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Abstract: The simple linear iterative clustering (SLIC) method is a recently proposed popular
superpixel algorithm. However, this method may generate bad superpixels for synthetic aperture
radar (SAR) images due to effects of speckle and the large dynamic range of pixel intensity. In this
paper, an improved SLIC algorithm for SAR images is proposed. This algorithm exploits the likelihood
information of SAR image pixel clusters. Specifically, a local clustering scheme combining intensity
similarity with spatial proximity is proposed. Additionally, for post-processing, a local edge-evolving
scheme that combines spatial context and likelihood information is introduced as an alternative to
the connected components algorithm. To estimate the likelihood information of SAR image clusters,
we incorporated a generalized gamma distribution (GГD). Finally, the superiority of the proposed
algorithm was validated using both simulated and real-world SAR images.

Keywords: superpixel; simple linear iterative clustering; likelihood; synthetic aperture radar;
generalized gamma distribution; edge evolving

1. Introduction

Recently, object-based algorithms such as the classification of remote sensing images have become
very popular, especially high-resolution (HR) ones [1–5]. Compared to the traditional pixel-based
methods, object-based algorithms process images at the regional level instead of at the pixel level,
increasing the availability of information. However, additional region generation methods are generally
required beforehand, e.g., superpixel algorithms [6–9].

Superpixel algorithms are methods that group pixels into meaningful atomic regions of similar
size [10,11]. Many superpixel algorithms have been developed, including normalized cuts [12],
agglomerative clustering [13], quick shift [14] and Turbopixel algorithms [15]. Recently, a superpixel
algorithm called simple linear iterative clustering (SLIC) [10,11] has been proposed, which, compared
to the state-of-the-art superpixel methods, is superior for both boundary adherence and efficiency. The
SLIC has two steps. Firstly, it generates superpixels by grouping pixels with a local k-means clustering
(KMC) method, where the distance is measured as the Euclidean distance integrated with the data and
spatial distances. Secondly, a connected components algorithm (CCA) is used to remove the generated
small isolated regions by merging them into the nearest large superpixels.

The SLIC method has shown good performance for numerous optical images [10,11], but may
provide bad superpixels for synthetic aperture radar (SAR) images. The main reasons are as follows.
First, SAR images are often corrupted by widespread inherent speckles. Using the standard SLIC
method, the generated superpixels often contain various isolated small image regions and the
boundaries of these superpixels may deviate significantly from the actual ones. A further complication
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of these images is that due to the microwave imaging mechanism, SAR images with different scenes
are more likely to cover a larger dynamic range of intensity than optical images, especially when the
scenes include both natural and man-made terrains. For these types of images, the use of standard
SLIC with a fixed regularization parameter balancing the data and spatial distances would generate
bad superpixels.

To address the challenges of applying the SLIC method to SAR images, an improved SLIC is
proposed in this paper. The use of generalized gamma distribution (GГD) [16] to model SAR images
allows utilization of the likelihood information of SAR image pixel clusters. Additionally, an edge
evolving scheme (EES) combining the spatial context with likelihood information is applied in the
post-processing procedure to remove small isolated regions and improve the boundary adherence
of superpixels.

2. Standard SLIC Algorithm

The standard SLIC algorithm shows fine performance of generating superpixels for optical images
and is applied as follows. Let Np be the number of pixels in a given image and k the number of
superpixels to generate. Next, the main steps of the SLIC algorithm are as follows [10,11]:

(1) Initialize cluster centers. Set k initial cluster centers on a regular grid spaced S “
a

Np{k
pixels apart, and then move these cluster centers to the positions with the lowest gradients in a
3 ˆ 3 neighborhood;

(2) Assign pixels. Designate each pixel to a closest cluster center in a local search space by local KMC;
(3) Update cluster centers. Set each cluster center as the mean of all pixels in the

corresponding cluster;
(4) Repeat steps (2)–(3) until the clusters do not change or another given criterion is met;
(5) Post-processing. The CCA is used to reassign isolated regions to nearby superpixels if the size of

the isolated regions is smaller than a minimum size Smin.

