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Abstract: For cylindrical shell gyroscopes, node position of their operating eigenmodes has an
important influence on the gyroscopes’ performance. It is considered that the nodes are equally
separated from each other by 90˝ when the resonator vibrates in the standing wave eigenmode.
However, we found that, due to manufacturing errors and trimming, the nodes may not be equally
distributed. This paper mainly analyzes the influences of unbalanced masses on the cylindrical
resonators’ node position, by using FEM simulation and experimental measurement.
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1. Introduction

As a kind of solid-state wave gyroscope, the cylindrical shell vibrating gyroscope can be used
to measure the angular velocity of a rotating body based on the inertia effect of the standing wave in
two vibration modes of the axial symmetric resonator [1], which have advantages such as small size,
high operation accuracy, low cost, low power consumption, good shock resistance, and long life [2].
The advantages offered by the cylindrical shell vibrating gyroscope have always been of great interest
to many researchers, institutes and companies.

The Innalabs Holding’s Coriolis Vibration Gyroscope (CVG) and the Watson Industries’ Vibrating
Structure Gyroscope (VSG) are typical cylinder shell vibrating gyroscopes [3,4]. Besides, Marconi
Avionics has developed the START vibrating gyroscope [5].

The working cylindrical resonator vibrating in its second-order mode has a maximum vibration
amplitude at four antinodes and a zero vibration amplitude at four nodes. For a perfect resonator,
the nodes are equally distributed 90˝ from each other [6]. However, various kinds of cylindrical shell
gyroscopes with different structures will have inhomogeneous errors after manufacturing, leading
to the instability of vibratory modes and node positions [7]. Experts home and abroad have studied
different kinds of inhomogeneous errors and the resultant quality imperfection.

Fox at the University of Nottingham researched the vibratory theory and mode trimming
principles of ring and cylindrical gyroscopes and proved that by adjusting part masses and rigidity,
the frequency split can be reduced [8,9]. Zhbanov revealed the influence of the movability of the
resonator center on the operation of the hemispherical gyroscope [10]. Dag Kristiansen studied the
nonlinear oscillations and the problem of superharmonic resonances [11]. Dzhashitov in Russia
conducted a theoretical analysis on the model of thermo-elastic stress-strain states and revealed the
inner relationship between temperature and stress states [12].

At present, papers researching the characteristics of nodes in cylindrical resonators are quite
few, in spite of those studies on the errors of imperfect resonators. In fact, it is necessary to study the
characteristics of nodes, for they are closely related to the zero-bias of the gyroscope. This paper will
develop an in-depth study in this field, revealing how mass, rigidity, and geometric errors affect the
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localization of nodes, and providing helpful instructions for manufacture, trimming and accuracy
control of high quality resonators.

2. Structure and Working Principle

A typical resonant shell of the cylindrical gyro is shown in Figure 1. The structure comprises a
rigid substrate, a round bottom, a cylindrical suspension and a thick resonant ring. Eight piezoelectric
electrodes are glued on the bottom. The vibration of the cylindrical wall is excited and then converted
to a voltage signal via the electrodes.
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apart from each other. However, the mode shape of an imperfect resonator is related to the complex 

Figure 1. Structure of the cylindrical resonator.

The working principle of the resonator is well understood. Figure 2 describes the vibration pattern
of a perfect resonator. There is a pair of operating modes known as the drive mode and sense mode,
which are separated from each other by 45˝. The operating modes have the same natural frequency
and the mode shape in the form of a standing wave has four antinodes and four nodes. The drive
mode of the shell is used to generate the standing vibration along the exciting orientation. When the
gyroscope rotates, the sense mode can be detected by the electrodes due to the Coriolis effect.
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3. ANSYS Simulation on Node Position

According to the preceding description of a perfect resonator, the antinodes and nodes are 45˝

apart from each other. However, the mode shape of an imperfect resonator is related to the complex
theory of shell dynamics and numerical solutions are difficult to obtain. As a result, the FEM software
ANSYS is employed to analyze the node localization of imperfect resonators. It is worth mentioning
that FEM can induce an artificial frequency split of 0.2 Hz to a perfect resonator with a general mesh
size used in our research. However, this paper mainly discusses the conditions with large frequency
splits caused by distinct geometric errors. So the artificial frequency split of a perfect resonator is small
enough to be neglected.

3.1. Finite Element Modeling of the Resonator

The geometry parameters listed in Table 1 are used to build the model (shown in Figure 3), and the
material properties are listed in Table 2. Further, the element type SOLID186 is chosen. Then, different
kinds of imperfections are exerted on the FE model in order to reveal their influence on the operating
eigenmodes and the node position. By means of modal analysis, the displacement and the azimuth of
every point on a circle with an interval of 1˝ are extracted. The position with minimum displacement
is considered to be where the nodes are located.
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geometric model.

Table 1. Material properties of the cylindrical resonator.

Parameter Value

Young1s modulus E 210 GPa
Poisson1s ratio µ 0.3

Density ρ 7800 kg/m3

Table 2. Structure parameters of the resonator.

