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Abstract: The use of a generalized sidelobe canceler (GSC) can significantly improve the lateral
resolution of medical ultrasound systems, but the contrast improvement isn’t satisfactory. Thus a
new Eigenspace-based generalized sidelobe canceler (EBGSC) approach is proposed for medical
ultrasound imaging, which can improve both the lateral resolution and contrast of the system.
The weight vector of the EBGSC is obtained by projecting the GSC weight vector onto a vector
subspace constructed from the eigenstructure of the covariance matrix, and using the new weight
vector instead of the GSC ones leads to reduced sidelobe level and improved contrast. Simulated
and experimental data are used to evaluate the performance of the proposed method. The Field II
software is applied to obtain the simulated echo data of scattering points and circular cysts. Imaging
of scattering points show that EBGSC has the same full width at half maximum (FWHM) as GSC,
while the lateral resolution improves by 35.3% and 52.7% compared with synthetic aperture (SA)
and delay-and-sum (DS), respectively. Compared with GSC, SA and DS, EBGSC improves the
peak sidelobe level (PSL) by 23.55, 33.11 and 50.38 dB, respectively. Also the cyst contrast increase
by EBGSC was calculated as 16.77, 12.43 and 26.73 dB, when compared with GSC, SA and DS,
respectively. Finally, an experiment is conducted on the basis of the complete echo data collected by
a medical ultrasonic imaging system. Results show that the proposed method can produce better
lateral resolution and contrast than non-adaptive beamformers.
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1. Introduction

Medical ultrasound imaging, with its characteristics of high transmission capacity and low harm
to the human body has become one of the major medical diagnostic technologies nowadays, and
imaging algorithms are the key technology of medical ultrasonic imaging [1]. Delay-and-sum (DS)
is the most widely used imaging method, but DS suffers from low signal-noise-ratio (SNR) and
low resolution [2]. In order to improve the SNR and lateral resolution of echo imaging Jensen [3]
proposed synthetic aperture (SA) beamforming. Although SA can equivalently achieve focusing
during transmission and reception for every point at the same time in the whole field, and additionally
it improves the SNR and lateral resolution of the system, it still has a high level of sidelobe energy.
Applying apodization calculations can reduce the sidelobe level at the cost of loss of lateral resolution.

For decades, adaptive beamformers have been used in other array signal processing fields,
e.g., antenna and radar, which calculate a weight vector from collected echo data to process the
collected echo data. The calculated weight vector is equivalent to a spatial filter which can maintain
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the desired signal and suppress interference and noise signals of echo data, thus improving the quality
of echo imaging. For medical ultrasonic imaging, adaptive beamforming was first introduced by
Capon [4]. Synnevåg et al. studied the minimum variance algorithm [5], and Holfort [6] proposed a
frequency domain-based minimum variance method. In order to improve the stability of adaptive
beamforming, Synnevåg [7] put forward diagonal loading to ultrasonic imaging, and Evans [8]
proposed a subaperture averaging algorithm to solve the coherence of ultrasound echoes.

Recently, due to the fact that the generalized sidelobe canceler (GSC) can separate the linear
constraints with an adaptive filter, therefore, the constrained optimization problem of adaptive
beamforming is converted into an unconstrained optimization problem, which can be further studied
by researchers [9–11]. A review of the literature about the GSC in ultrasound imaging, shows that
a considerable improvement in terms of lateral resolution has been achieved because of the higher
resolution of the GSC, but a corresponding improvement in the contrast has not yet been achieved,
thus how to improve the contrast of medical ultrasound imaging is a key research direction.

In this paper, we put forward a new eigenspace-based generalized sidelobe canceler (EBGSC)
approach for medical ultrasound imaging, which uses the covariance matrix of echo data to construct
a signal subspace and a noise subspace to distinguish the desired signal, interference and noise
signals of echo data, and by projecting the GSC weight vector onto the constructed signal subspace,
the interference and noise signals can be further eliminated. According to scattering points and circular
cyst experiments, it is revealed that EBGSC can improve both the lateral resolution and contrast of
medical ultrasound systems.

The outline of this paper is as follows: in Section 2 we introduce the sensor signal model, principle
of GSC and its application to ultrasound imaging. Section 3 introduces in details the principle and
realization of EBGSC. Section 4 presents the experiment results based on simulation data and real echo
data. Finally, the advantages of the proposed methodology and its comparison with early proposed
adaptive beamformers and non-adaptive beamformers are discussed in Section 5. The whole study is
concluded in Section 6.

