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Abstract: The efficiency of a wireless power transfer (WPT) system in the radiative near-field is
inevitably affected by the variability in the design parameters of the deployed antennas and by
uncertainties in their mutual position. Therefore, we propose a stochastic analysis that combines
the generalized polynomial chaos (gPC) theory with an efficient model for the interaction between
devices in the radiative near-field. This framework enables us to investigate the impact of random
effects on the power transfer efficiency (PTE) of a WPT system. More specifically, the WPT system
under study consists of a transmitting horn antenna and a receiving textile antenna operating in
the Industrial, Scientific and Medical (ISM) band at 2.45 GHz. First, we model the impact of the textile
antenna’s variability on the WPT system. Next, we include the position uncertainties of the antennas
in the analysis in order to quantify the overall variations in the PTE. The analysis is carried out
by means of polynomial-chaos-based macromodels, whereas a Monte Carlo simulation validates
the complete technique. It is shown that the proposed approach is very accurate, more flexible and
more efficient than a straightforward Monte Carlo analysis, with demonstrated speedup factors up
to 2500.

Keywords: wireless power transfer; power transfer efficiency; textile antenna; polynomial chaos;
stochastic collocation; stochastic testing; uncertainty quantification; radiative near-field

1. Introduction

With the advent of the Internet of Things (IoT), radio frequency identification (RFID) systems
and, in general, radio frequency (RF) sensors and actuators have acquired significant importance.
Distributed in our surroundings in a pervasive and inconspicuous way, these elementary components
interact with each other to collect, process and exchange data [1,2]. The potential applications leveraged
by the IoT paradigm are manifold and range from transportation over logistics to healthcare and
from infrastructure monitoring to emergency services. As a result, assessing the correct operation of
the systems involved is of paramount importance.

One of the main requirements of the IoT is that RFID components and RF sensors need to
be small, low cost and not limited in lifetime by the duration of a battery [1]. Therefore, they are
often designed to be passive and they rely on wireless power transfer (WPT) for their activation
and operation [3,4]. Up to now, WPT in the reactive near-field and in the far-field has been widely
investigated in literature [5–8]. However, the proposed solutions can be considered sub-optimal
for several reasons. On the one hand, WPT operating in the reactive near-field can achieve high
power transfer efficiency (PTE), but it requires source and target to be very close to each other [9].
Moreover, variations in distance between the devices strongly affect the resonance frequency and
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the load impedance of the system. On the other hand, the PTE achieved by far-field schemes is
often too low. As a result, research efforts have recently shifted to WPT in the radiative near-field
(Fresnel region), where the PTE, although rapidly decreasing with distance, can still be high enough to
power sensor networks [10–12].

The most effective way to assess the performance of a WPT system is to study its transfer
efficiency, since random fluctuations may alter the incoming power at the receiving element, whereas
the output voltage level delivered by the power management system is typically first stabilized by
a voltage regulator to provide a constant supply voltage needed to feed electronic circuits. To this end,
several numerical techniques may be leveraged, such as source reconstruction methods [13], multipole
expansion of the electromagnetic field [14], model reduction combined with full-wave solvers [15] and
domain decomposition methods [16]. A very efficient approach has recently been proposed in [17,18],
where the electromagnetic interaction among arbitrarily positioned radiating devices is modeled by
means of their measured or simulated radiation patterns, allowing for device repositioning without
requiring new simulations or measurements. Moreover, no constraint is enforced on the antenna
configurations considered, as long as their radiation pattern is provided.

Although this approach efficiently quantifies the PTE of a WPT system for different positions
and rotations of the antennas, it cannot assess how the PTE varies for a given system setup when
devices undergo small random rotations or when their mutual position is affected by uncertainties.
Moreover, the method is based on a single simulation of the radiation pattern of each element of the
system, which typically corresponds to its nominal design. However, the radiation characteristics of
the actually deployed antennas deviate from the nominal ones due to the inevitable uncertainties on
the design parameters arising during the production process. As a result, the antenna variability has
to be included in the WPT model to correctly estimate the PTE of the system.

In this manuscript, we propose a stochastic collocation method (SCM) based approach, leveraging
on gPC expansions [19,20]. The formalism overcomes the limitations mentioned in the previous
paragraph as it efficiently allows assessing the impact of position uncertainties and antenna variability
on the PTE of a WPT system. More specifically, we start from given probability density functions (PDFs)
according to which the antennas’ design parameters vary. Next, we introduce a generalized polynomial
chaos (gPC) expansion for each antenna configuration to model the corresponding variations in its
radiation characteristics. Furthermore, on a higher level, a second gPC expansion assesses the impact of
both antenna variability and position uncertainties on the PTE of the system. In this way, the analysis
of the WPT system requires a lower number of simulations compared to a single gPC expansion
accounting for all variations.