A local KMC is applied in step (2) of the SLIC method, where each pixel is associated with
the closest cluster center whose search area covers its location. Figure 1 illustrates the search area
of a cluster center using conventional KMC or the local KMC used in the SLIC algorithm [10,11].
In conventional KMC, the search area of each cluster center is the whole image, and then the distances
are calculated from each cluster center to every pixel in the image. In local KMC, however, the search
space of a cluster center is limited to a local 2S ˆ 2S square region. Therefore, the SLIC only computes
distances from each cluster center to pixels within its searching area.
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In local KMC, Euclidean distance is used in the clustering. Let zi be the data (although standard
SLIC was originally designed for color optical images, for SAR images, only the intensity is considered)
of the i-th cluster center with its spatial position as pxi, yiq. Let zj be the intensity of a pixel within the
search area of the center. Then, the integrated distance between this pixel and the center is:

DI “

c

´

d f {m
¯2
` pds{Sq2 (1)

where d f “
ˇ

ˇzi ´ zj
ˇ

ˇ and ds “

b

`

xi ´ xj
˘2
`
`

yi ´ yj
˘2 are the intensity and spatial distances between

the pixel and the center, respectively, and m is a regularization parameter that weights the relative
contribution of d f and ds to the integrated distance DI . A larger m indicates that ds is more significant
than d f . An equivalent integrated distance DI directly describing the contribution of the two distances
can be given by:

DI “

c

w
´

d f {N f

¯2
` p1´wq pds{Sq2 (2)

where N f is the mean intensity of the whole image, w P r0, 1s is a regularization parameter. In this
context, w and p1´wq are the ratios of the normalized intensity and spatial distances in DI , respectively.

3. Proposed Likelihood-Based Superpixel Algorithm

3.1. Local Likelihood-Based Clustering

In the standard SLIC method, the spatial and intensity distances influence the regularity and
boundary adherence of superpixels, respectively. For intensity distance, only the mean intensity is
used for each image cluster as a representative statistic for various optical images. However, this
may be insufficient to describe SAR image clusters due to the inherent speckle noise. Therefore, to
characterize SAR image clusters, the likelihood information is generally more useful than the mean.

To visually compare the mean and the likelihood value used in the algorithms, Figure 2 illustrates
decision thresholds used in the general k-means method and maximum likelihood (ML) classifier for a
binary classification problem. In each algorithm, a decision threshold is first determined, and then the
pixels with intensities smaller than the threshold are assigned to the first class, otherwise, the other one.
In Figure 2, p pt|1q and p pt|2q are the conditional probability density functions (PDFs) of two categories
with their means as µ1 and µ2, respectively. Then, the decision threshold Ta of the k-means method is
Ta “ pµ1 ` µ2q {2, and the threshold Tb of ML classifier corresponds to the crosspoint of the two PDFs.
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Assume the prior probability is equal for each of these two classes, then for a given decision
threshold T, the classification error can be computed by [17]:

Pe “
1
2

#

ż 8

T
p pt|1q dt`

ż T

´8

p pt|2q dt

+

(3)

Then, the threshold T “ Tb, which corresponds to the crosspoint of the two PDFs, would lead to a
smallest decision error [17]. If the clusters have symmetric PDFs, such as a Gaussian distribution, then
the threshold of k-means method would be equal to that of the ML algorithm, namely Ta “ Tb, thus
yielding a smaller decision error. In practice, however, the PDFs of various SAR image clusters are
generally asymmetric, especially for heterogeneous areas such as urban areas. For analysis of these
images, Ta generally deviates more from Tb, resulting in a larger decision error. To account for this, we
introduced a likelihood value to assess the distance or similarity between each pixel and cluster of
SAR images. Generally, a similarity measure is a real-valued function that quantifies the similarity
between two objects.

In our clustering method, we maintained the spatial distance ds used in the standard SLIC
method but modified the intensity distance based on the above analysis. Since the spatial distance is
independent of the data dynamic of SAR images, we first normalized the dynamic range of the given
SAR image to form a proper clustering scheme. To segment a given SAR image I0, it is first normalized
by dividing by its mean µI, so I “ I0{µI. Additionally, the likelihood value rather than the Euclidean
distance is adopted to represent the intensity similarity between a pixel and a cluster.

