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Abstract: This paper is devoted to a new method of using Microsoft (MS) Kinect sensors for
non-contact monitoring of breathing and heart rate estimation to detect possible medical and
neurological disorders. Video sequences of facial features and thorax movements are recorded by
MS Kinect image, depth and infrared sensors to enable their time analysis in selected regions of
interest. The proposed methodology includes the use of computational methods and functional
transforms for data selection, as well as their denoising, spectral analysis and visualization,
in order to determine specific biomedical features. The results that were obtained verify the
correspondence between the evaluation of the breathing frequency that was obtained from the
image and infrared data of the mouth area and from the thorax movement that was recorded
by the depth sensor. Spectral analysis of the time evolution of the mouth area video frames
was also used for heart rate estimation. Results estimated from the image and infrared data
of the mouth area were compared with those obtained by contact measurements by Garmin
sensors (www.garmin.com). The study proves that simple image and depth sensors can be used
to efficiently record biomedical multidimensional data with sufficient accuracy to detect selected
biomedical features using specific methods of computational intelligence. The achieved accuracy
for non-contact detection of breathing rate was 0.26% and the accuracy of heart rate estimation was
1.47% for the infrared sensor. The following results show how video frames with depth data can
be used to differentiate different kinds of breathing. The proposed method enables us to obtain
and analyse data for diagnostic purposes in the home environment or during physical activities,
enabling efficient human–machine interaction.

Keywords: MS Kinect data acquisition; image and depth sensors; computational intelligence;
human–machine interaction; breathing analysis; neurological disorders; visualization; big
data processing

1. Introduction

Recently developed computational technologies enable the use of non-contact and non-invasive
systems for monitoring breathing features, detecting heart rate changes and analysing facial features
as important diagnostic tools for studying neurological and sleep disorders, assessing stress and
evaluating fitness level [1–8]. Figure 1 presents an example of the mouth area with the proposed
use of capillaries for heart rate detection. The methodology of subtle color changes caused by blood
circulation is complementary to the extraction of pulse rate from video records of fine head oscillation
that accompany the cardiac cycle [9,10].
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(a) MOUTH AREA

ROI1 ROI2 ROI3

(b) DETAIL

Figure 1. Video region used for detection of breathing frequency and heart rate presenting (a) the
region of interest (ROI) at the mouth area and (b) its detail.

Complex monitoring of selected biomedical features can be based on processing of data
(Figure 2) recorded by Microsoft (MS) Kinect sensors [11–15], forming an inexpensive replacement
for conventional devices. These sensors can be used to monitor breathing and heart rate changes
during physical activities or sleep in order to analyze disorders by mapping chest movements during
different kinds of breathing with analysis of volume or detection of neurological movement disorders
and their diagnostics. In general, the use of image and depth sensors [16–19] allow 3D modelling of
the chest and abdomen volume changes during breaths as an alternative to conventional spirometry
with the use of video (RGB) cameras [20,21], infrared cameras [22–24] or Doppler multi-radar
systems [25,26] in addition to ultrasonic and biomotion sensors [27–29].

            BLUE COMPONENT

               GREEN COMPONENT

RED COMPONENT

(a) SELECTION OF IMAGE ANALYSIS AREA

Figure 2. Data acquired by Microsoft (MS) Kinect presenting (a) red, green and blue image
components; (b) depth sensor data; and (c) infrared data of a selected video frame with the area
used for the time evolution of the object features.

The present paper is devoted to (i) the description of methodology for breathing and heart rate
monitoring based on image, depth and infrared video sequences acquired by MS Kinect in the face
and chest area; (ii) the visualization of the obtained data; and (iii) the comparison of biomedical
features evaluated from data recorded by non-contact image and depth sensors.

The proposed methodology assumes the use of digital filtering methods for data noise
component rejection, resampling, data fusion and spectral analysis for detecting the required
biomedical features. Specific statistical methods [30,31] are applied for analysis of the obtained
features. The paper presents how new technologies, data fusion of signals acquired from different
sensors and specific computational intelligence methods can be used in human–machine interaction
systems for data processing and extracting and analysing biomedical features.
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The paper provides motivation for further studies of methods related to big data processing
problems, dimensionality reduction, principal component analysis and parallel signal processing to
increase the speed, accuracy and reliability of the results. Methods related to motion recognition
can be further used in multichannel biomedical data processing for the detection of neurological
disorders, for facial and movement analysis during rehabilitation and for motion monitoring in
assisted living homes [32–34]. Further studies are devoted to non-intrusive sleep monitoring systems
for analysis of depth video data to track a person’s chest and abdomen movements over time [35,36]
for diagnosis of sleep disorders.

