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Abstract: In this paper, a novel velocimeter based on laser self-mixing Doppler technology has
been developed for speed measurement. The laser employed in our experiment is a distributed
feedback (DFB) fiber laser, which is an all-fiber structure using only one Fiber Bragg Grating to realize
optical feedback and wavelength selection. Self-mixing interference for optical velocity sensing is
experimentally investigated in this novel system, and the experimental results show that the Doppler
frequency is linearly proportional to the velocity of a moving target, which agrees with the theoretical
analysis commendably. In our experimental system, the velocity measurement can be achieved in
the range of 3.58 mm/s–2216 mm/s with a relative error under one percent, demonstrating that our
novel all-fiber configuration velocimeter can implement wide-range velocity measurements with
high accuracy.
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1. Introduction

The traditional Laser Doppler Velocimeter (LDV) [1–3] based on two beam interference have
been widely applied in optical sensor and industrial areas [4–7], on account of the advantages of
anti-interference, fast dynamic response, and non-contact measurement. However, there still exist many
restrictions in practical application, such as complex light path and high reference beam requirement.
Laser self-mixing interference (SMI) technology is a novel coherent measurement technique which
has been researched and developed in many sensing and measuring fields, such as absolute distance,
displacement, velocity, and vibration measurement [8–11]. SMI technology applied in LDV [12,13] is
called SM-LDV, which can replace traditional LDVs on many occasions because of its compact and
simple structure, easy alignment, reliability, and low cost.

In the common SM-LDV system, the laser source is usually semiconductor lasers [14,15], which
have been broadly investigated as they have small size, long service life, and high optical feedback
sensitivity resulting from short cavity length [16]. However, wide linewidth and multi-longitudinal
mode characteristics of semiconductor lasers will lead to poor coherence and monochromaticity. Thus,
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more effective methods have to be developed for the purpose of obtaining preferable measurement
results; for instance, employing a fiber laser as the laser source of a SM-LDV system.

Recently, fiber lasers have developed rapidly, attracting considerable attention due to a variety
of potential applications in fiber communication techniques and fiber sensing systems. It has been
proven that fiber laser sensors show great superiority, including wide responsive bandwidth, remote
optical pumping, immunity to electromagnetic interference, interrogation ability, and the capability of
being a wavelength division multiplexed along a single fiber [17–21]. Compared to the semiconductor
laser sensing technology, fiber laser sensing technology employed in SM-LDV is a preferable choice
to realize a more flexible system and get better measurement results. Fiber ring lasers applied as
the laser source in SM-LDV has been studied and experimented in detail [22,23], while the system
measurement range and precision still have room to grow. This is because the dense longitudinal
modes spacing resulting from long cavity length of the fiber ring laser would lead to multi-longitudinal
modes oscillation and mode hopping in the resonant cavity, which seriously affect the stability of
output laser [24]. Therefore, a shorter cavity used in the fiber laser is apparently a superior solution to
solve the problem caused by the long cavity length of fiber ring lasers. The short cavity can enlarge
the space of longitudinal modes and provide stable single longitudinal mode output. In addition,
the laser sensitivity to optical feedback depends on the ratio of emission level lifetime and photon
lifetime [25,26]; that is, shorter laser cavity length would lead to higher sensitivity to optical feedback.

The above reasons have inspired many researchers, including us, to attempt to employ fiber
lasers with a shorter cavity length, such as the distributed Bragg reflection (DBR) fiber laser as the
laser source in the SM-LDV [27,28]. However, the cavity of the DBR fiber laser is formed by two
Fiber Bragg Gratings (FBGs), and the laser cavity length is not short enough. Therefore, we employed
the DFB fiber laser with much shorter cavity length as the laser source of the SM-LDV system. The
distributed feedback (DFB) fiber laser is formed of all-fiber configuration with only one FBG to realize
optical feedback and wavelength selection, which have same active region and feedback area. The
cavity length of DFB fiber laser is only a few millimeters, which have high sensitivity to optical
feedback. Compared to semiconductor lasers, DFB fiber lasers have further advantages, including
good compatibility with optical fiber, stability of output power, a more pure optical spectrum, narrow
linewidth, and inherent fiber laser advantages, which have been attractive devices for a range of
applications in communications and sensing [29–31]. With the purpose of implementing a wider range
velocity and higher accuracy measurement compared to traditional SM-LDV, the DFB fiber laser was
employed as the laser source of SM-LDV in our experiment.