2. Background

2.1. Sensor Signal Model

For traditional medical ultrasonic imaging, adaptive beamformers will process the echo data
which achieve focusing during transmitting and receiving [3]. For a linear array of M elements,
the output of a beamformer is given by [12]:

ypkq “ wHpkqXpkq “
M
ÿ

i“1

w˚i pkqxipkq (1)

where k is the time index. Xpkq is the time-delayed version of array observations, Xpkq “
rx1pkq, x2pkq, ¨ ¨ ¨ , xMpkqs

T, wpkq “ rw1pkq, w2pkq, ¨ ¨ ¨ , wMpkqs
T is a complex vector of beamforming

weights. p¨ qT and p¨ qH denote the transpose and conjugate transpose, and p¨ q˚ denotes the conjugate
complex, respectively. For adaptive beamformers Xpkq can be divided into two parts:

Xpkq “ Spkq ` Ppkq (2)

where Spkq represents the echo signal of the detected point, which is called desired signal, and Ppkq
is the interference and noise signals, which include the sidelobe signal, thermal noise and reflection
noise, etc.

For adaptive beamformers the weight vector wpkq is calculated from Xpkq, and varies with the
echo data. An ideal weight vector wpkq corresponds to a spatial filter, which can maintain the desired
signal while suppressing the interference and noise signals of the echo data. Consequently it enhances
the image quality of the medical ultrasound system.
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Similarly, Equation (1) can also apply to non-adaptive beamformers. @xipkq is the receiving focused
echo signal of a detected point, and the procedure of receiving focus is also known as delay-and-sum
(DS). Setting wpkq “ r1, 1, ¨ ¨ ¨ , 1sT, the output of the beamformer ypkq is the result of the synthetic
aperture (SA), and using a fixed window function like Hamming, Hanning, etc., replaces the weight
vector wpkq, so the beamforming response will be the result after apodization calculations.

2.2. Generalized Sidelobe Canceler (GSC)

The generalized sidelobe canceler (GSC) was originally proposed by Griffiths [13]. GSC can be
expressed as constraint conditions, which can maintain the desired signal and suppress the interference
and noise signal of echo data:

minwHRw, sbuject to wHa “ 1 (3)

where a is the steering vector, it represents the direction of the desired signal, and for transmitting and
receiving focused echo data a is a unit vector. R is the interference and noise covariance matrix. The
solution of Equation (3) is given by Lagrange multipliers method:

wMV “
R´1a

aHR´1a
(4)

GSC can separate the linear constraints with an adaptive filter, so the constrained optimization
problem of Equation (3) is converted into an unconstrained optimization problem. GSC will decompose
wGSC into the adaptive power wa, the non-adaptive power wq, and wq in constraint subspace, while
wa is orthogonal to the constraint subspace.

The structure of GSC is shown in Figure 1, where the upper part is called non-adaptive road,
where all echo signal received by arrays pass to determine the non-adaptive weight wq. In contrast,
the lower branch is the adaptive road, which only allows interference and noise signal to pass and
determines the adaptive weight wa. The weight vector of the system can be expressed as:

wGSC “ wq ´Bwa (5)

wq “ paaHq
´1

a (6)

wa “ pBHRBq
´1

BHRwq (7)
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Figure 1. Structure of the generalized sidelobe canceler.

where B is a M ˚ pM´ 1q dimensional blocking matrix, and the role of B is to block off desired
signal Spkq and not let it enter the secondary branch: adaptive road [14–16], so B must satisfy:

BHa “ 0 (8)
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and in this paper we will set B as:

B “

»

—

—

—

—

–

0 ´1 0 0 ¨ ¨ ¨ 0
0 1 ´1 0 ¨ ¨ ¨ 0
...

...
...

...
...

0 0 ¨ ¨ ¨ 0 1 ´1

fi

ffi

ffi

ffi

ffi

fl

T

pM´1q˚M

(9)

Observing Equations (5)–(7), the weight vector wGSC is known when the interference and noise
covariance matrix R is obtained. However, it is difficult to obtain an accurate interference and noise
covariance matrix R in practical application, thus in practical application the R is replaced by the
sample covariance matrix R̂, defined by [5]:

R̂ “
1

2K` 1

K
ÿ

k“´K

XpkqXpkqH (10)

where 2K + 1 represents the number of echo data used to construct the sample covariance matrix R̂,
and for adaptive beamforming the 2K + 1 is less than the width of the transmitted ultrasound pulse.