2. Methods

2.1. Data Acquisition

The sequence of separate images was recorded with associated time stamps indicating the video
frame rate changing from 7 to 15 fps. Image resolution was 1920 by 1080 pixels while the depth
and infrared camera resolution was 512 by 424 pixels. Figure 2 presents data subregions that were
analysed by an MS Kinect system [13,14].

The video camera allowed following colour image components with selected results recorded
at the mouth area of the individual as presented in Figure 2a in the contour form. Specific mouth
detection algorithms and face recognition techniques can be used to observe this region [37,38] using
different computer vision methods.

Figure 2b presents the mapping area used by the depth sensor [39] to record the distance of
individual pixels in mm stored in a matrix with its size corresponding to the specified resolution.
Figure 2c presents the infrared camera image. Rectangular boxes in each figure show the area used
for specifying the time evolution of the object features.

Simple tests were limited by the data size that was obtained. By scaling the image data by a factor
of 0.4, the 120 s record of data from the image, depth and infrared sensors occupy 1.2 GB of hard disk
space. The overnight record of sleep activities requires about 250 GB of disk space and is dependent
on the frame rate and resolution; specific methods of big data processing should be applied to reduce
the evaluation time.

2.2. Data Processing

Time stamps recorded with each video frame allowed resampling of the video sequence [40,41]
to a constant sampling frequency in the preprocessing stage. The final frame rate of fs = 10 fps and
spline interpolation was selected to compensate sampling time changes given by technical conditions
of data acquisition [42].

The sequences of image and depth maps that were acquired by the MS Kinect were analysed
over the selected rectangular area of R rows and S columns that covered either the mouth or the
chest area of the individual. For each matrix Dn(i, j) including values inside the region of interest at
discrete time n, the mean values were evaluated by the following equation:

d(n) =
1

R S ∑
i

∑
j

Dn(i, j). (1)

In this way, the mean value of pixels in the selected area for each video and depth frame
formed a separate time series {d(n)}N−1

n=0 of length N. To optimize the final algorithm, the resampling
mentioned above was applied to this sequence only and not to the complete image frame in this case.

Finite impulse response (FIR) filtering filtering of the selected order M (=40) was then applied to
each obtained signal to evaluate the new sequence {y(n)}N−1

n=0 using the following equation:

y(n) =
M−1

∑
k=0

b(k) d(n − k), (2)
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with coefficients {b(k)}M−1
k=0 defined to form a band-pass filter with cut-off frequencies f1 = 0.2 Hz

and f2 = 2 Hz to cover the estimated frequency of breathing and heart rate and to reject all other
frequency components including the mean signal value and its additional noise. Filtering was applied
in both forward and reverse directions to minimize start-up and ending transients. To detect the
heart rate from the depth sensor data, the infinite impulse response (IIR) band-pass filtering by
the Butterworth filter of the 4th order was applied to extract frequency components in the range
of 〈0.6, 1.8〉 Hz.

Spectral components in each recorded frame were then evaluated by a discrete Fourier transform
forming the sequence

Y(k) =
N−1

∑
n=0

x(n) exp(−j k n
2 π

N
), (3)

for k = 0, 1, · · · , N−1 related to frequency fk =
k
N fs. To obtain the time dependence of these values,

a short time Fourier transform of the selected window length was applied.
The local polynomial approximation of evaluated spectral components was then applied in

two specified frequency ranges corresponding to possible frequencies of breathing (〈F1, F2〉 Hz)
and heart rate (〈F3, F4〉 Hz). Extremal values are then detected in these ranges by the smoothing
polynomial g(x)=∑

P−1
p=0 cp xp of the selected order P using the least squares method to minimize

summed squared differences

S(c0, c1, · · · , cP−1) =
K

∑
k=1

(g( fk)− s( fk))
2 (4)

between values of the smoothing function g( fk) and K values of spectral components s( fk) for
frequencies fk.

3. Results

Analysis of a selected record of 120 s of image, depth and infrared video frames in stable
conditions is presented in Figure 3. The evolution of the red, green and blue mean image values in
the mouth area that were selected according to Figures 1a and 2a are presented in Figure 3a. Spectral
analysis of these values indicates that the first dominant frequency components are approximately
0.34 Hz (representing a breathing rate of about 20.5 breaths per minute). The second dominant
frequency of about 0.95 Hz (with the highest peak in the green component) represents a heart rate
of about 57 bpm for this record.