In this paper, a novel all-fiber configuration laser self-mixing Doppler velocimeter with the DFB
fiber laser as the laser source is presented, which is called all-fiber configuration DFB-SM-LDV. In the
DFB-SM-LDV system, we use π-phase shifted DFB fiber laser as the laser source, expecting to acquire
higher accuracy as well as a wider velocity measurement range compared to the common SM-LDV.
The theory model of the all-fiber configuration DFB-SM-LDV was built up in this report, along with
detailed theoretical analysis of velocity measurement.

2. Theoretical Simulation

In this section, we proposed a basic theoretical model of DFB fiber laser based on the phase-shifted
FBG. To prove the feasibility of the experiment and analyze the results of laser self-mixing output
power, the theoretical model was established as shown in Figure 1. In Figure 1, the yellow part stands
for the gain medium Er3+-Yb3+ co-doped optical fiber (EYDF). The black bars stand for the fiber Bragg
gratings (FBG), which are written directly into the active optical fiber.

Figure 1 shows the theoretical model of the all-fiber structure DFB-SM-LDV, which is built based
on the phase-shifted FBG and laser self-mixing effect. The DFB laser we employed in the experiment is
a π-phase shifted DFB laser, which achieves single-wavelength operation and unidirectional output due
to the extremely small length of the cavity [32–34]. From the phase-shift position, the original grating
can be regarded as two grating sections, which can be considered as a pair of wavelength-matched
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FBGs. The grating section on the left side of the phase shift can be regarded as a mirror of M1, and
the grating section on the right side of the phase shift can be regarded as the output mirror of M2.
In the phase-shifted FBG, the fields propagating to the left and to the right are constrained by the two
gratings, and they are circulating within a short effective cavity, regarded as the equivalent F-P cavity
of the DFB fiber laser [35,36].
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Figure 1. The theoretical model of all-fiber configuration self-mixing interference laser Doppler
velocimeter (SM-LDV) system based on the π-phase shifted DFB fiber laser. EYDF: Er3+-Yb3+ co-doped
optical fiber; FBG: fiber Bragg grating.

We analyze the laser self-mixing effect of the DFB fiber laser as shown in Figure 1. The pump light
is coupled into the effective resonant cavity of the DFB fiber laser, the output power is focused on the
object and reflected or scattered by the moving target. In the Figure 1, the Pin, Pout, and Pseed represent
the input power, the output power, and the seed light power, respectively. The subscripts p and s
represent the pump and signal. In addition, the subscripts L and R represent that the laser propagates
to the left and right direction in the laser cavity, respectively. In the velocity measurement system,
the scattered or reflected field is frequency-shifted by the Doppler principle on the moving target.
By combining the quasi-analytical method to solve the steady-state equations of the lasing condition in
the DFB fiber laser and the calculation of Boundary condition equations, we could theoretically deduce
the expression of output power, which can be written as [37,38]:
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Here, Pseed is introduced as the total power of back-scattered light from a moving target, given as:
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where the indexes abs and ss are powers of the absorbed in one round trip and saturation, respectively.
Pp

abs and Ps
abs are the variable values of the pump and signal light power, respectively. Pss denotes the

saturation powers of signal light. αs is the small signal absorption coefficient. Leff is the length of the
effective active doped fiber. The length of the left and right grating section are L1 and L2, respectively.
κ is the coupling coefficient. r1, r2, and r3 are the reflection coefficient of the M1, M2, and the target,
respectively. η is the coupling efficiency of the object to the collimator. ε1 and ε2 represent the total
attenuation factors, including insertion loss.

When the external target moves far away from the laser, the external phase can be expressed as:
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4π pL0 ` vtcosθq

λ
(3)
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Here, v is the velocity of a moving target and θ is the angle between the incident light direction
and the velocity direction. On the basis of the above equations, a simulation of laser output power
fluctuation caused by the speed of an external target was carried out. The simulated self-mixing signals
at different velocities are shown in Figure 2; the red solid line, black dotted line, and blue dotted line
are the self-mixing signal corresponding to the external target speed at 50 mm/s, 100 mm/s, and
150 mm/s, respectively. From Figure 2, we can see that the self-mixing signal fringe number increases
linearly with increasing external target velocity.
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Through a Fast Fourier Transform (FFT) of the simulated output power at a certain speed, the
corresponding frequency can be obtained. In order to further explore the relationship of external target
speed and corresponding frequency, we simulated the speed of the external target from 300 mm/s to
3000 mm/s, with steps of 300 mm/s at θ = 60˝.