Let p pt|iq be the conditional PDF of the i-th cluster Ri, then, with respect to a given pixel with the
intensity as zj, we can get the likelihood value of cluster Ri as L “ p

`

zj
ˇ

ˇi
˘

. To combine this likelihood
value with the spatial distance, an intensity similarity S f and a spatial proximity Sd between the pixel
with the intensity zj and the cluster Ri are defined, respectively, as follows:

S f “ 1´ exp t´Lu “ 1´ exp
 

´p
`

zj
ˇ

ˇi
˘(

(4)

Sd “ 1´ exp t´1{ pds{Squ (5)

In this context, an integrated similarity measure between the pixel and the cluster Ri can
accordingly be defined and is shown as follows:

SI “ wS f ` p1´wq Sd (6)

The domain of SI is SI P p0, 1s. A larger SI value indicates a higher similarity between the
pixel and the cluster. In our local clustering scheme, each pixel is assigned to a nearest cluster with
the maximum similarity SI , instead of the minimum distance DI in the standard SLIC method. For
simplicity, this clustering is named likelihood-based clustering (LC).

3.2. Local Likelihood-Based Edge Evolving

After local clustering, some small isolated regions may be generated. In the standard SLIC
method, each small region must be merged into a large nearby superpixel by the CCA. Though this
manipulation is easy to perform, it may also result in worse edges or boundaries of superpixels. Since
some small regions may be very different from adjacent regions, forced merging by the CCA would
lead to bad results. As an alternative, we introduced a local likelihood-based edge evolving scheme
(EES) based on our similar related work [18]. This strategy deals with the generated small regions
differently than the CCA method, and the removal of these regions is not mandatory. The basic idea
of EES is to adjust the edges of the previous superpixels iteratively by combining spatial context and
likelihood information to improve the boundary adherence and remove the small regions that are
mainly caused by the influence of speckle. The EES is described as follows.
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Let G be the coordinate set of image pixels, l “
 

lg P t1, 2, ..., Mu
ˇ

ˇg P G
(

is the segmentation
with M superpixels Ω1, ..., ΩM, and zb is the intensity of an arbitrary edge pixel of the
superpixels. The joint probability distribution P plb, zbq can be written in two different ways:
P plb, zbq “ P plb|zbq p pzbq “ p pzb|lbq P plbq, leading to the Bayes’ formula as [17]:

P plb|zbq “
p pzb|lbq P plbq

p pzbq
(7)

where P plb|zbq and P plbq are the a posterior and priori probabilities of the edge pixel’s segmentation
label lb P t1, 2, ..., Mu, respectively, p pzb|lbq is the likelihood value or conditional PDF of the edge pixel
with respect to Ωlb , and p pzbq is the PDF of the edge pixel.

In our method, to adjust the previous superpixels’ edge pixels, the maximum a posterior
(MAP) criterion is applied. Since p pzbq is independent of the segmentation label lb, the edge pixel’s
segmentation label is reassigned by:

l̂b “ argmax
lbPt1,2,...Mu

tP plb|zbqu “ argmax
lbPt1,2,...Mu

tp pzb|lbq P plbqu (8)

Generally, it is assumed that the image’s segmentation label field l satisfies the Markovianity.
In other words, it is supposed that l is an Markov random field (MRF) on G with respect to a
neighborhood system ηg satisfying two conditions, e.g., p plq ą 0 and p

`

lg
ˇ

ˇlGg
˘

“ p
´

lg

ˇ

ˇ

ˇ
lηg

¯

, where
Gg is the set difference of G except g, lGg and lηg are the label sets on Gg and ηg, respectively [18,19].
Then, according to the Hammersley-Clifford theorem that an MRF is equivalent to a Gibbs random
field (GRF) [19], the local probability P

`

lb
ˇ

ˇlηb

˘

can be computed by the Gibbs probability as:

P
`

lb
ˇ

ˇlηb

˘

“ Z´1exp

#

´
ÿ

cPηb

Vc plbq

+

(9)

where Vc plbq is the potential function, c is a clique in the neighborhood ηb P G, and Z is the
normalization coefficient. In order to compute Vc plbq, an isotropic second order neighborhood system
and the related set of pair-site cliques are utilized (for more details, the reader is referred to [20]). Then,
by replacing P plbqwith P

`

lb
ˇ

ˇlηb

˘

in Equation (8), the criterion to reassign edge pixel becomes:

l̂b “ argmax
lbPlηb

 

p pzb|lbq P
`

lb
ˇ

ˇlηb

˘(

(10)

In the EES procedure described in our earlier work [18], an ML edge-evolving loop was performed
before the MAP loop because of the bad estimation of edges’ labels. However, in our algorithm, the
previous local likelihood clustering procedure provided good estimation of such labels, so the EES can
be briefly performed only with the MAP loop. This is performed according to the following steps:

(1) Estimate the likelihood of pixel intensities within each superpixel and count the total number of
edge pixels of all superpixels, denoted by Nb;

(2) Reassign each edge pixel by Equation (10), and count the total number of edge pixels whose
labels have been changed, denoted by Nc;

(3) Compute the change rate of the edge pixels defined by Rc “ Nc{Nb, indicating the ratio of the
number of edge pixels that were modified to the number of total edge pixels;

(4) Repeat steps (1)–(3) until Rc reaches a prespecified small value, i.e., RT .