2.3. Preprocessing

Ultrasound echo data are broadband and coherent signals, thus GSC can’t be directly applied
to process the data [17]. To artificially decorrelate the coherence between echo signals before R̂ is
calculated, subaperture averaging is used to process the ultrasound echo data. The core of subaperture
averaging is to divide the echo data Xpkq into P groups of overlapped smoothing submatrix Gp.
The size of Gp is L ˚ 1, where L ď M{2, and P “ M´ L` 1. And the equation for R̂ after subaperture
averaging [8] is:

R̂ “
1

2K` 1
¨

1
P

K
ÿ

k“´K

P
ÿ

p“1

GppkqGppkqH (11)

and Gp is:
Gppkq “ rxppkq, xp`1pkq, ¨ ¨ ¨ , xp`L´1pkqs

T (12)

To improve the stability of the sample covariance matrix R̂, another preprocessing algorithm
(diagonal loading) is generally used. The core of diagonal loading is to add a noise signal ε into sample
covariance matrix R̂ and the value of ε is usually small, thereby improves the running stability of
algorithm [7]. In this paper we select the ε as:

ε “
1

∆ ˚ L
trtR̂u (13)

where tr t¨ u is the trace of sample covariance matrix, and the ∆ is a fixed number, general varies from
10 to 100.

3. Proposed Method

Although GSC can improve the lateral resolution of a medical ultrasonic system, the contrast
of image isn’t satisfactory. Especially in a high noise environment, the echo imaging contrast
after GSC even slightly worse than using non-adaptive beamformers like SA. We put forward a
new eigenspace-based generalized sidelobe canceler (EBGSC) approach for medical ultrasound
imaging in this paper, to achieve both high lateral resolution and improved contrast for the echo
imaging. Sample covariance matrix R̂ is a Hermitian matrix, and Hermitian matrix has the following
main properties:
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(1) All the eigenvalues of Hermitian matrix are real;
(2) Characteristic vectors of the different characteristic value are orthogonal to each other;
(3) Hermitian matrix Anˆn can be decomposed into A “ E^ EH, and this decomposition is called

the spectral theorem. Where ^ “ diagrλ1, λ2, ¨ ¨ ¨ , λns, λi is the eigenvalue of the matrix A.
E “ re1, e2, ¨ ¨ ¨ , ens is the unitary matrix composed of eigenvectors.

Thus the sample covariance matrix R̂ can be decomposed into:

R̂ “ E^ EH (14)

where ^ “ diagrλ1, λ2, ¨ ¨ ¨ , λLs, λ1 ě λ2 ě ¨ ¨ ¨ ě λL. E “ re1, e2, ¨ ¨ ¨ , eLs. Because of the high
coherence of the on-axis signals, the mainlobe-contributed energy concentrates on the eigenvectors
associated with the first largest eigenvalue [18,19]. Thus using some larger eigenvalues’ corresponding
eigenvectors can construct a signal subspace Es, and using the rest of the eigenvalues’ corresponding
eigenvectors we can construct the noise subspace En. The signal subspace Es and the noise subspace En

are orthogonal. Therefore by projecting the GSC weight vector wGSC onto the signal subspace Es one
can obtain a new weight vector wEBGSC, and wEBGSC can maintain the desired signal and further inhibit
the interference and noise signal contained in the noise subspace En. The equation for calculating
wEBGSC is:

wEBGSC “ EsEs
HwGSC (15)

Since the mainlobe-contributed energy concentrates on the eigenvectors associated with the
first largest eigenvalue, therefore the eigenvectors used to construct the signal subspace Es can be
determined by the largest eigenvalue λ1. The sufficient number of eigenvectors which could effectively
retain the mainlobe signal and at the same time could reduce the contribution of undesired sidelobes
as much as possible, varies from one point to another point and depends on the relative energy of the
mainlobe signal and sidelobe ones [20,21]. Hereby we set a weight coefficient δ, and all the eigenvalues
corresponded eigenvectors are used to construct the signal subspace Es, if λi ě δλ1.