The estimation of the breathing rate was confirmed by the mean thorax movement that was
observed in the selected area according to Figure 2b with the resulting evolution of mean depth matrix
values presented in Figure 3b. The dominant frequency peak indicates a frequency of 0.343 Hz in this
case (representing 20.58 breaths per minute). Table 1 presents the comparison of these values with
estimated breathing rates detected by the individual image and infrared MS Kinect sensors in areas
selected according to Figure 2a,c with the associated time evolution of mean values and their spectra
in Figure 3a,c. Errors related to the frequency detected by the depth sensor are in the last column of
Table 1. The accuracy of image and depth sensor data analysis is better than 0.26% of the breathing
rate determined by the thorax movement in this case.

The depth sensor is able to detect not only the respiratory rate but also the heart rate represented
by a small peak for frequency of about 0.95 Hz (57 bpm) in this record as presented in Figure 2b.
To extract this information more precisely, the band-pass filter was applied.

A general methodology for the estimation of respiratory rate and heart rate is presented in
Figure 4 for the spectral analysis of a 20 s infrared video sequence using mean values in the mouth
region of interest (ROI). An approximation of the spectral components in the selected range using a
7th order polynomial was used to detect the frequency of the highest peak, using the mean squares
method to minimize summed squared differences defined by Equation (4). The breathing rate was
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estimated in the selected frequency band of 〈12, 38〉 breaths per minute. In a similar way, the heart
rate was estimated using the local polynomial approximation in the selected frequency band of
〈55, 90〉 bpm.
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(b) ANALYSIS OF DEPTH SENSOR THORAX MEAN VALUES
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(c) ANALYSIS OF INFRARED SENSOR MEAN VALUES
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Figure 3. Time evolution of mean data values in selected frames with their spectra of (a) the red,
green and blue components acquired by the image sensor; (b) the depth sensor data evolution with its
spectrum; and (c) the infrared data detecting both the breathing frequency and the heart rate during
a 120 s data segment.

Table 1. Estimates of the respiratory frequency evaluated by Microsoft (MS) Kinect sensors in given
regions of interest over a period of 120 s in stable conditions.

MS Kinect Sensor Respiratory Rate (Breaths/min) Error

Depth sensor 20.580

Image sensor: red component 20.592 0.06
Image sensor: green component 20.532 0.23
Image sensor: blue component 20.532 0.23
Infrared sensor 20.526 0.26
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BREATHING
AREA
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Breathing rate: 31 breaths/min
Heart rate: 61 bpm

Figure 4. Estimation of the heart rate and breathing frequency from a 20 s infrared video sequence
using mean values of the mouth ROI and showing analysis of spectral components in frequency
ranges of breathing and heart rate, with extreme values detected by a local polynomial approximation.

Analysis of the heart rate estimate based upon a 180 s infrared video sequence is presented in
Table 2. Video data were recorded after physical activity following a decrease in heart rate. The region
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of interest (ROI) covered the mouth area according to Figures 1 and 2c. Each window was 20 s in
duration, and spectral analysis was performed for the whole ROI and three subregions (ROI1, ROI2,
ROI3) that were selected according to Figure 1a. Results obtained by the MS Kinect non-contact
infrared sensor are compared with the heart rate recorded by the Garmin heart rate sensor in the
second column of Table 2. The accuracy of the heart rate estimation in the whole ROI of the infrared
sensor related to the contact heart rate sensor is better than 1.5% in this case.

Table 2. Estimates of heart rate (HR) evaluated for a 20 s window length by an MS Kinect infra sensor
in the full region of interest (ROI) and its subregions in the mouth area compared with Garmin records.

Starting Time (s) Garmin Record (bpm)
Kinect HR (bpm) Estimate

ROI Error (%)
ROI1 ROI2 ROI3 ROI

0 86 86.3 85.2 86.9 86.7 0.81
20 80 82.0 84.9 80.9 80.7 0.88
40 68 68.9 68.2 69.2 69.0 1.47
60 66 66.0 66.2 67.3 66.0 0.00
80 62 62.7 61.3 61.8 61.8 0.32
100 61 61.6 61.8 61.1 61.4 0.66
120 62 62.5 62.9 62.2 62.8 1.29
140 64 64.1 64.1 63.4 64.5 0.78
160 65 65.9 65.4 65.7 65.7 1.08