3.3. Statistical Modeling of SAR Images by GГD

As seen previously, in our proposed algorithm, it is important to estimate the likelihood or
conditional PDF of each cluster of the SAR images, for which the statistical modeling of SAR images
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is critical. The parametrical method is widely used to estimate the conditional PDF of SAR images,
in which a parametrical model is specified to the SAR image beforehand, and the corresponding
parameters of the model are then estimated with the given image data samples.

The generalized Gamma distribution (GГD) is a famous parametrical model first proposed by
Stacy [21] and subsequently applied in many fields such as speech and image processing. This model
exhibits high flexibility and superior performance to many classical distributions for modeling SAR
images [16,21]. Additionally, it can be reduced to many SAR image models, including the Exponential,
Weibull, Gamma, inverse Gamma, and log-normal distributions.

In our method, GГD is employed for the statistical modeling of SAR image clusters. The GГD is a
distribution defined by [16]:

p pzq “
|ν| κκ

σΓ pκq

´ z
σ

¯κν´1
exp

!

´κ
´ z
σ

¯ν)

,σ, |ν| , κ, z ą 0 (11)

where σ, ν and κ are the scale, power, and shape parameters, respectively.
For the parameter estimation of GГD, the method of log-cumulants (MoLC) [22,23] can be

employed. This approach estimates parameters by solving an equation system of log-cumulants. The
first three log-cumulants of GГD can be computed as [16]:

#

c1 “ lnσ` pΨ pκq ´ lnκq {ν
ci “ Ψ pi´ 1, κq {νi, i “ 2, 3

(12)

where Ψ pxq “ dlnΓ pxq {dx is the digamma function and Ψ pi, xq “ diΨ pxq {dxi is the i-th order
polygamma function. In practice, the log-cumulants would be replaced by empirical ones. For more
details, the reader is referred to [16,22,23].

In the two main steps of our algorithm, namely the clustering and edge evolving steps, the
statistical modeling procedures are required for each SAR image region. Let Z “ tZ1, Z2, ..., ZNu be the
intensity data of an arbitrary SAR image region consisting of N pixels. It is assumed that Z follows the
GГD as shown in Equation (11). Then, the first three empirical log-cumulants of Z can be calculated by:

$

’

’

&

’

’

%

ĉ1 “
1
N

N
ř

n“1
lnZn

ĉt “
1
N

N
ř

n“1
plnZn ´ ĉ1q

t, t “ 2, 3
(13)

Thus, by replacing these three empirical log-cumulants with the theoretical ones in Equation (12)
and solving the equations, the parameters σ, ν, and κ of GГD for the data Z are estimated. In other
words, the PDF of Z is estimated.

4. Experiments and Discussion

4.1. Evaluation on Simulated SAR Image

In our experiments, the SAR images are assumed to follow GГD. To evaluate our proposed
algorithm quantitatively, a simulated SAR image with six regions following the GГDs is first generated
by a non-linear transformation method [24] as shown in Figure 3a. It consists of 250 ˆ 250 pixels and
its ground truth is given in Figure 3b. The parameters tσ,ν, κu of GГD corresponding to each of the
six regions numbered by 1–6 are t5, 4, 8u, t8, 4, 8u, t40,´2, 8u, t60,´2, 8u, t200,´1, 8u and t300,´1, 8u,
respectively. These six regions can be divided into three pairs from the viewpoint of intensity, namely
regions 1 and 2 are the low-value region pair, regions 3 and 4 the median-value pair, and regions 5 and 6
are the high-value ones.
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Figure 3. (a) Simulated synthetic aperture radar (SAR) image with six regions following the generalized
gamma distributions (GГDs) and (b) the corresponding ground truth.

Next, three methods were evaluated for the simulated SAR image, including standard SLIC, the
proposed method, and a compound method that combines LC with the CCA. For these methods,
the superpixel size S was set as 20 and a sequence of regularization parameters were set as
w “ t0.1, 0.2, ..., 1u. Additionally, Smin “ 12 in the CCA and RT “ 0.01 in the EES, indicating that
the labels of more than 99 percent of edge pixels remained unchanged. To evaluate the results
quantitatively, the boundary recall (BR) and the under-segmentation error (USE) were also applied,
which are defined as follows.