In order to verify the validity of the proposed algorithm, Field II [22,23] is applied to obtain the
echo data of scattering points and circular cysts for simulation experiments. Besides, we also conduct
an experiment using the complete echo data which is collected by a medical ultrasonic imaging system.
Through a scattering points simulation experiment, we can observe the performance of algorithm in the
observation indexes of lateral resolution and the suppression of sidelobe energy. For the circular cyst
image, we add a lot of speckle noise around it. By comparing the difference of mean intensity in the
cyst region and background we can detect the contrast of each echo image after different beamformers
are applied, thereby verifying the validity and superiority of the proposed algorithm.

4. Results

In this section, we will provide several examples to compare the performance of the proposed
beamformer with GSC, SA and DS in terms of lateral resolution, contrast and sidelobe levels. Field II
is a simulation tool widely used in the medical ultrasonic imaging field, and the simulation echo data
obtained by Field II can be used as original data to verify the imaging performance of the algorithm.
We use Field II to obtain the simulation echo data of scattering points and a circular cyst for a linear
phased array ultrasonic system. Key parameters of the simulated linear phased array ultrasonic
system are: array number M “ 64; width of array d “ 0.2413 mm; center frequency of the ultrasound
f0 “ 3.33 MHz; ultrasonic velocity c “ 1500 m{s; sampling rate of system fs “ 71.04 MHz. The key
parameters of the simulation experiments are same as those of the medical ultrasonic imaging system.

4.1. Simulated Point Targets

We set up 14 scattering points in the imaging area. Figure 2 shows the scattering points responses.
The beamforming responses of DS are the results of dealing with the delay-and-sum for echo data,
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in which the 32nd array generates ultrasound and all arrays receive. Figure 3 shows the lateral
variation of the beamforming responses at two different depths, and from Figure 3 we can observe
the full width at half maximum (FWHM) and the peak sidelobe level (PSL) after each beamformer
is used. Taking the depth z = 55 mm as reference, the FWHM and PSL of each algorithm are shown
in Table 1. By detecting FWHM, we can see that EBGSC has the same FWHM as GSC, while the
FWHM is increased by 35.3% and 52.7% compared with SA and DS, respectively. The observation
index PSL is used to check the inhibition of sidelobe energy of each beamformer. For ultrasound echo
imaging, the sidelobe energy represents an interference signal, therefore the lower the PSL the better.
Comparing each algorithm, with EBGSC the PSL is reduced by 23.55, 33.11, 50.38 dB, respectively,
compared to GSC, SA, DS. The scattering points simulation experiment thus shows that EBGSC can
improve the lateral resolution and suppress the sidelobe energy.
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Table 1. FWHM and PSL of scattering points at depth z = 55 mm.

Algorithm FWHM (mm) PSL (dB)

DS 2.05 ´15.82
SA 1.50 ´33.08

GSC 0.97 ´42.65
EBGSC 0.97 ´66.20

4.2. Circular Cyst Test

Based on Field II we obtain a set of echo data for a circular cyst in a high speckle noise environment.
The radius of the designed circular cyst is r “ 5 mm, and its center position is px, zq “ p0, 40qmm.
We add several scattering points which have different scattering coefficients around the circular
cyst, in order to increase the background speckle noise [24]. The beamforming responses after
application of the different algorithms are shown in Figure 4. Figure 5 still shows the lateral variation
of the beamforming responses, and the contrasts of each algorithm are listed in Table 2, in detail.
By comparing the beamforming responses of each algorithm, we can see that EBGSC improves the
contrast by 16.77, 12.43, 26.73 dB compared with GSC, SA, DS, respectively. The circular cyst simulation
experiment shows that EBGSC has outstanding contrast-enhancing performance for the echo images.
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Table 2. Contrast of beamforming responses for different beamforming algorithms.

Algorithm Mean Intensity in the
Cyst Region (dB)

Mean Intensity in the
Background (dB) Contrast (dB)

DS ´44.61 ´20.20 24.41
SA ´59.96 ´21.26 38.71

GSC ´57.36 ´22.99 34.37
EBGSC ´75.84 ´24.70 51.14

Contrast = mean intensity in the background–mean intensity in the cyst region.