The simulated results of the simulated velocity and corresponding frequency are plotted in
Figure 3, which are indicated by dots and fitted by a red line. From Figure 3, we can observe that the
relationship between the simulated velocity and corresponding frequency is in accordance with the
Doppler principle, which indicates that it is a considerable method to utilize the self-mixing signal
frequency to measure the velocity of a moving target.
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3. Schematic of the Experimental Set-up

For the sake of verifying the feasibility of utilizing the laser self-mixing Doppler principle to
measure velocity, experiments have been carried out. The experimental setup is shown schematically
in Figure 4. In our experimental system, the all-fiber configuration DFB-SM-LDV consists of a DFB
fiber laser, a target consisting of a rotating turntable with a rough reflective surface, and a signal
processing circuit with a photo-diode (PD). As shown in Figure 4, the pump light is coupled to the
effective cavity of the DFB fiber laser through wavelength division multiplex (WDM1), and the signal
is amplified by the gain medium. The output laser is scattered by the moving turntable and is reflected
back into the effective cavity of the DFB fiber laser, mixing with the initial laser, modulating the output
power and spectrum.
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Figure 4. The experimental set-up of our novel all-fiber configuration SM-LDV based on the distributed
feedback (DFB) fiber laser.

The DFB fiber laser is made up of two 980 nm/1550 nm WDMs and gain medium of active optical
fiber with phase-shifted FBG, which is used to realize optical feedback and wavelength selection.
The lasing action in the DFB laser can be considered as signal generation by the gain medium and
feedback by the FBG. The gain medium of the DFB fiber laser we used is Er3+-Yb3+ co-doped optical
fiber (EYDF), and the phase shifted FBG had been written in it directly. The reason for employing
EYDF as the gain medium is that the DFB fiber laser requires high pump efficiency, owing to the short
cavity length. EYDF has higher gain, wider range of pump light wavelength, as well as higher pump
efficiency compared to commonly Er3+ doped fiber, which can satisfy the need of high pump efficiency.
Thus, employing EYDF as the gain medium in the DFB fiber laser is an efficient way to solve the issues
of low pump efficiency.

As shown in Figure 4, the target is a rotating turntable with a rough reflective surface which is
driven by a DC motor (Chongqing, China, Feiteng 41K2.5RGN-C direct current motor). The rotational
speed of the turntable is controlled by the motor’s speed controller, with the revolving speed range of
0–3.6 rotations per second. The laser output is through a collimator fitted onto the three-dimensional
adjustable support brackets, which is employed to adjust the angle (θ) between the incident light and
the measured velocity, as well as to regulate the collimator in vertical and horizontal shift directions to
ensure the velocity at a certain point of the turntable. Then, the collimator receives the light reflected
and scattered from the surface of the turntable. The modulated output power is detected by the
PD connected at the end of the processing circuit, which consists of an amplifying and a filtering
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circuit. The received signal is processed to realize signal amplifying and noise reduction by the signal
processing circuit. The processed signal is observed on a radio-frequency (RF) spectrum analyzer
(Ohio, America, Tektronix RSA-3408B real time spectrum analyzer).

It can be seen that the laser incident upon a certain point of the turntable and the tangential speed
direction of that point is shown in Figure 4, which can be projected into the light incident direction and
perpendicular to the direction of the incident light. In our experiment, the value of the angle between
the incident light and the velocity is 60˝. Additionally, in our experiment, the turntable rotates at a
fixed direction, so the phase direction remains unchanged [39,40]. The tangential velocity of a certain
point on the turntable is determined by the rotating speed of the turntable and the distance between
that point and the turntable center.

4. Experimental Results and Discussion

In the experiment, by adjusting the rotating speed of the turntable and changing the incident
position of the laser, we can continuously measure velocities ranging from 3.58 mm/s to 2216 mm/s.
A spectrum analyzer (Tektronix RSA-3408B real time spectrum analyzer) is employed to observe the
spectrum related to the measured velocity. Through observing the spectrum analyzer, the Doppler
frequency of the certain point of the turntable can be acquired. We give typical Doppler signals
displayed on the frequency spectrum analyzer in the small velocity measurement range and large
velocity measurement range, which are shown in Figures 5 and 6. In Figure 5, we can observe the
experimental result of the all-fiber configuration DFB-SM-LDV under the condition of θ = 60˝ at a
velocity of 3.585 mm/s and 8.724 mm/s, respectively. As shown in Figure 5, the values of the Doppler
frequency peaks caused by the measured velocities are 2.3125 kHz and 5.625 kHz, respectively.
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(a) v = 3.585 mm/s; (b) v = 8.724 mm/s.