1. Boundary recall: The BR computes what fraction of ground truth edges overlap exactly with the
boundary pixels of the obtained superpixels, and is computed by:

BR “ NGTXSP{NGT (14)

where NGTXSP is the number of boundary pixels shared by the ground truth and the obtained
superpixels, and NGT denotes the number of boundary pixels of the ground truth. In our work,
the internal boundaries of ground truth and superpixels are used.

2. Under-segmentation error: Given ground truth segments g1, g2, ..., gM and a superpixel output
s1, s2, ..., sL, the under-segmentation error is defined by [10,11]:

USE “
1
N

»

–

M
ÿ

i“1

¨

˝

ÿ

rsj|sjXgiąBs

ˇ

ˇsj
ˇ

ˇ

˛

‚´ N

fi

fl (15)

where, |¨| gives the size of the segment in pixels, N is the size of the image in pixels, the expression
sj X gi is the intersection or overlapping error of a superpixel sj with respect to a ground truth
segment gi, and B denotes a minimum number of pixels in sj overlapping gi.

Figure 4a,b illustrate the BR and USE provided by these three methods, respectively. Some results
of representative superpixels are shown in Figure 5. The results from top to bottom refer to the standard
SLIC, Figure 5a–c; compound method, Figure 5d–f; and proposed algorithm, Figure 5g–i; and those
from left to right correspond to the regularization parameter w set to 0.3, 0.6 and 0.9, respectively.
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Figure 4. (a) boundary recall curves and (b) under-segmentation error plots obtained by three methods
tested on the simulated SAR image.
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Figure 5. Superpixels of simulated SAR image provided by (a–c) standard SLIC algorithm;
(d–f) compound method; and (g–i) proposed algorithm with regularization parameter w set to 0.3, 0.6
and 0.9, from left to right.

It can be seen from Figure 4 that the BR curves obtained by the standard SLIC and the compound
methods cross each other, and the latter has a larger maximum value than the former. Similarly, the



Sensors 2016, 16, 1107 9 of 16

lowest USE obtained by the compound method is much smaller than that of the standard SLIC. These
results validated the superiority of the proposed LC scheme compared to the KMC method used in
the standard SLIC. Moreover, the BR (USE) plot of the results generated by the proposed algorithm is
consistently higher (lower) than the results obtained using the compound algorithm. These findings
suggest that the EES model is more accurate than the CCA for these two quantitative criteria.

Overall, as shown in Figure 5, the proposed algorithm yields better superpixel results than
the other two methods. For the small regularization parameter, the standard SLIC generates good
boundaries only between the high-value regions and other regions. In contrast, the compound method
recalls better boundaries between low and median-value regions, while the proposed algorithm
provides the best edges, even for those between regions with little contrast, e.g., regions 1 and 2.
Additionally, with the increase of regularization parameter, the three algorithms yield superpixels with
more irregular shapes. Therefore, in practice, a medium regularization parameter such as 0.5 or 0.6 can
be adopted in our method to obtain a good trade-off between boundary adherence and the regularity
of superpixels. With a medium regularization parameter of w, 0.6, Figure 6 illustrates the edge details
yielded by the three algorithms focusing on two sub-regions of the simulated image. It can be clearly
observed from Figure 6 that the compound method catches the actual boundaries between regions 3
and 4 (Figure 6b–d) and between regions 5 and 6 (Figure 6f–h) better than the original SLIC algorithm,
and the proposed algorithm recalls these actual boundaries more accurately. These results further
demonstrate the superior performance of the proposed algorithm.
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Figure 6. Ground truth of simulated image patches 1 and 2 (a,e) and corresponding superpixels
provided by standard SLIC (b,f), compound method (c,g) and proposed algorithm (d,h).

Next, the efficiencies of these three methods were compared. Without loss of generality, Table 1
reports the time cost for different parts of the three methods for w “ 0.6 performed on the simulated
SAR image. The experiments were performed by Matlab codes running on the same computer with a
2.0 GHz CPU and 3.0-GB memory.