4.3. Real Data Experiment

In order to verify the validity of the algorithm, we also conducted an experiment using the
complete echo data collected by a medical ultrasonic imaging system. The beamforming responses
after using different algorithms are shown in Figure 6, and Figure 7 shows the lateral variation of
the beamforming responses. Compared with the simulated echo data, the echo data collected by
the medical ultrasonic imaging system is affected by many factors, such as accuracy of the system
parameters, energy of the transmitted ultrasound, and the scattering and attenuation in the tissues,
etc. Hence, it has focusing errors and lower signal-to-noise ratio (SNR), therefore we only show the
beamforming responses after applying SA, GSC and EBGSC, and the dynamic range of the image is
depressed to 40 dB, which is also the dynamic range for medical ultrasonic imaging products in the
market. Similarly, we measure the difference of mean intensity in the cyst region and background
after applying EBGSC, GSC, and SA, with the contrast values of 30.36, 5.84, and 8.45 dB, respectively.
The real data experiment shows that even in a situation of high noise and high focusing errors, EBGSC
still has better contrast, and it improves the contrast by 24.52, 21.91 dB in relation to GSC and SA,
respectively. The real data experiment results are consistent with the simulation experiments, which
validates the effectiveness of the proposed algorithm.
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5. Discussion

Through scattering points and circular cyst simulation experiments, as well as a real data
experiment, we have proved that the proposed EBGSC algorithm can not only increase the lateral
resolution, but it also has outstanding performance in enhancing the contrast for ultrasound echo
imaging. In the scattering points simulation experiment, we can see that EBGSC has the same lateral
resolution as GSC, and adaptive beamformers have obvious advantages in improving system lateral
resolution over non-adaptive beamformers. Similarly, adaptive beamformers can more effectively
suppress the sidelobe, while improving the PSL.

Likewise, the circular cyst simulation experiment shows that the difference in mean intensity in
the cyst region and background after EBGSC drops about 20 dB compared with other beamformers,
which validates the effectiveness of EGBSC in improving the contrast for medical ultrasound systems.
Comparing beamforming responses after applying GSC and SA, we can see that the contrast of echo
imaging after GSC is even slightly below the imaging after using non-adaptive beamformers like SA
in the high speckle noise environment, while GSC compared with SA has lower PSL in the scattering
points simulation experiment. The reason that gives rise to this curious situation is that the filtering
effect of GSC is associated with the degree of freedom of the system, and the degree of freedom of a
medical ultrasound system after subaperture averaging is L-1. The adaptive beamforming will have
good performance with the condition that the number of interference sources is less than L-2, while
its filtering effect will be weakened when the number of interference sources is more than L-2, while
the weight vector of EBGSC is obtained by projecting the GSC weight vector onto a vector subspace
constructed from the eigenstructure of the sample covariance matrix, which can further eliminate
the influence of interference and noise, therefore, it will have more evident advantages in improving
contrast for echo images.
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lateral variation of the beamforming responses. We can see that the parameter L and δ have more 
noticeable influence on imaging quality. Parameter L determines the degree of freedom of the 
medical ultrasound system, and when setting L = 1, adaptive beamformers will degenerate into the 
non-adaptive beamformer (SA) scenario. For a medical ultrasound system, the larger the L is, the 
better the lateral resolution of the system will be. As can be seen in Figure 9, when choosing L = 16, 
the beamforming responses of a circular cyst have a smaller size in the lateral direction compared 
with that when L = 32. The parameter δ determines the number of eigenvectors which are used to 
construct the signal subspace. By setting a larger δ, more interference and noise signal will be 
eliminated. As seen in Figure 9b, when choosing δ	= 0.1, EBGSC won’t result in an obvious contrast 
improvement compared with GSC. Parameter K determines the number of echo data used to build 
the sample covariance matrix. The parameter K has a temporal smoothing effect, which smooths 
the echo image. Parameter Δ determines the noise energy added to the sample covariance matrix, 
and the bigger Δ is the smaller the noise energy that	will be added, and stability of the sample 
covariance matrix will be reduced. 
  

Figure 8. Simulated circular cyst images using Field II. (a) GSC (L = 32, K = 20, ∆ = 20); (b) EBGSC
(L = 32, K = 20, ∆ = 20, δ = 0.5); (c) GSC (L = 32, K = 10, ∆ = 100); (d) EBGSC (L = 32, K = 10, ∆ = 100,
δ = 0.5); (e) EBGSC (L = 32, K = 10, ∆ = 20, δ = 0.1); (f) GSC (L = 16, K = 10, ∆ = 20); (g) EBGSC
(L = 16, K = 10, ∆ = 20, δ = 0.5). The dynamic range of the image is 80 dB.