The proposed approach is demonstrated on a simple WPT system consisting of a transmitting
horn antenna and a receiving Industrial, Scientific and Medical (ISM) textile antenna operating at
2.45 GHz, which is connected to a rectifier circuit to deliver direct current (DC) power to a load [18].
For this receiving antenna, we use experimentally determined probability density functions of the
design parameters [21,22]. The results are found to be as accurate as those obtained by the traditional
Monte Carlo method, here used to validate our technique. However, owing to the considerably
lower number of simulations needed to construct a gPC expansion compared to the number required
for Monte Carlo method to converge, the proposed approach proves to be much more efficient and
flexible. The polynomial chaos expansion has been applied to model lumped circuits and distributed
interconnects [23,24], multiport systems [25], the effect of geometric and material variations in
scattering problems [26,27], in Direction of Arrival (DOA) estimation [28] and in antenna design [21,22].
However, to our best knowledge, the application of uncertainty quantification to a WPT system is
completely new.

This manuscript is organized as follows. In Section 2, we briefly describe both the WPT model [17]
and the SCM. Then, in Section 3, the results for a WPT consisting of a transmitting horn antenna and
a receiving ISM textile antenna connected to a rectifier circuit are presented and then discussed in
Section 4. Conclusions are summarized in Section 5.



Sensors 2016, 16, 1100 3 of 15

Notations: We denote field vectors by underlined letters, e.g., v, and unit vectors with a “hat”,
e.g., v̂. All sources and fields are assumed to be time harmonic with angular frequency ω and time
dependencies ejωt are suppressed. Vector elements and arrays are represented by boldface characters,
e.g., x. For a given array x ∈ C, xT denotes its transpose, whereas ‖x‖ denotes its Euclidean norm.

2. Materials and Methods

2.1. Wireless Power Transfer System Model

Consider a simple WPT system consisting of a transmitting antenna TX and a receiving antenna
RX. We assume, for simplicity, that both TX and RX are one-port devices with radiation impedances
ZTX and ZRX, respectively, and we represent them by means of two equivalent circuits [29] as in
Figure 1. More specifically, the transmitter is driven by means of a Thévenin generator composed
of a sinusoidal voltage source Vg and an internal impedance Zg, whereas the receiving antenna is
modeled as a Norton equivalent with a short circuit current Isc and load impedance ZL. The receiver
also includes a matching circuit and a rectifier to transform the alternating current (AC) power received
by the antenna into the direct current (DC) power delivered to the load RL.
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Figure 1. Equivalent circuit of a wireless power transfer (WPT) link, i.e., a transmit antenna and a
receive antenna with rectifier (rectenna).

The short circuit current Isc is computed as:

Isc = −
1

V0

∫

VRX

einc(r) · j(r)dr (1)

where V0 is a pertinent normalization factor [30], VRX is the volume of RX, einc(r) is the electric field
incident on the receiver, j(r) is the current density impressed on in VRX and r is the position vector.
It was shown in [17] that, in the radiative near-field, Isc can be expressed as follows:

Isc = −
1

ZV0

∫

Ω
T(rTX,RX, k̂)FTX(k̂) · FRX(−k̂)dk̂ (2)

where we integrate over the Ewald sphere Ω. Furthermore, FTX(k̂) and FRX(k̂) are the radiation patterns
of the transmitter and the receiver, respectively, Z = µ

ε is the wave impedance of the background
medium, k̂ = sin θ cos φx̂ + sin θ sin φŷ + cos θẑ is the wave vector in spherical coordinates, T(rTX,RX, k̂)
is a translation operator that allows efficient translations between the two antennas and rTX,RX is
the relative position between the phase centers of the two devices. The operator T(rTX,RX, k̂) is calculated
as follows:

T(rTX,RX, k̂) ≈
L

∑
l=0

(2l + 1)j−lh(2)l (k|rTX,RX|)Pl(k̂ · r̂TX,RX) (3)

where j is the imaginary unit, h(2)l (·) is the l-th order spherical Hankel function of the second
kind, and Pl(·) is the Legendre polynomial of degree l. The number L determines the accuracy of
the approximation in Equation (3) and traditional guidelines are followed to select it [31]. The relation
in Equation (2) is valid only as long as the two antennas are not positioned in each other’s reactive
near-field, thus with |rTX,RX| at least equal to a sixth of the wavelength.
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The short circuit current Isc is computed as:

Isc = −
1

V0

∫

VRX

einc(r) · j(r)dr (1)

where V0 is a pertinent normalization factor [30], VRX is the volume of RX, einc(r) is the electric field
incident on the receiver, j(r) is the current density impressed on in VRX and r is the position vector.
It was shown in [17] that, in the radiative near-field, Isc can be expressed as follows:

Isc = −
1

ZV0

∫

Ω
T(rTX,RX, k̂)FTX(k̂) · FRX(−k̂)dk̂ (2)

where we integrate over the Ewald sphere Ω. Furthermore, FTX(k̂) and FRX(k̂) are the radiation patterns
of the transmitter and the receiver, respectively, Z = µ

ε is the wave impedance of the background
medium, k̂ = sin θ cos φx̂ + sin θ sin φŷ + cos θẑ is the wave vector in spherical coordinates, T(rTX,RX, k̂)
is a translation operator that allows efficient translations between the two antennas and rTX,RX is
the relative position between the phase centers of the two devices. The operator T(rTX,RX, k̂) is calculated
as follows:

T(rTX,RX, k̂) ≈
L

∑
l=0

(2l + 1)j−lh(2)l (k|rTX,RX|)Pl(k̂ · r̂TX,RX) (3)

where j is the imaginary unit, h(2)l (·) is the l-th order spherical Hankel function of the second
kind, and Pl(·) is the Legendre polynomial of degree l. The number L determines the accuracy of
the approximation in Equation (3) and traditional guidelines are followed to select it [31]. The relation
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in Equation (2) is valid only as long as the two antennas are not positioned in each other’s reactive
near-field, thus with |rTX,RX| at least equal to a sixth of the wavelength.