The LC involves more computational time than the KMC, about 2.4 times. Compared to the
time cost in the two clustering steps, due to the simplicity of CCA, the time consumed in the CCA is
minimal. By comparison, the EES provides better superpixels, but this is more time-consuming, about
one more order of magnitude than the cost in the clustering procedure. Therefore, in practice, EES is



Sensors 2016, 16, 1107 10 of 16

recommended for post-processing when the segmentation quality is more important than efficiency,
otherwise, CCA is suggested to be used.

Table 1. Time (in seconds) of the three superpixel algorithms for w “ 0.6 on the simulated synthetic
aperture radar (SAR) images.

Algorithm
Clustering Post-Processing

Total Time
Scheme Time Scheme Time

Standard SLIC KMC 3.288 CCA 0.073 3.361
Compound method LC 7.957 CCA 0.074 8.031
Proposed algorithm LC 7.957 EES 56.754 64.711

4.2. Evaluation on Real-World SAR Images

To further evaluate the performance of our proposed method, we next analyzed four real-world
SAR intensity images as shown in Figure 7. Figure 7a–d show the images acquired by the
ElectroMagnetic Institute Synthetic Aperture Radar (EMISAR), Airborne Synthetic Aperture Radar
(AIRSAR), Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) and Flugzeug Synthetic
Aperture Radar (F-SAR) systems, respectively. The detailed parameters (including the polarization,
band, size, resolution, acquisition location and acquisition year) of the four SAR images are listed
in Table 2. These four SAR images depict various terrains with a large dynamic range of intensity,
including farmlands, water, grassland, trees, and building areas.
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Figure 7. (a) ElectroMagnetic Institute Synthetic Aperture Radar (EMISAR) image; (b) Airborne
Synthetic Aperture Radar (AIRSAR) image; (c) Uninhabited Aerial Vehicle Synthetic Aperture Radar
(UAVSAR) image; and (d) Flugzeug Synthetic Aperture Radar (F-SAR) image.

Table 2. Parameters of four SAR images used in experiments, where HV, HH and VV denote the
polarization models for horizontal transmit and vertical receive, horizontal transmit and horizontal
receive, and vertical transmit and vertical receive, respectively.

Figure Number System Polarization Band Size (Pixels) Resolution Acquisition Location Acquisition Year

Figure 7a EMISAR HV L 300 ˆ 300 1.5 m ˆ 0.75 m Foulum, Denmark 1998

Figure 7b AIRSAR VV C 300 ˆ 300 13.5 m ˆ 5.5 m Tokyo, Japan 2000

Figure 7c UAVSAR HH C 300 ˆ 240 1.67 m ˆ 0.6 m Gulf Coast, America 2011

Figure 7d F-SAR HH C 360 ˆ 360 0.6 m ˆ 0.6 m Kaufbeuren, Germany 2009

The standard SLIC, the compound method, and proposed algorithm were performed separately
on these images. In the superpixel generation algorithm, the superpixel size is generally set according
to the complexity of the underlying SAR image empirically or set to meet a certain requirement. In our
experiments, the superpixel size was set as 12 for the UAVSAR image, and as 15 for the other three
SAR images. Smin was set as 7 empirically in the CCA and RT “ 0.01 in the EES, indicating that the
edge-evolving step stops when less than 1 percent of the labels of edge pixels were changed in the
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previous loop. Figure 8 illustrates the generated superpixels of the EMISAR image after application of
these three methods with three representative regularization parameters as w “ r0.3, 0.6, 0.9s. Due to
the absence of the ground truth for real-world SAR images, the performance of these three algorithms
were evaluated and compared by visual observation and inspection, with a particular focus on the
definition of the boundary between terrains.
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Figure 8. Superpixels of EMISAR image yielded by (a–c) standard SLIC algorithm; (d–f) compound
method; and (g–i) proposed algorithm with regularization parameter w as 0.3, 0.6, and 0.9 from left
to right.

As can be seen from Figure 8, similar to the results using the simulated SAR image, each of
these three methods provides superpixels that adhere well to the real terrain boundaries but with
less regular shapes when the regularization parameter w increases gradually. In general, a moderate
regularization parameter such as w “ 0.6 can be a good compromise between boundary adherence
and the regularity of superpixels. Therefore, for simplicity, Figures 9–11 provides the superpixels of
the AIRSAR, UAVSAR, and F-SAR images, respectively, provided by these three methods with a fixed
regularization parameter w “ 0.6.
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Figure 9. Superpixels of AIRSAR image provided by (a) standard SLIC; (b) compound method; and
(c) proposed algorithm with regularization parameter w “ 0.6.
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Figure 10. Superpixels of UAVSAR image provided by (a) standard SLIC; (b) compound method; and
(c) proposed algorithm with regularization parameter w “ 0.6.
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Figure 11. Superpixels of F-SAR image provided by (a) standard SLIC; (b) compound method; and
(c) proposed algorithm with regularization parameter w “ 0.6.

