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Abstract: Fusarium proliferatum is considered to be a pathogen of many economically important
plants, including garlic. The objective of this research was to apply near-infrared spectroscopy
(NIRS) to rapidly determine fungal concentration in intact garlic cloves, avoiding the laborious and
time-consuming procedures of traditional assays. Preventive detection of infection before seeding
is of great interest for farmers, because it could avoid serious losses of yield during harvesting and
storage. Spectra were collected on 95 garlic cloves, divided in five classes of infection (from 1-healthy
to 5-very highly infected) in the range of fungal concentration 0.34–7231.15 ppb. Calibration and
cross validation models were developed with partial least squares regression (PLSR) on pretreated
spectra (standard normal variate, SNV, and derivatives), providing good accuracy in prediction, with
a coefficient of determination (R2) of 0.829 and 0.774, respectively, a standard error of calibration (SEC)
of 615.17 ppb, and a standard error of cross validation (SECV) of 717.41 ppb. The calibration model
was then used to predict fungal concentration in unknown samples, peeled and unpeeled. The results
showed that NIRS could be used as a reliable tool to directly detect and quantify F. proliferatum
infection in peeled intact garlic cloves, but the presence of the external peel strongly affected the
prediction reliability.
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1. Introduction

Fusarium proliferatum is a world-wide occurring saprophytic fungi, also known to be a causal agent
of several diseases for a broad range of economically important plants [1]. Moreover, it is a toxigenic
species, producing a group of the most dangerous mycotoxins—fumonisins, causing toxicological
effects in animals and plants, as well as in humans [2]. Numerous studies have confirmed the presence
of fumonisins in plant material contaminated with their producers, with a dramatic effect on yield
and quality of agricultural products [3,4]. F. proliferatum is known to be one of the main causes of
maize cob fusariosis [5,6], but can also colonize wheat, barley, rice, asparagus, pea, onion, tomato,
pineapple, and various palms [7–10]. Recently, it has also been isolated from uncultivated plants
including reed, sorrel, prairie grasses, and pine [11]. Worldwide geographical distribution and a wide
range of hosts provide evidence of the extraordinary adaptation ability of the species, enabling it to
colonize new environments—often in diverse climatic conditions [12]. Therefore, a sensitive and rapid
method for the determination of the grade of fungal contamination in vegetal matrices is required to
preserve the quality and safety of food and agricultural commodities in general. The great majority
of the already-existing techniques are conceived to either determine mycotoxin content in samples
using instrumental chromatography techniques [13], or directly identify the fungal infection by genetic
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chemotyping via polymerase chain reaction (PCR) assays [14]. Both approaches are accurate and
reliable, but difficult and expensive, and not suitable for a real-time response. Additionally, they are
time consuming, requiring a well-equipped laboratory and skilled laboratory staff. Moreover,
PCR-based techniques have some technical limits due to protocol complexities and the choice of
specific primers for each species [15].

In the past few decades, many researchers have focused on the potential use of near-infrared
spectroscopy (NIRS), a powerful spectroscopic procedure for the detection of organic compounds
in matter [16]. In the field of agriculture, food, medicine, paper, polymers, etc., intense and
aggressive interest has been directed toward NIR spectroscopy because it is a fast, nondestructive,
environmentally-friendly, and highly accurate method that requires little expert training in routine
analysis [17].

In recent years, promising results have been obtained applying NIRS methodology to detect
mycotoxins and mycotoxigenic fungal contamination in agricultural products, including studies on the
estimation of deoxynivalenol, ergosterol, vomitoxin, and fumonisin in single kernels of highly infected
wheat, maize, and barley [18–20], aflatoxins and ochratoxin A in paprika [21] and red chili powder [22].
Sirisomboon, et al. [23] reported an application of NIR spectroscopy to detect aflatoxigenic fungal
infection in rice with a wavelength range between 950 and 1650 nm. Singh, et al. [24] used a short-wave
NIR hyperspectral imaging system to detect storage fungi in wheat.