Parameter Value

Height of resonant ring H1 8 mm
Height of suspension ring H2 10 mm

Radius of substrate R0 4 mm
Internal diameter of resonator R1 12 mm

Thickness of resonant ring T1 1 mm
Thickness of suspension ring T2 0.3 mm

Thickness of bottom H3 0.3 mm
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3.2. Influence of Mass Variation on Node Position

The mass variation relative to a perfect resonator is a common imperfection. The mass
distribution may not be homogeneous after machining because of the limited machining accuracy or
the inhomogeneity of the material density. To simplify this condition, rectangular mass is added on
the original model before simulative modal analysis.

3.2.1. Influence of Single Added Mass

As is shown in Figure 4, when a 2.8 mm ˆ 2.2 mm ˆ 1 mm rectangular mass is added on the
top of the resonator ring (not on the internal or external surface to ensure that it does not increase
the radial rigidity too much), the frequency split reaches 30 Hz. Furthermore, the four nodes are all
shifting towards the added mass.
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Figure 4. Resonator condition with single added mass. (a) The geometric model applied in simulation;
(b) The node position in this case.

3.2.2. Influence of Double Added Mass

In this case, which is shown in Figure 5, when two rectangular masses are added on the resonator
ring, the actual node position has moved slightly away from the ideal position. However, even though
the frequency split caused by the mass has reached 60 Hz, the angular error of the nodes remains
within merely 0.12˝ (shown in Figure 6 and Table 3). Since the frequency split of our resonators can be
controlled within 5 Hz after precision manufacture, a 60 Hz frequency split represents quite a large
mass disturbance. In summary, we can conclude that simple mass disturbance has a limited influence
on the node position.
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Table 3. Frequency splits and node position variations due to mass disturbance.

Side Length of a 1 mm Thick
Square Block (mm)

Volume
(mm3)

Frequency
Split (Hz)

Node Position
Variation (˝)

0 0 0 0
1.8 3.24 34.8 0.072
2.2 4.84 51.4 0.098
2.5 6.25 65.8 0.122

3.3. Influence of Rigidity Variation on Node Position

Trimming is a key process to eliminate manufacture error and frequency split. It is considered
that trimming a tiny quantity of material off the resonator will lead to the obvious variation of the
natural frequency and mode shape [13] as a result of the rigidity change in this process.

Firstly, the rigidity condition of the trimmed resonator is illustrated (shown in Figure 7).
Suppose that a resonator is trimmed and some of the resonator rings are ‘cut’, and the radial rigidity
will vary as the trimming groove position changes.

Sensors 2016, 16, 1206 5 of 11 

 

 

Figure 6. The relationship between angular variation and frequency split. 

Table 3. Frequency splits and node position variations due to mass disturbance. 

Side Length of a 1 mm Thick 

Square Block (mm) 
Volume (mm3) Frequency Split (Hz) 

Node Position 

Variation (°) 

0 0 0 0 

1.8 3.24 34.8 0.072 

2.2 4.84 51.4 0.098 

2.5 6.25 65.8 0.122 

3.3. Influence of Rigidity Variation on Node Position 

Trimming is a key process to eliminate manufacture error and frequency split. It is considered 

that trimming a tiny quantity of material off the resonator will lead to the obvious variation of the 

natural frequency and mode shape [13] as a result of the rigidity change in this process. 

Firstly, the rigidity condition of the trimmed resonator is illustrated (shown in Figure 7). 

Suppose that a resonator is trimmed and some of the resonator rings are ‘cut’, and the radial rigidity 

will vary as the trimming groove position changes. 

Imperfect section

Perfect section

Groove

 

Figure 7. The rigidity condition. 

Afterwards, the calculation presents that a 2.2 mm × 1.2 mm trimming groove causes a rigidity 

variation by 8.8%, while its mass has merely changed by 0.26%, which reveals that trimming grooves 

cause a larger variation in rigidity than in mass (shown in Figure 8). 

 

0

0.03

0.06

0.09

0.12

0.15

0 20 40 60 80

angular 

variation

(°)

frequency split (Hz)
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Afterwards, the calculation presents that a 2.2 mm ˆ 1.2 mm trimming groove causes a rigidity
variation by 8.8%, while its mass has merely changed by 0.26%, which reveals that trimming grooves
cause a larger variation in rigidity than in mass (shown in Figure 8).

3.3.1. Influence of Single Trimming Groove on Node Position

From Figure 9, since the trimming groove lacks position constraint, the actual nodes are 1pulled1

to the groove, resulting in the relative position change of nodes in the same side. Also, the angular
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variation is proportional to the groove depth. It can reach 0.86˝ with a 2.2 mm deepˆ 1.2 mm wide
trimming groove. In addition, in view of the considerable angular variation values in Figure 10, we can
come to a conclusion that groove structure has a great influence on the node position.
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Figure 9. Resonator condition with one groove in simulation. (a) The geometric model applied in
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3.3.2. Influence of Multiple Trimming Groove on Node Position

In the interest of a deeper-level exploration on the effect of the groove structure, the conditions of
multiple trimming grooves are considered below.
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Firstly, two 2.2 mm deep ˆ 1.2 mm wide trimming grooves are applied on the resonator ring at a
90˝ angle. The consequent mode pattern is shown in Figure 11a, where the two nodes on the symmetry
axis remain unchanged while two side nodes shift towards the groove. The variable trend of the nodes
is similar to the former condition with one groove.
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Figure 11. Simulation results with two grooves. (a) The node position with two grooves at a 90˝ angle;
(b) The node position with two grooves at a 180˝ angle.

