific Forces)

Bias in-run Stability ő˘13 [˝/h] (1σ) Bias in-run Stability ő˘1300 [µg] (1σ)
Noise (ARW) 0.028 [˝/s/

‘

Hz] (1σ) Noise (VRW) 70 [µg/
‘

Hz] (1σ)
Scale Factor Error <1000 [ppm] Scale Factor Error <1000 [ppm]

Micro-electromechanical system inertial measurement unit (MEMS-IMU).
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Figure 3. The trajectory of the USV.

Figure 3 shows the estimation results of trajectory of USV in horizontal plane. Although the low
cost MEMS-IMU is used, the agreement with the actual trajectory is generally good. The estimated
position and velocity errors can be found in Figure 4. After the initial transient, the estimation error in
the north direction remains less than 3 m approximately, 0.5 m in the east direction and ´4.2 m in the
down direction; the errors of velocity remain within a region of approximately ˘0.05 m/s. In Figure 5,
the attitudes estimated by the AUPF algorithm (using quaternion) are plotted. The quaternion are
converted to their corresponding Euler angles. Except the initial transient, the roll and pitch errors
remain mostly in the region ˘0.1 deg, but the yaw error tends to be a little larger. Accelerometer bias
estimation results are illustrated in Figure 6. Gyroscope bias estimation results are plotted in Figure 7.
Due to the fact that the yaw angle is the least observable state in practical vehicle motion, we can see
form Figure 7 that the bias error on the z-axis takes more time to be stable.
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Figure 4. (a) estimation errors of the position; (b) estimation errors of the velocity.
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Figure 5. (a) roll, pitch and yaw of the USV; (b) estimation of the attitude errors (transformed from
quaternion to corresponding Euler angles).
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Figure 6. Estimation of the accelerometer bias.
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In order to illustrate the performance of the proposed AUPF algorithm, several groups of tests
adopting the AEKF, AUKF, PF and AUPF are conducted, respectively, in this part. For comparing
the navigation accuracy among the algorithms mentioned above, we choose the norm of the
position (||∆p||) and velocity (||∆v||) estimation errors for analysis, which are calculated as

||∆x|| “

b

∆x2
N ` ∆x2

E ` ∆x2
D. As shown in Figure 8, AUPF presents best estimation accuracy

compared with others.
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Figure 8. (a) Norm of position estimation errors; (b) Norm of velocity estimation errors.

Furthermore, with the same group of GPS and IMU data, the estimation accuracy and computation
time of the algorithms are illustrated in Table 2. M(||∆p||) and M(||∆v||) denote the mean
of the norm of the position and velocity estimation errors. V(||∆p||) and V(||∆v||) denote the
variance of the norm of the position and velocity estimation errors. The time represents the algorithm
processing time, which depends on the computation power of the computer and only for reference.
We conduct one simulation run for AEKF and AUKF because the same prior statistical parameters
and the same group of sensor data result in unchanged performance. For the PF based algorithm,
the particles are generated randomly, so the estimation results have slight differences after each
simulation. Table 2 shows the average values of 100 runs of the algorithms. We can see that AUPF
(100 particles) can significantly improve the accuracy compared with PF (300 particles), and with
computational efficiency at the same time.

Although the validation of the proposed AUPF algorithm is conducted from simulation in this
paper, it has a theoretical foundation with a stringent mathematical representation. However, a real data
experiment is an intuitively clear way to validate the performance of the presented AUPF algorithm,
and it is of great practical interest to validate and compare it with other filters in experiments.
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Table 2. Performance comparison between state-of-the-art algorithms.

Algorithm Runs M(||∆p||)
[m]

V(||∆p||)
[m]

M(||∆v||)
[m/s]

V(||∆v||)
[m/s] Time [s]

AEKF 1 5.2451 0.0426 0.0327 0.0042 3.3774
AUKF 1 5.1962 0.0397 0.0286 0.0037 17.3859
PF(300) 100 4.5173 0.0315 0.0207 0.0021 283.4482

AUPF(100) 100 4.2358 0.0273 0.0183 0.0014 62.1538

Adaptive extended Kalman filter (AEKF); Adaptive unscented Kalman filter (AUKF); Particle filter (PF);
Adaptive unscented particle filter (AUPF).

5. Conclusions

In this paper, we have studied the problem of navigation system design for low-cost USVs, in
which we mainly focus on the filtering algorithm. A quaternion-based tightly-coupled integration
approach is chosen to fuse the low-cost MEMS-INS measurements and GPS data. Due to the
nonlinear and non-Gaussian properties of the INS/GNSS tightly-coupled integration problem, an
APUF algorithm is proposed, which combines UKF with PF. A residual-base covariance matching
technique is used to adaptively adjust the parameters and to track the changes in observation data in
an adaptive manner. The resulting AUPF algorithm can reduce the computational burden without
degrading the system estimation accuracy. A USV trajectory simulator is designed to generate the raw
senor measurements of IMU and GNSS. The simulation results verify the robustness and accuracy
of the AUPF algorithm in comparison to the AEKF and AUKF. In addition, the comparison with PF
underlines the computational advantage of AUPF.
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