The rotation of the devices around their phase center is included in the described formalism
by applying the appropriate rotation R to the radiation patterns FTX(k̂) and FRX(k̂) in the spherical
harmonics domain, as shown in Figure 2. Thereto, first, the radiation pattern F(k̂) = Fθ(k̂)θ̂ + Fφ(k̂)φ̂
is expanded into spherical harmonics Apq and Bpq by means of the transformation F , given by [32]:

{
Apq

Bpq

}
= − 1

p(p + 1)

2π∫

φ=0

π∫

θ=0

[
q

{
jFφ(θ, φ)

−Fθ(θ, φ)

}
Y∗pq(θ, φ) + sin θ

{
−Fθ(θ, φ)

jFφ(θ, φ)

}
dY∗pq(θ, φ)

dθ

]
dθdφ (4)

where the unit vector k̂ has been replaced by (θ, φ), Ypq(θ, φ) and their complex conjugates Y∗pq(θ, φ)

are the orthonormalized scalar spherical harmonics. Then, the coefficients Apq and Bpq are rotated in
the spherical harmonics domain (RSH) by means of Wigner D-matrices. The rotated coefficients ARpq

and BRpq are calculated as [33]

{
ARpq
BRpq

}
=

{
Apq

Bpq

}
∑
|r|≤p

e−jqγdr
pq(β)e−jrα (5)

with dr
pq(β) the Wigner small d-matrix, given by [34]

dr
pq(β) = (−1)r−q

√
(p + r)!(p− r)!(p + q)!(p− q)! ·∑s(−1)s

(
cos β

2

)2(p−s)+q−r(
sin β

2

)2s−q+r

(p+q−s)!s!(r−q+s)!(p−r−s)! (6)

The range of s is determined such that all factorials are nonnegative. α, β and γ in Equations (5)
and (6) are the standard Euler angles that define the rotation using the z-y-z convention in a
right-handed frame. The angles (α, β, γ) are related to the desired inclination and azimuthal angles θ

and φ by choosing α = φ, β = θ and γ = 0. Finally, the rotated radiation pattern FR(θ, φ) is found
from the rotated coefficients ARpq and BRpq by means of the transformation F−1 given by [32]:

{
FRθ (θ, φ)

FRφ (θ, φ)

}
=

P

∑
p=0

∑
|q|≤p

[{
ARpq
jBRpq

}
dYpq(θ, φ)

dθ
+

{
BRpq
jARpq

}
qYpq(θ, φ)

sin θ

]
(7)

where P is a parameter that sets the accuracy, which for practical reasons may be chosen equal to L in
Equation (3) [35].
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We notice from Equation (2) that only the (measured or simulated) radiation patterns of the
two devices are needed to calculate the influence of the transmitter on the receiver. Moreover, the
combination of the rotation mechanism of Figure 2 and the use of the translation operator T(rTX,RX, k̂)
in Equation (2) allow computing the short circuit current Isc for any set of rotations and positions
of the devices. As a result, this formalism is more efficient and flexible than traditional simulations
tools or measurements, which require a new computation or measurement for every rotation and
repositioning.

Figure 2. Rotation of F(θ, φ) to FR(θ, φ) using the spherical harmonics domain.

We notice from Equation (2) that only the (measured or simulated) radiation patterns of the
two devices are needed to calculate the influence of the transmitter on the receiver. Moreover, the
combination of the rotation mechanism of Figure 2 and the use of the translation operator T(rTX,RX, k̂)
in Equation (2) allow computing the short circuit current Isc for any set of rotations and positions of the
devices. As a result, this formalism is more efficient and flexible than traditional simulations tools or
measurements, which require a new computation or measurement for every rotation and repositioning.
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The PTE of the WPT system considered consists of three contributions. First, we need to calculate
the wireless link efficiency ηlink, which is defined as the ratio between the power PRX delivered to
the receiving antenna’s load ZL and the power PTX emitted by the transmitter:

ηlink =
PRX

PTX
=

1
2<
(

ZL |Isc|2
∣∣∣ ZRX

ZRX+ZL

∣∣∣
2
)

1
2Z
∫
Ω
|FTX(k̂)|2 dk̂

(8)

Then, the efficiencies ηmatch and ηrect of the matching and the rectifying circuits are included.
Since the input impedance ZL of a nonlinear circuit depends on the incoming power, ηmatch has
the same dependency. Therefore, we simulate it with the commercial tool Advanced Design System
(ADS) by Keysight Technologies (Santa Rosa, CA, USA). As to the efficiency of the rectifier, it is
calculated as ηrect = Pinc/PDC, where Pinc = ηmatch · PRX and PDC are the AC power injected into the
rectifier and the DC power delivered to the load RL, respectively. The DC power PDC is given by:

PDC = V2
out/RL (9)

where the DC output voltage Vout is also computed by ADS. Finally, the overall PTE of the system is
given by:

PTE =
PDC

PTX
= ηlink · ηmatch · ηrect (10)

2.2. Stochastic Collocation Method

Consider a generic system output G (such as the PTE of the WPT system) and N input random
variables (RV) x1, x2, ..., xN that affect it. We assume these variables to be actually independent and we
collect them in the vector x = [x1, x2, ..., xN ]. Then, following the Wiener-Askey scheme [19], we relate
G to x by means of a polynomial chaos expansion

G = f (x) =
K

∑
k=0

yk ϕk(x) (11)

where ϕk(x) are suitably chosen multivariate polynomial basis functions and the expansion coefficients
yk are the unknowns to be determined. The polynomials ϕk(x) are constructed to be orthonormal with
respect to the PDF PX , which describes the likelihood of the input x. Thus:

< ϕj(x), ϕk(x) >=
∫

Γ
ϕj(x)ϕk(x)PX(x)dx = δjk (12)

with δjk = 0 if i 6= j, δjk = 1 if i = j, and Γ being the support of PX . Consequently, PX acts as a weighting
function. Since the considered input RVs are independent, the PDF PX is defined as the product of the
PDFs corresponding to the single input variables. Therefore, the polynomials ϕk(x) are constructed
as products of N univariate polynomials, each one associated to a single input RV. Furthermore, the
multivariate polynomials have a total degree of maximally Q, meaning that the sum of the orders of
the univariate polynomials is at most Q.

Finally, by means of the Stochastic Testing (ST) algorithm [36] described in the Appendix, we select
M = K collocation points xm and we compute both a matrix A, whose elements are defined as
amk = ϕk(xm), and its inverse B. The coefficients yk in Equation (11) are then calculated as in [37]:

yk =
M

∑
m=0

bmk f (xm) (13)
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where bmk is the mk-th element of matrix B and f (xm) is the function to be approximated, evaluated
in xm.

2.3. Wireless Power Transfer Uncertainty Quantification

The efficiency of the WPT system under study is affected by two main issues. On the one hand,
both the transmitter and the receiver may undergo uncertainties in their design parameters, since,
for example, the production process yields devices that do not perfectly correspond to their nominal
design. As a result, random variations may be expected on both radiation impedances ZTX and ZRX,
and on the antennas’ radiation patterns. On the other hand, the system may be conceived to operate in
a given configuration and undesired small random rotations or variations in the mutual position of the
antennas affect the influence of the transmitter on the receiver.

Conventionally, these problems are expected to arise simultaneously. Therefore, the variations in
the WPT efficiency corresponding to both antenna variability and position uncertainies are investigated
by means of gPC expansions in Equation (11), which are defined as functions of the design parameters
of the antennas and of the WPT system. However, the use of a single gPC expansion to carry out
the complete analysis is sub-optimal. This is understood as follows. The construction of a gPC
expansion requires selecting and processing M collocation points xm to compute the coefficients yk
in Equation (11). Even though translations and rotations are efficiently accounted for by the WPT
model described in Section 2.1, both the antennas’ radiation impedances and their radiation patterns
are usually computed by means of full-wave solvers, such as ADS Momentum (Keysight Technologies,
Santa Rosa, CA, USA), whose simulations are typically time-consuming. As a result, accounting for the
variability of the antennas requires a high number of full-wave simulations. Moreover, if the efficiency
of the WPT system is evaluated for different system configurations or different position uncertainties, a
new gPC expansion has to be constructed for each configuration and for each position. As a result, for
each such expansion a new set of collocation points has to be selected and processed, again requiring
full-wave simulations, which significantly decrease the efficiency of the method with respect to more
naive approaches, such as Monte Carlo.

In order to overcome these limitations and drastically improve efficiency, the construction of
the gPC expansions that model the efficiency of the whole system is preceded by an intermediate step.
More specifically, for each antenna configuration undergoing variability, we introduce gPC
expansions in Equation (11) of the real and the imaginary parts of both its radiation impedance
Z and the spherical harmonic coefficients Apq and Bpq in Equation (4):

Zre =
KZre

∑
k1=0

yk1 ϕk1(x
VAR) (14)

Zim =

KZim

∑
k2=0

yk2 ϕk2(x
VAR) (15)

Are
pq =

KAre
pq

∑
k3=0

yk3 ϕk3(x
VAR) (16)

Aim
pq =

K
Aim

pq

∑
k4=0

yk4 ϕk4(x
VAR) (17)

Bre
pq =

KBre
pq

∑
k5=0

yk5 ϕk5(x
VAR) (18)