Different spectral components estimated in separate subregions over the whole period of 180 s
are presented in Figure 5a. While the breathing frequency can be clearly detected (because of the oral
corner movement) in ROI1 and ROI3, the ROI2 covering the central part of the mouth area includes
more information about the heart rate. Estimates obtained in the whole ROI and the corresponding
values recorded by the Garmin sensor are presented in Figure 5b. Average heart rate values that
were evaluated in each recorded minute presented in Figure 5c show very good correspondence of
these observations.
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Figure 5. Heart rate estimation using MS Kinect infrared data and Garmin heart sensor data recorded
with a sampling period of 1 s presenting (a) the infrared image spectral components in separate
regions over a period of 180 s; (b) the evolution of heart rate using 20 s video sequences together
with Garmin records; and (c) the comparison of mean heart rate values averaged over one minute
segments and infrared values averaged over the whole mouth ROI and its three subregions.
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Figure 6 presents mapping of the chest movement in the selected area covered by a grid of
specified density. The three-dimensional surface of the thorax that was recorded and analysed in
a given time instant is presented in Figure 6a. The contour depth image of the chest with a grid of
10 by 10 values at the specified time is given in Figure 6b. Figure 6c presents the time evolution
for 10 grid positions on the vertical axis of the chest showing different breathing ranges at different
locations on the chest. Corresponding video animation can be used to visualize the time evolution of
the thorax movement; video animation also provides the possibility to evaluate volume changes.
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Figure 6. Mapping of chest movement recorded by the depth MS Kinect sensor presenting (a) the
depth image of the chest surface in its selected area analysed on a grid with a resolution of 10 by
10 elements; (b) the contour depth image of the chest surface at the specified time; and (c) the time
evolution of distances at the vertical axis of the mapped area during a 120 s data segment.

The average range of chest movement in selected grid points and over the selected time of 120 s
is presented in Figure 7. It is possible to observe the higher range in the upper chest area and smaller
values in the abdomen area. This method can also be used for non-contact study of the symmetry of
breathing movements over the chest.
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Figure 7. The contour map of average breathing ranges inside the selected area of the chest for the
given grid density with their values (in mm) evaluated over the time range of 180 s.

Figure 8 presents a comparison of breathing patterns for deep and shallow breathing. For the
deep breathing in Figure 8a, there is a dominant movement in the upper pectoral area with its range of
about 16 mm, which is reduced to about 2 mm for the shallow breathing in the given record presented
in Figure 8b. Abdominal movement is, on the other hand, side dominant for the shallow breathing.
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Figure 8. Comparison of breathing patterns in different parts of the chest (specified in Figure 2b)
presenting (a) deep and (b) shallow breathing, showing interrupted breathing in the final part of each
record; (c) associated spectral components in window A with the dominant breathing frequency of
0.27 Hz (16.2 breaths per minute); and (d) spectral components in subwindows B1 and B2 with the
dominant heart rate frequency of 0.69 Hz (41.4 bpm) and 1.34 Hz (80.3 bpm), respectively.

Final parts of each record in Figure 8a,b present records acquired by the depth sensor during
the interrupted breathing to simulate the sleep apnea While frequency components associated with
the breathing disappeared, it is still possible to observe and to detect the heart rate as presented in
Figure 8c,d after evaluation of spectral components of data in the middle pectoral area.

Figure 8c presents spectral components in window A with the dominant breathing frequency
of 0.27 Hz (16.2 breaths per minute) in this case. Dominant frequency components in Figure 8d
evaluated in subwindows B1 of the area B with the interrupted breathing points to the heart rate
frequency of 0.69 Hz (41.4 bpm). During the interrupted breathing, the heart rate increases as
presented for subwindow B2 pointing to the heart rate frequency of 1.34 Hz (80.3 bpm). This result
shows that, for detection of sleep apnea both breathing and heart rate frequency should be observed
and analyzed.

MS Kinect provides a cheap alternative to video monitoring of sleep abnomalities performed
in sleep laboratories by polysomnography as the gold standard diagnostic tool. Polysomnography
(PSG) records different biosignals, but it is an invasive method that may disturb natural sleep. In
comparison with other efficient methods, including infrared video monitoring [24], it is possible
to use MS Kinect as a cheap device to record video, depth and infrared videosequences for sleep
monitoring but also as a part of assistive home technologies.
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4. Conclusions

This paper presents the use of MS Kinect image, depth and infrared sensors for non-contact
monitoring of selected biomedical signals, evaluation of breathing and heart rate using recorded
video frames, and verification of the obtained results. It is assumed that estimated features obtained
from data retrieved from a natural environment will increase the reliability of such observations
related to the diagnosis of possible neurological disorders and the fitness level of the individual.
The purpose of this approach is to replace wired sensors by distance monitoring, allowing more
convenient data acquisition and analysis.

Obtained data were used for the analysis of biomedical signals recorded after specified body
activity. The results show no significant difference between biomedical features obtained by different
biosensors and non-contact MS Kinect technology. While breathing rate can be recorded with high
reliability, non-contact heart rate detection depends upon the visibility of an individual’s blood
vessels in the case of video sensor use.