Similarly, when two 2.2-mm-deep trimming grooves are applied on the resonator ring at a
180˝ angle, the angular variation becomes 0.77˝, which is a rather big angle (shown in Figure 11b).

However, when four evenly distributed trimming grooves are applied on the resonator ring,
the angular variation is merely 0.01˝, even though the groove depth is increased to 1.5 mm. The angular
variation is usually considered to be zero in this condition. However, since the depths of the grooves
are not exactly the same, different trimmed resonators actually have a distinct node position.

3.4. Influence of Roundness Error on Node Position

Roundness (the difference between the maximum outer diameter and the minimum outer
diameter) is a significant property for evaluating the manufacture accuracy of the resonator.

Apart from the groove structures, the shape of the resonator ring will also cause node position
variation. In this case, the distribution of the nodes depends on the specific shape of the resonator.
An example of an elliptical resonator is given out in this paper. As is shown in Figure 12, the nodes of
the resonator have a trend of approaching the long axis. The larger the ellipticity (the deviation from
the perfect circular form to the elliptic form) is, the greater the angular variation becomes. In addition,
10 mm roundness leads to about a 0.06˝ angular error. Considering that precision machining on the
resonator shall be guaranteed at the micron scale, the node error caused by shape error is rather small.
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In summary, in view of our machining condition, the node position variation is more due to
trimming grooves than roundness error.

3.5. Analysis on Rigidity Variation and Angular Error Caused by Digging Trimming

Removing mass near the mid-line of the resonator ring leads to a limited change of the radial
rigidity. With the removing method shown in Figure 13, the rigidity merely varies by 0.18%, while the
rigidity change caused by trimming grooves can reach 2%.
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Figure 13. Influence of roundness error.

Digging trimming is a kind of mass trimming. It causes less node position error. A single dug pit
can eliminate a 3 Hz frequency split, bringing a 0.01˝ angular variation.

4. Experiment

In order to verify the simulation results, acoustic experiments are implemented to detect the node
position in specific imperfection cases.

4.1. Test Equipments and System

An acoustic test system is set up to carry out the experiments, and it is shown in Figure 14.
In order to acquire the accurate angular position of the four nodes, the output signals in circumferential
positions should be measured. Firstly, piezoelectrodes are used to drive the resonator fixed on the
turntable and the driving frequency is stabilized at the eigenfrequency of the drive mode. Secondly,
the acoustic signals are detected by a microphone at places every 0.2˝, while the location with minimal
output can be considered as a node. We can change the detecting position by rotating the turntable
controlled by the step motor controller. At last, the angle between nodes can be counted from the step
motor controller screen.
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4.2. Influence of Single Groove on Node Position

Figure 15 describes the experimental results for this condition. As a 1.2-mm-deep groove is cut
out, the angle between node 1 and node 2 near the groove is about 88.86˝, much smaller than 90˝.
Meanwhile, the two angles between node 1 and node 3, and node 2 and node 4 become obviously
larger than before, reaching 90.63˝ and 90.86˝, respectively.
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Furthermore, when the groove is trimmed to 1.8 mm deep, the angle between node 1 and node 2
becomes as small as 88.45˝, and the angles on the two sides are 90.84˝ and 91.33˝. Thus, we can see
that the deeper the groove is, the larger the angular variation becomes.

4.3. Influence of Two Grooves on Node Position

Two 1.2-mm-wide and 1.8-mm-deep rectangular grooves are cut out at 0˝ and 180˝ (shown in
Figure 16a). From the statistic data we can see that the angle between node 1 and node 2 is 88.28˝

while the opposite angle between node 3 and node 4 is 88.23˝ (shown in Figure 16b).
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4.4. Influence of Added Mass on Node Position

When a 2.8 mm ˆ 2.2 mm ˆ 1 mm small mass is glued on the top of the resonator edge (shown in
Figure 17a), all four nodes are moved towards the position of the mass (shown in Figure 17b).
In addition, when a larger mass is added, the shift of the nodes becomes more apparent. Therefore,
the experiment results can well fit the simulation.
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5. Conclusions 

In this paper, the influence principle of different errors on node position is studied. Simulation 
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improvement of the resonator. 
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5. Conclusions

In this paper, the influence principle of different errors on node position is studied. Simulation
results show that mass disturbance and roundness error exert little influence on the node position
while rigidity variation caused by trimming grooves exerts a significant influence on the node position.
Then vibration experiments on resonators with specific imperfections are implemented to validate the
mentioned situations, showing that simulated and measured results are in close agreement.

Therefore, in order to avoid rigidity failure, mass trimming is recommended. Considering that
the node position is relative to the zero bias stability, the present work is useful for performance
improvement of the resonator.
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