Overall, the studies described above collectively show the potential for the development
of NIR methods for the detection of mycotoxins and mycotoxigenic fungi in agricultural
products—particularly cereals and cereal products. However, to the best of the authors’ knowledge,
the application of NIR Spectroscopy for the determination of toxigenic fungi in garlic has not been
reported so far.

Garlic is among the oldest known horticultural crops and is grown worldwide. Annual world
garlic production is around 23 million tons. China is by far the largest producer of garlic, with around
20 million tons, and Spain has the highest production rate in the European Union and the ninth highest
in the world, with approximately 154,000 tons per annum [25]. F. proliferatum has been recognized
as one of the principal causal agent of clove rot during growth in the field and in storage, leading to
serious economic losses [26]. Therefore, a method able to select only the healthy cloves before seeding
could be of great interest to farmers. Moreover, the development of a NIRS-based non-destructive and
rapid method could represent a step forward in the control of the entire supply chain, up to the market.
In fact, once calibrated, NIR instruments could be also properly used in the post-harvest phases to
check the healthy status of bulbs during storage and shelf-life.

Thus, the objective of this research was to lay the ground for a NIRS-based quantitative method
to measure F. proliferatum concentration in intact garlic cloves, and then predict fungal concentration in
unknown samples.

2. Materials and Methods

Garlic samples and pretreatments. White garlic (Allium sativum L.) plants were cultivated in
2015 in the Ferrara district of PGI (Protected Geographical Indication) garlic production, located
in northeastern Italy. The fresh bulbs, harvested in July, were separated in cloves and deprived of the
typical external white/light brown sheath. Bulb harvesting was carried out based on a completely
random experimental design, so as to provide a representative sampling of the entire field [27].
Cloves were classified in grade of infection scale from 1 (healthy) to 5 (very highly infected) based on
visual observations of symptoms. Symptomatic cloves showed increasing tan-colored rot, evolving in
emptied and softened cavities, with necrotic spots in the most severe cases. Examples are reported in
Figure 1. A total of 95 peeled cloves were examined, classifying 20 samples for each Class of infection,
except for 15 samples in Class 4. Samples were spread on a plastic tray and stored at 4 ˝C up to
submission to NIR spectra collection and analysis in laboratory.
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Figure 1. Examples of progressive grades of infection in garlic cloves: (a) healthy or asymptomatic; 
(b) slightly infected; (c) infected; (d) highly infected; (e) very highly infected or completely damaged.  

NIRS analysis. FT-NIR diffuse reflectance spectra of garlic cloves samples were collected with a 
NIRFLex N-500 (Büchi, Flawil, Switzerland), equipped with the Solids Cell Module (Büchi, Flawil, 
Switzerland) and set up with a polarization interferometer with TeO2 wedges. Fresh samples were 
flattened on the glass surface by using a XL-sample holder 2.5 cm in diameter, suitable for small 
samples or samples of particular shape (such as garlic cloves). For each clove, three different spectra 
were acquired, the same sample randomly were re-placed on the sample holder in three different 
positions. The instrument was designed to be operational for working temperature conditions from 
5 up to 35 °C, without any drift of the spectra signal. The reflectance spectra were recorded using 
NIRW are software version 1.4 (Büchi, Flawil, Switzerland) and scanning the full range—from 1000 
to 2500 nm—at 8 nm intervals. Measurements were carried out at 4 scans/s with a wavenumber 
accuracy of ±0.2 nm (measured with HF gas cell at an ambient temperature of 25 ± 5 °C). To obtain a 
good signal-to-noise ratio, 16 scans for each spectrum were averaged during each spectral acquisition, 
resulting in a total measurement time of a few seconds. Every spectrum acquisition was preceded by 
the acquisition of an internal and external reference to optimize the spectrum baseline. 

Chemometrics. All chemometric analysis—including calibration and validation—were performed 
using NIRCal 5.0 (Büchi, Flawil, Switzerland). The wavelengths for each set of processing data were 
suggested by NIRCal 5.0, based on correlation coefficients calculated for each wavelength [28]. 
Wavelength selection is carried out by the software based on an iterative procedure (Calibration 
wizard®) combining all possible spectral information and spectra pretreatments to obtain the best 
combination for calibration. 