Results show how the MS Kinect sensors and selected digital signal processing methods can be
used to detect the heart rate and to analyse breathing patterns during different kinds of breathing.
Processing of video frames acquired during interrupted breathing points to the possible use of these
sensors for sleep apnea analysis as well.

The methods described here form an alternative approach to biomedical data acquisition
and analysis. Developing the abilities of different biosensors with possibilities of wireless
data transmission increase the importance of remote data acquisition and signal analysis using
computational intelligence and information engineering in the future. This approach has a wide
range of applications not only in biomedicine but also in engineering and robotics. Specific
applications based on analysis of depth matrices allow gait analysis and early diagnosis of locomotor
system problems.

Further research will be devoted to algorithms for more precise data acquisition and processing
to detect biomedical feature changes for correct diagnosis and for proposing further appropriate
treatment. It is assumed that infrared sensors will be used for non-contact analysis during sleep
to detect sleep disorders.
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3D three-dimensional
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fps frames per second
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feature estimation for recognising Parkinson’s disease using MS Kinect. BioMed. Eng. OnLine 2015, 14,
1–20.

18. Yu, M.; Wu, H.; Liou, J.; Lee, M.; Hung, Y. Multiparameter sleep monitoring using a depth camera. In
Proceedings of the BIOSTEC 2012, Vilamoura, Portugal, 1–4 February 2012; pp. 311–325.

19. Ma, Z.; Wu, E. Real-time and robust hand tracking with a single depth camera. Vis. Comput. 2014, 30,
1133–1144.

20. Alimohamed, S.; Prosser, K.; Weerasuriya, C.; Iles, R.; Cameron, J.; Lasenby, J.; Fogarty, C. P134 Validating
structured light plethysmography (SLP) as a non-invasive method of measuring lung function when
compared to Spirometry. Thorax 2011, 66, A121.

21. Brand, D.; Lau, E.; Cameron, J.; Wareham, R.; Usher-Smith, J.; Bridge, P.; Lasenby, J.; Iles, R. Tidal
Breathing Parameters Measurement by Structured Light Plethysmography (SLP) and Spirometry. Am. J.

Resp. Crit. Care 2010, B18, A2528–A2528.
22. Loblaw, A.; Nielsen, J.; Okoniewski, M.; Lakhani, M.A. Remote respiratory sensing with an infrared

camera using the Kinect infrared projector. In Proceedings of the 2013 World Congress in Computer
Science, Computer Engineering and Alied Computing, WORLDCOMP, Las Vegas, NV, USA, 25–28 July
2013; pp. 1–7.



Sensors 2016, 16, 996 11 of 11

23. Murthy, R.; Pavlidis, I. Noncontact measurement of breathing function. IEEE Eng. Med. Biol. Mag. 2014, 25,
57–67.

24. Wang, C.W.; Hunter, A.; Gravill, N.; Matusiewicz, S. Unconstrained video monitoring of breathing behavior
and application to diagnosis of sleep apnea. IEEE Trans. Biomed. Eng. 2014, 61, 396–404.

25. Falie, D.; Ichim, M.; David, L. Respiratory motion visualization and the sleep apnea diagnosis with the time
of flight (ToF) camera. In Proceedings of the 1st WSEAS International Conference on VISUALIZATION,
IMAGING and SIMULATION, VIS’08, Bucharest, Romania, 7–9 November 2008; pp. 179–184.

26. Gu, C.; Li, C. Assessment of Human Respiration Patterns via Noncontact Sensing Using Doppler
Multi-Radar System. Sensors 2015, 15, 6383–6398.

27. Arlotto, P.; Grimaldi, M.; Naeck, R.; Ginoux, J. An Ultrasonic Contactless Sensor for Breathing Monitoring.
Sensors 2014, 14, 15371–15386.

28. Hashizaki, M.; Nakajima, H.; Kume, K. Monitoring of Weekly Sleep Pattern Variations at Home with
a Contactless Biomotion Sensor. Sensors 2014, 14, 18950–18964.

29. Pandiyan, E.M.; Selvan, M.T.; Hussian, M.S.; Velmathi, D.G. Force Sensitive Resistance Based Heart Beat
Monitoring for Health Care System. Int. J. Inform. Sci. Technol. 2014, 4, 11–16.

30. Jerhotová, E.; Švihlík, J.; Procházka, A. Biomedical Image Volumes Denoising via the Wavelet Transform.
In Applied Biomedical Engineering; Gargiulo, G.D., McEwan, A., Eds.; INTECH: Rijeka, Croatia, 2011;
pp. 435–458.
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