Bim
pq =

K
Bim

pq

∑
k6=0

yk6 ϕk6(x
VAR) (19)
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where xVAR is the vector of the antenna’s design parameters that are affected by uncertainties. These gPC
expansions can now be interpreted as macromodels of the considered antennas. Once constructed,
they allow accurately computing both an antenna’s radiation impedance and radiation pattern for
a value of xVAR without having to resort to full-wave simulations. After this intermediate step,
we model both the link efficiency ηLINK and the overall PTE of the system by means of the following
gPC expansions:

ηLINK =
KηLINK

∑
k7=0

yk7 ϕk7(x
WPT) (20)

PTE =
KPTE

∑
k8=0

yk8 ϕk8(x
WPT) (21)

where xWPT is the vector of all the parameters in the WPT system subject to variations, which comprises
all the vectors xVAR and the variables corresponding to position uncertainties. The procedure is now as
follows. First, MηLINK and MPTE collocation points xWPT

m are selected to construct the gPC expansions in
Equations (20) and (21), respectively. Next, for each collocation point, the gPC expansions in
Equations (14)–(19) are used to rapidly compute both the radiation impedances and the radiation
patterns of the antennas undergoing variability. Finally, with the calculated antennas’ radiation
characteristics, the WPT model described in Section 2.1 processes the values of xWPT

m corresponding to
the position uncertainties in the system and computes the values of ηLINK and PTE in those collocation
points required to calculate the coefficients yk7 ,yk8 in Equations (20) and (21).

The benefits of this approach are twofold. First, since for each antenna the number of design
parameters undergoing variations is expected to be significantly lower than the total number of
parameters affecting the system, the amount of full-wave simulations necessary to construct all
antenna macromodels is expected to be substantially lower than what is required to compute
a single gPC expansion that models the entire WPT system. Second, once these macromodels are
available, the analysis of the WPT system can be repeated for any given system configuration at
a negligible computational cost, since no full-wave simulations are required to calculate the antennas’
radiation characteristics.

3. Results

3.1. Validation Example Setup

The proposed approach is demonstrated on the WPT system shown in Figure 3. The transmitting
device is a standard gain horn (SGH) antenna radiating at 2.45 GHz with a power of 10 dBm.
The receiving device is a 2.4–2.4835 GHz ISM band textile microstrip probe-fed dual-polarized patch
antenna [38], using a flexible closed-cell expanded rubber foam as substrate, and shown in Figure 4.
The antennas are placed at a separation distance d and their phase centers are aligned.
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they allow accurately computing both an antenna’s radiation impedance and radiation pattern for
a value of xVAR without having to resort to full-wave simulations. After this intermediate step,
we model both the link efficiency ηLINK and the overall PTE of the system by means of the following
gPC expansions:

ηLINK =
KηLINK

∑
k7=0

yk7 ϕk7(x
WPT) (20)

PTE =
KPTE

∑
k8=0

yk8 ϕk8(x
WPT) (21)

where xWPT is the vector of all the parameters in the WPT system subject to variations, which comprises
all the vectors xVAR and the variables corresponding to position uncertainties. The procedure is now as
follows. First, MηLINK and MPTE collocation points xWPT

m are selected to construct the gPC expansions in
Equations (20) and (21), respectively. Next, for each collocation point, the gPC expansions in
Equations (14)–(19) are used to rapidly compute both the radiation impedances and the radiation
patterns of the antennas undergoing variability. Finally, with the calculated antennas’ radiation
characteristics, the WPT model described in Section 2.1 processes the values of xWPT

m corresponding to
the position uncertainties in the system and computes the values of ηLINK and PTE in those collocation
points required to calculate the coefficients yk7 ,yk8 in Equations (20) and (21).

The benefits of this approach are twofold. First, since for each antenna the number of design
parameters undergoing variations is expected to be significantly lower than the total number of
parameters affecting the system, the amount of full-wave simulations necessary to construct all
antenna macromodels is expected to be substantially lower than what is required to compute
a single gPC expansion that models the entire WPT system. Second, once these macromodels are
available, the analysis of the WPT system can be repeated for any given system configuration at
a negligible computational cost, since no full-wave simulations are required to calculate the antennas’
radiation characteristics.

3. Results

3.1. Validation Example Setup

The proposed approach is demonstrated on the WPT system shown in Figure 3. The transmitting
device is a standard gain horn (SGH) antenna radiating at 2.45 GHz with a power of 10 dBm.
The receiving device is a 2.4–2.4835 GHz ISM band textile microstrip probe-fed dual-polarized patch
antenna [38], using a flexible closed-cell expanded rubber foam as substrate, and shown in Figure 4.
The antennas are placed at a separation distance d and their phase centers are aligned.

y

x

d

θ

φ

Figure 3. Simulation setup where an standard gain horn (SGH) acts as transmitter and a patch antenna
as receiver.