To further evaluate the performance of these three methods for the generation of superpixels in the
SAR images, some typical superpixel results of two portions of each SAR image are shown for detailed
comparison. Figures 12–15 present the results of typical image patches of the EMISAR, AIRSAR,
UAVSAR, and F-SAR images, respectively, and indicated by rectangles A1 and A2 in Figure 7a, B1
and B2 in Figure 7b, C1 and C2 in Figure 7c, and D1 and D2 in Figure 7d. The three methods were
performed with a fixed regularization parameter w “ 0.6.

By comparing the superpixels of the four images generated by different methods, it is easily
observed that the compound method provides generally better results than the standard SLIC
algorithm, and our proposed algorithm yields overall best results. The standard SLIC algorithm
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produces good results between terrains with large contrast, but poor results for many terrains with
small contrast, e.g., the farmlands in the regions A1 and A2 of the EMISAR image, regions B1 and B2
of the AIRSAR image, patches C1 and C2 of the UAVSAR image, and areas D1 and D2 of the F-SAR
image, where many real edges were not recalled correctly. By comparison, the compound method
captures the real edges better than the standard SLIC. This is mainly because the LC utilizes more
cluster information than the KMC and is more robust for the large dynamic range of SAR images.
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Additionally, it can be visually observed that the proposed algorithm provides superpixels with
boundaries that are closest to the real ones, even for the terrains whose width is smaller than the given
size of the superpixels. For examples, the superpixels yielded by the proposed method recall the real
edges of some building (as in regions B2, C2 and D2) and some road areas (as in regions C1 and D1)
unlike the other two approaches. The EES is superior to the CCA for capturing the real terrain edges
because in the CCA approach, small isolated regions are eliminated by simply merging them into
the large nearby superpixels but most edge pixels of superpixels are maintained, even though they
may substantially deviate from the real ones. In contrast, using EES, all the edge pixels of superpixels
are fully considered for adjustment according to the spatial context information, resulting in better
adherence of the generated superpixels to the real terrains.

In addition, to compare the efficiencies of these three algorithms, without loss of generality, the
time cost by these methods with w “ 0.6 on the EMISAR image is reported in Table 3.

Table 3. Time (in second) of three superpixel algorithms with w “ 0.6 on ElectroMagnetic Institute
Synthetic Aperture Radar (EMISAR) images.

Algorithm
Clustering Post-Processing

Total Time
Scheme Time Scheme Time

Standard SLIC KMC 12.668 CCA 0.112 12.780
Compound method LC 23.253 CCA 0.128 23.381
Proposed algorithm LC 23.253 EES 292.439 315.692

As shown in Table 3, the disadvantage of the EES is that it is much more time consuming than the
CCA, about one order of magnitude higher than the previous LC step. Therefore, it would be valuable
to improve the efficiency of EES, which was not considered here and will be the focus of future studies.

5. Conclusions

In this paper, a likelihood-based SLIC superpixel algorithm for SAR images was proposed.
Compared to the standard SLIC, our proposed algorithm performs a local likelihood-based clustering
(LC) instead of k-means clustering (KMC). In LC, a similarity criterion was designed to combine
intensity distance and the spatial proximity. Moreover, an edge-evolving scheme (EES) was introduced
for post-processing to achieve fine boundary adherence instead of the connected components algorithm
(CCA) used in the standard method. In addition, GГD was employed to model the generated clusters
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of SAR images. Extensive experiments performed on both simulated and real-world SAR images
demonstrate that the proposed LC is more robust to the large dynamic range of SAR images, and
thus could generate superpixels that recall actual boundaries with greater accuracy and with a lower
under-segmentation error than KMC. Additionally, we found that the EES model allowed improved
boundary adherence compared to the CCA. In other words, by using the EES approach, the obtained
superpixel edges correspond better to the edges between actual terrains than the superpixel edges
obtained using the CCA method. However, due to the additional operations required, the EES is more
time-consuming than the CCA. Therefore, it would be beneficial to improve the efficiency of the EES
method in future work.
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