Figure 6 shows the experimental results of the all-fiber configuration DFB-SM-LDV affected by the
turntable under the condition of θ = 60˝ at a velocity of 1814.88 mm/s and 2053.68 mm/s, respectively.
From Figure 6, we can see that the values of the Doppler frequency peaks caused by the measured
velocities are 1170.3125 kHz and 1325.78125 kHz, respectively.

From the data shown in Figures 5 and 6, there are some small extra peaks (which have been
remarked) corresponding to the frequencies of environmental vibration signal and electronic noise
signal. Meanwhile, it can be seen that the Doppler signals have certain broadening, which is derived
from laser spectral broadening and non-uniform velocity distribution such as the inhomogeneity of
angular speed, the inconformity of speed of each point in the irradiation light spot, the determination
of turntable center position, and the speckle effect. In our experimental system, we adopt the peaking



Sensors 2016, 16, 1179 7 of 10

searching method to collect the frequency peak value. Based on the frequency peak value, we
could calculate the corresponding velocity according to the Doppler principle, which was clearly
introduced in the theoretical simulation. This kind of peak searching method can mainly reduce the
influence of sideband and broadening of the Doppler signals, but the uncertainty on any peak position
still depends on its width and the acquisition’s horizontal resolution (Resolution Bandwidth of the
Spectrum Analyzer changes from 300 Hz to 10 KHz with different frequency-scales) and vertical
resolution (1 dB).
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(a) v = 1814.88 mm/s; (b) v = 2053.68 mm/s.

The experimental results of the measured velocity of the external target are shown in Figure 7.
As shown in Figure 7, black spots represent the measured velocities and the shadow bar represents the
relative error of the all-fiber DFB-SM-LDV system. The velocity measurement range is from 3.58 mm/s
to 2216 mm/s. The minimum measurement velocity in our experiment is 3.58 mm/s, which is lower
than the minimum measurement result of SM-LDV with DBR fiber laser and ring laser in prior velocity
measurement works [22,27], proving that our novel all-fiber configuration DFB-SM-LDV has a much
wider measurement range compared to the SM-LDV with DBR fiber laser and ring laser. For the
moment, confined to mechanical conditions in the experiment, such as the minimum rotation speed
and the dimension of the turntable, the velocity measurement range is limited. In order to realize a
much wider-range and higher-precision velocity measurement, the experimental set-up should be
improved and optimized repeatedly in further work.

From Figure 7, we can see that the relative error is less than one percent in the whole experimental
range, which satisfies the requirement of high-accuracy measurement. The measured error may be
introduced by the rotating turntable; the reason is that when the turntable rotates at a high speed,
some vibration would be inevitable, which will cause the turntable rotational speed to be uneven
and finally influence the measurement results. In the experiment, the measurement precision is
increased by averaging the testing values of repeated measurements. In addition, we used the
method of peak searching instead of the traditional fringe counting method to seek the corresponding
Doppler frequency of the measured velocity, which can increase the measurement accuracy and avoid
measurement error stemming from signal broadening.

As shown in the above theoretical analysis and experimental results, it can be observed that the
all-fiber configuration DFB-SM-LDV has many advantages as well as wide measurement range and
high precision, which can solve the problems of small measurement range, complex structure, and low
measurement accuracy caused by other LDVs.
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5. Conclusions

In conclusion, this paper presents a particular description of theoretical and experimental studies
of an all-fiber DFB fiber laser self-mixing Doppler velocity measurement system, which has been
proposed for the first time. In the velocity measurement system, the scattered field is frequency-shifted
by the Doppler principle on the moving target, and the Doppler frequency is linearly proportional to the
value of velocity, which was theoretically analyzed and experimentally observed. In our experiment,
the range of velocity measurement is between 3.58 mm/s and 2216 mm/s, and the relative error
between the measured velocity and the actual velocity is under one percent. From the experimental
results, it can be concluded that our novel all-fiber configuration DFB-SM-LDV system can achieve
high-precision, wide-range velocity measurement, which has a great potential for a number of practical
applications, such as high-speed measurement and velocity measurement in common room conditions
without accurate environmental control.
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