Figure 3. Simulation setup where an standard gain horn (SGH) acts as transmitter and a patch antenna
as receiver.
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The radiation impedance ZTX of the SGH antenna is 50 Ω and its radiation pattern is computed by
analytical expressions (see the Appendix in [17], where a = 368.6 mm, b = 273.1 mm, ρ1 = 343.9 mm,
ρ2 = 363.4 mm). Instead, the 2.45 GHz ISM band textile antenna is designed and simulated by means
of ADS Momentum (Keysight Technologies, Santa Rosa, CA, USA). Its nominal design parameters are
reported in Table 1. Its nominal radiation impedance ZRX, which is equal for both feed 1 and feed 2, is
49.91− 1.93i Ω at the frequency of 2.45 GHz. An isolation −20log|S21| between the two feed ports of
more than 15 dB is achieved within the entire ISM band.

Figure 4. Schematic of the dual polarized probe-fed Industrial, Scientific and Medical (ISM) band
textile antenna under study. (Top panel): Top view; (Bottom panel): Side view. Antenna parameters
are indicated in Table 1.

Table 1. Nominal values of the antenna parameters (Figure 4).

Parameter Nominal Value

patch length L 44.46 mm
patch width W 45.32 mm
slot length Ls 14.88 mm
slot width Ws 1 mm

feed points (±x f , y f ) (±5.7, 5.7) mm
substrate height h 3.94 mm

permittivity εr 1.53
loss tangent tanδ 0.012

The wireless link efficiency ηlink between the SGH and the textile antenna is computed by means of
the formalism described in Section 2.1. The parameters L and P in Equations (3) and (7), respectively, are
both set to five, leading to 36 coefficients Apq and Bpq. Next, a rectifier is attached to the patch antenna
to form the rectenna shown in Figure 5, which is designed and simulated in ADS. More specifically,
the rectenna consists of a matching network, a voltage doubler and a rectifier. The matching circuit
is given by an inductor Lm = 5 nH, whereas the voltage doubler and rectifier circuit itself consist
of two HSMS-2850 Schottky diodes, for which a pertinent SPICE model is used, together with their
package parasitics Cp = 0.08 pF and Lp = 2 nH. The capacitors C1 and C2 are equal to 100 pF and
the load resistance is equal to RL = 100 Ω. The matching circuit is designed to have optimal matching
when PRX = −10 dBm. However, because of the nonlinear diodes in the voltage doubler and rectifier
circuit, the load impedance ZL, and, therefore, the matching efficiency ηmatch, depend on the incoming
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power PRX. This impedance is computed for different incoming powers by using a harmonic balance
simulation in ADS and the matching efficiency is then calculated as:

ηmatch = 1− |Γ|2 = 1−
∣∣∣∣
ZL(PRX)− Z∗RX

ZL(PRX) + ZRX

∣∣∣∣
2

(22)

Finally, the efficiency ηrect of the voltage doubler and rectifier is calculated as in Equation (9), and
the total efficiency ηtot of the rectenna is given by ηtot = ηmatch · ηrect.
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3.2. Antenna Variability

In the example under study, we only consider antenna variability of the 2.45 GHz ISM band
textile antenna, since an SGH antenna is not expected to deviate from its nominal characteristic.
Textile antennas, however, usually exhibit variations in their design parameters, which significantly
alter their figures of merit. On the one hand, the production process inevitably introduces uncertainties
in the geometrical dimensions of the antenna. On the other hand, the flexible closed-cell expanded
rubber protective foam used as antenna substrate is a very non-uniform material. As a result, the value
of its electrical permittivity εr may be quite different from the nominal one.

In [21], it is shown that variations in the patch length L, the patch width W and the electrical
permittivity εr of the antenna have a significant impact on its radiation impedance ZRX, whereas
the influence of other parameters is negligible. Moreover, a quick sensitivity analysis confirms that
only variations in L, W and εr affect the radiation pattern of the antenna. Therefore, we relate
both the real and the imaginary part Zre

RX and Zim
RX, respectively, of the radiation impedance ZRX of

the receiving antenna, as well as the real and the imaginary part of the coefficients Apq and Bpq in
Equation (4), to the parameters L, W and εr by means of the gPC expansions in Equations (14)–(19)
where thus, xVAR = [L, W, εr]. As we know from [21,22] that these parameters are independent and
vary according to Gaussian distributions, according to the Wiener-Askey scheme [19], the multivariate
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In the example under study, we only consider antenna variability of the 2.45 GHz ISM band
textile antenna, since an SGH antenna is not expected to deviate from its nominal characteristic.
Textile antennas, however, usually exhibit variations in their design parameters, which significantly
alter their figures of merit. On the one hand, the production process inevitably introduces uncertainties
in the geometrical dimensions of the antenna. On the other hand, the flexible closed-cell expanded
rubber protective foam used as antenna substrate is a very non-uniform material. As a result, the value
of its electrical permittivity εr may be quite different from the nominal one.

In [21], it is shown that variations in the patch length L, the patch width W and the electrical
permittivity εr of the antenna have a significant impact on its radiation impedance ZRX, whereas
the influence of other parameters is negligible. Moreover, a quick sensitivity analysis confirms that
only variations in L, W and εr affect the radiation pattern of the antenna. Therefore, we relate
both the real and the imaginary part Zre
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where σL, σW and σεr are the standard deviations of L, W and εr, respectively, whereas
ρLW = ρLεr = ρWεr = 0 indicates that there is no correlation between the design parameters.