For adaptive beamformers, we introduce a lot of preprocessing algorithms, and we also set some
parameters, hereby we will roughly discuss the impact of these parameters on adaptive beamformers.
The beamforming responses of adaptive beamformers using different parameters are shown in Figure 8,
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and the contrasts of each echo image are listed in Table 3, Figure 9 shows the lateral variation of the
beamforming responses. We can see that the parameter L and δ have more noticeable influence on
imaging quality. Parameter L determines the degree of freedom of the medical ultrasound system, and
when setting L = 1, adaptive beamformers will degenerate into the non-adaptive beamformer (SA)
scenario. For a medical ultrasound system, the larger the L is, the better the lateral resolution of the
system will be. As can be seen in Figure 9, when choosing L = 16, the beamforming responses of a
circular cyst have a smaller size in the lateral direction compared with that when L = 32. The parameter
δ determines the number of eigenvectors which are used to construct the signal subspace. By setting a
larger δ, more interference and noise signal will be eliminated. As seen in Figure 9b, when choosing
δ = 0.1, EBGSC won’t result in an obvious contrast improvement compared with GSC. Parameter K
determines the number of echo data used to build the sample covariance matrix. The parameter K has
a temporal smoothing effect, which smooths the echo image. Parameter ∆ determines the noise energy
added to the sample covariance matrix, and the bigger ∆ is the smaller the noise energy that will be
added, and stability of the sample covariance matrix will be reduced.
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6. Conclusions 

In this paper, we project the GSC weight vector onto a vector subspace constructed from the 
eigenstructure of the covariance matrix, and by replacing the GSC weight vector with the new 
proposed one, interference and noise signals can be further reduced, thus the new algorithm can 
improve both the lateral resolution and contrast of a medical ultrasound system. Through scattering 
points and circular cyst simulation experiments and a real data experiment we have proved the 
effectiveness of the new algorithm. 
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Figure 9. Lateral variation at z = 40 mm of Figure 8. (a) GSC (1): L = 32, K = 20, ∆ = 20; GSC (2): L = 32,
K = 10, ∆ = 100; GSC (3): L = 16, K = 10, ∆ = 20; GSC (4): L = 32, K = 10, ∆ = 20; (b) EBGSC (1): L =
32, K = 10, ∆ = 20, δ = 0.1; EBGSC (2): L = 32, K = 10, ∆ = 20, δ = 0.5; EBGSC (3): L = 16, K = 10, ∆ = 20,
δ = 0.5.

Table 3. The contrast for adaptive beamforming setting different parameters.

Parameters Mean Intensity in the
Cyst Region (dB)

Mean Intensity in the
Background (dB)

Contrast
(dB)

GSC L = 32, k = 10, ∆ = 20 ´57.36 ´22.99 34.37
GSC L = 16, k = 10, ∆ = 20 ´59.84 ´22.14 37.70
GSC L = 32, k = 20, ∆ = 20 ´56.42 ´21.58 34.84
GSC L = 32, k = 10, ∆ = 100 ´57.26 ´23.87 33.39

EBGSC L = 32, k = 10, ∆ = 20, σ = 0.5 ´75.84 ´24.70 51.14
EBGSC L = 16, k = 10, ∆ = 20, σ = 0.5 ´72.80 ´22.81 49.99
EBGSC L = 32, k = 20, ∆ = 20, σ = 0.5 ´78.61 ´23.32 55.29
EBGSC L = 32, k = 10, ∆ = 100, σ = 0.5 ´76.38 ´26.12 50.26
EBGSC L = 32, k = 10, ∆ = 20, σ = 0.1 ´61.52 ´24.70 36.83
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6. Conclusions

In this paper, we project the GSC weight vector onto a vector subspace constructed from the
eigenstructure of the covariance matrix, and by replacing the GSC weight vector with the new proposed
one, interference and noise signals can be further reduced, thus the new algorithm can improve both
the lateral resolution and contrast of a medical ultrasound system. Through scattering points and
circular cyst simulation experiments and a real data experiment we have proved the effectiveness of
the new algorithm.
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