The gPC expansions of Zre
RX and Zim

RX are found to converge for orders of expansion with
a total degree QZre

RX
and QZim

RX
equal to 2 and 3, respectively. In contrast, the real and the imaginary

part of the coefficients Apq and Bpq exhibit a more intricate behavior. Therefore, a total degree
QApq = QBpq = 6 is necessary to accurately catch the variations determined by L, W and εr on
these parameters. Since both the radiation impedance ZRX and the radiation pattern of the antenna
are computed during the same full-wave simulation, the total degree of all gPC expansions in
Equations (14)–(19) is set to QVAR = 6. In this way, only one set of collocation points is selected
and simulated in ADS to compute the coefficients yk1 , yk2 , yk3 , yk4 , yk5 , yk6 in Equations (14)–(19) and to
construct all the gPC expansions, which is clearly beneficial in terms of computation time. In this case,
a number MVAR = 84 of collocation points xVAR

m has been selected by means of the ST algorithm and
simulated in ADS.

3.3. Position Uncertainties

Nominally, the WPT system shown in Figure 3 is constructed to operate in the radiative near-field
with a distance d between the two antennas equal to 0.6 m ≈ 5λ and with their phase centers aligned
at coordinates x = y = 0. Furthermore, the radiating surface of the SGH antenna and the patch
antenna are aligned with the xy plane, which means that the rotation angles θ and φ are both equal
to 0◦. In practice, the antennas are perturbed by small random rotations and variations in their mutual
position. For the sake of conciseness, the SGH antenna is stationary and all the variations are cumulated
in the position and the rotation of the 2.45 GHz ISM band antenna. Finally, since no experimental data
are available to estimate the PDFs corresponding to the considered parameters, we suppose that d,
x, y, θ and φ are independent and vary according to Gaussian distributions, whose mean values and
standard deviations are reported in Table 2.

Table 2. Mean values and standard deviations of the geometrical parameters of the link (Figure 3).

Parameter Mean Value µ Standard Deviation σ 3σ

d 0.6 m 0.01666 m 0.05 m
x 0 m 0.00666 m 0.02 m
y 0 m 0.00666 m 0.02 m
θ 0◦ 10◦ 30◦

φ 0◦ 10◦ 30◦

More specifically, we assume that the variations in the position of the ISM patch antenna in the xy
plane are limited to intervals x = ±2 cm and y = ±2 cm, which correspond to a displacement of about
half the width W and the length L of the patch. As for d, θ and φ, the variations are assumed to be
large enough to account for a potential displacement in a real scenario.

3.4. Wireless Power Transfer Efficiency

The two gPC expansions in Equations (20) and (21) are introduced to relate both the link
efficiency ηLINK and the overall PTE to the parameters L, W, εr, d, x, y, θ and φ. All parameters are
independent and vary according to Gaussian distributions. As a result, the multivariate polynomials
ϕk7(x

WPT), ϕk8(x
WPT) of both the gPC expansions are Hermite polynomials, as in Section 3.2. Note,

however, that upon the availability of other experimental data, other distributions for these parameters
can equally be dealt with by means of the advocated gPC-based approach. We find that both
expansions converge for an order of expansion corresponding to a total degree QηLINK and QPTE

equal to 4. A number MηLINK = MPTE = 495 of collocation points xLINK
m is selected by means of the ST

algorithm and processed with the WPT model and the antenna macromodels in order to compute the
coefficients yk7 , yk8 in Equations (20) and (21).
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Next, we perform a Monte Carlo analysis of both ηLINK and PTE by processing a sample set of
10,000 realizations of L, W, εr, d, x, y, θ and φ, drawn according to their pertinent PDFs. Then, we
compute the cumulative distribution functions (CDFs) of ηLINK and PTE based on both the Monte Carlo
simulation and the SCM analysis. The curves are shown in Figures 6 and 7. We notice that the CDFs
are perfectly overlapping. Finally, in order to validate our analysis, we apply the Kolmogorov-Smirnov
test to verify whether the CDFs of ηLINK and PTE and those found by means of the SCM analysis
correspond to the same distribution. In particular, the maximum distance D between them is compared
to a threshold distance Dα. For D < Dα, the Kolmogorov–Smirnoff test accepts the null hypothesis
that both the sample sets correspond to the same distribution, with a significance level α. If we set
the significance level α to 0.05, Dα equals 0.019233. The computed values of DηLINK and DPTE are equal
to 0.0067 and 0.0085, respectively. Therefore, the null hypothesis of equality between the CDFs is
validated with a significance level of 5%.

Figure 6. Comparison between the Cumulative Distribution Functions (CDFs) of ηLINK constructed
with the advocated Stochastic Collocation Method (SCM) and the Monte Carlo (MC) simulations.

Figure 7. Comparison between the CDFs of the power transfer efficiency (PTE) of the WPT system
constructed with the advocated SCM and the MC simulations.

4. Discussion

The proposed approach allows quantifying the variations of both the link efficiency ηLINK and
the PTE of a WPT system in a more efficient and flexible way than both an SCM analysis based on
a single gPC expansion and a Monte Carlo analysis. As shown in Table 3, both the number of full-wave
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simulations and the overall CPU time necessary to perform the analysis are greatly reduced for both
ηLINK and PTE:

Table 3. Simulation data for the analysis of the ηLINK and the power transfer efficiency (PTE) of the
wireless power transfer (WPT) with different methods.

Method
Number of Full-Wave Simulations Overall CPU Time

ηLINK PTE ηLINK PTE

gPC + macromodels 84 84 21 min 53 s 22 min
single gPC 495 495 2 h 4 min 35 s 2 h 4 min 42 s

Monte Carlo 10,000 10,000 41 h 48 min 25 s 41 h 50 min 46 s

More specifically, the simulation of a single realization of the 2.45 GHz ISM band antenna in
ADS Momentum (Keysight Technologies, Santa Rosa, CA, USA) requires about 15 s, whereas the
construction of the gPC expansions that model its radiation impedance ZRX and the coefficients Apq

and Bpq takes 3.72 s, once the MVAR = 84 antenna realizations have been simulated in ADS. As a
result, the construction of the gPC-based macromodels for ZRX and the radiation pattern of the antenna
requires about 21 min. Then, MηLINK = MPTE = 495 collocation points have to be processed to construct
the gPC expansions of both ηLINK and PTE. In order to obtain 495 samples of the link efficiency ηLINK

by using the constructed macromodel of the antenna and the WPT model of Section 2.1, about 25 s
are required. In contrast, about 32 s are necessary to collect 495 samples of the overall PTE, which
include the simulations of the rectifier. Finally, the construction of both the gPC expansions of ηLINK

and PTE takes about 25 s. Therefore, a first complete analysis of the WPT system requires about
22 min. Once the antenna characteristics have already been modeled, additional analyses of other WPT
systems using this antenna or for other distributions of the position parameters take only about 1 min.
In comparison, an analysis based on a single gPC, which requires direct simulation of 495 antenna
realizations in ADS, takes more than 2 h. Moreover, this operation has to be repeated each time any
difference is introduced in the distributions according to which the parameters of the WPT system
vary. As for the Monte Carlo procedure, the simulation of 10,000 realizations by means of ADS and
the WPT model of Section 2.1 requires more than 41 h. As a result, the proposed approach greatly
outperforms both the Monte Carlo technique and an SCM analysis based on a single gPC expansion.

5. Conclusions

In this manuscript, an SCM analysis of the efficiency of a WPT system in the radiative near-field
subject to antenna variability and position uncertainties has been presented. More specifically, a first
SCM analysis is carried out to account for the impact of uncertainties in the design parameters of
the antennas on their radiation characteristics. The resulting gPC expansions are used as macromodels
that allow computing the antennas’ radiation characteristics in a more efficient way than full-wave
solvers. Then, a second SCM analysis quantifies the impact of both the variability of the deployed
antennas and the uncertainties in their mutual position on the efficiency of the WPT system. This is
done by leveraging the previously computed gPC-based macromodels and a very efficient model
for WPT systems in the radiative near-field. Finally, the proposed approach is validated by means of
a WPT system consisting of an SGH antenna and a 2.45 GHz ISM band textile antenna. Compared to
an SCM analysis based on a single gPC expansion, as well as to a standard MC analysis, the method
shows excellent agreement and superior efficiency.
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Abbreviations

The following abbreviations are used in this manuscript:

ISM Industrial, Scientific and Medical
WPT Wireless Power Transfer
PTE Power Transfer Efficiency
gPC generalized Polynomial Chaos
IoT Internet of Things
RFID Radio Frequency IDentification
RF Radio Frequency
SCM Stochastic Collocation Method
PDF Probability Density Function
DC Direct Current
DOA Direction of Arrival
AC Alternating Current
ADS Advanced Design System
RV Random Variables
ST Stochastic Testing
SGH Standard Gain Horn
CDF Cumulative Distribution Function

Appendix A. Stochastic Testing Point Selection

The selection of the M collocation points xm used in Equation (13), necessary to compute the
coefficients yk in Equation (11), is carried out by means of the ST algorithm introduced in [36]. Thereto,
we first construct the set of R = (Q + 1)N quadrature points tr by means of an N-dimensional
tensor product Gaussian quadrature rule [39]. Then, this set of points is sorted according to their
corresponding weight wr, in a decreasing order, and the first point t0 is selected as first collocation
point x0. Next, the following M× 1 matrix V is computed:

V =
ϕ(x0)

‖ϕ(x0)‖
(A1)

where ϕ(x0) = [ϕ0(x0), ..., ϕK(x0)]
T . Finally, all the other M − 1 collocation points are selected by

means of an iterative procedure. More specifically, a point tr is selected as a new collocation point if:

‖v(tr)‖
‖ϕ(tr)‖

> χ (A2)

where χ is a threshold number, in this manuscript selected to be 10−3, and v(tr) is given by

v(tr) = ϕ(tr)−VVTϕ(tr) (A3)

Then, the matrix V is updated by including the normalized vector:

v(tr)

‖v(tr)‖
(A4)

as a new column. The algorithm ends when M collocation points have been selected.
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