To establish the relationship between the reference analysis and NIR values, the Partial Least 
Squares Regression (PLSR) was used. The optimum number of factors to be used was determined by 
the predicted residual error sum of squares (PRESS) calculation that shows the sum of squares of 

Figure 1. Examples of progressive grades of infection in garlic cloves: (a) healthy or asymptomatic;
(b) slightly infected; (c) infected; (d) highly infected; (e) very highly infected or completely damaged.

Then, based on the same sampling procedure, other new 45 samples of garlic cloves were
harvested and collected, and divided in two external validation sets: 15 peeled (as those used for
calibration) and 30 unpeeled, respectively.

NIRS analysis. FT-NIR diffuse reflectance spectra of garlic cloves samples were collected with a
NIRFLex N-500 (Büchi, Flawil, Switzerland), equipped with the Solids Cell Module (Büchi, Flawil,
Switzerland) and set up with a polarization interferometer with TeO2 wedges. Fresh samples were
flattened on the glass surface by using a XL-sample holder 2.5 cm in diameter, suitable for small
samples or samples of particular shape (such as garlic cloves). For each clove, three different spectra
were acquired, the same sample randomly were re-placed on the sample holder in three different
positions. The instrument was designed to be operational for working temperature conditions from
5 up to 35 ˝C, without any drift of the spectra signal. The reflectance spectra were recorded using
NIRW are software version 1.4 (Büchi, Flawil, Switzerland) and scanning the full range—from 1000
to 2500 nm—at 8 nm intervals. Measurements were carried out at 4 scans/s with a wavenumber
accuracy of ˘0.2 nm (measured with HF gas cell at an ambient temperature of 25 ˘ 5 ˝C). To obtain a
good signal-to-noise ratio, 16 scans for each spectrum were averaged during each spectral acquisition,
resulting in a total measurement time of a few seconds. Every spectrum acquisition was preceded by
the acquisition of an internal and external reference to optimize the spectrum baseline.

Chemometrics. All chemometric analysis—including calibration and validation—were performed
using NIRCal 5.0 (Büchi, Flawil, Switzerland). The wavelengths for each set of processing data were
suggested by NIRCal 5.0, based on correlation coefficients calculated for each wavelength [28]. Wavelength
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selection is carried out by the software based on an iterative procedure (Calibration wizard®) combining all
possible spectral information and spectra pretreatments to obtain the best combination for calibration.

To establish the relationship between the reference analysis and NIR values, the Partial Least
Squares Regression (PLSR) was used. The optimum number of factors to be used was determined
by the predicted residual error sum of squares (PRESS) calculation that shows the sum of squares of
deviation between predicted and reference values [29]. The selection of the best quantitative regression
models was carried out using squared determination coefficient for calibration and cross validation (R2),
standard error of calibration (SEC), and standard error of cross-validation (SECV). Ratio of Performance
to Deviation (RPD)—i.e., the relationship between the SD (Standard Deviation) of the entire population
divided by the SEC (or SECV, or SEP), was also calculated for both calibration and cross validation [30].
Cross validation, as default software output, was performed in blockwise mode, splitting the calibration
set into three-fold segments, testing one segment as a validation set and the remaining as a calibration
set. Quality of calibration was described in the Q-value, calculated by the NIRCal 5.0 software
combining all relevant statistical measures (SEC, SEP, regression coefficients). This quality index
qualifies the calibrations using a number between 0 (useless) and 1 (ideal). When achieving a Q-value
greater than 0.50, the calibration will give reliable results [31]. Outlier detection was performed by
the software based on Mahalanobis distance criterion [32]. To test the probability of autocorrelation
between a time-series spectra, the Durbin-Watson (DW) test, calculated on residuals of PLSR, was
used [33]. More details on NIRS method development can be found in Tamburini, et al. [34]. Finally,
the standard error of the laboratory (SEL)—i.e., the error of the reference data—was reported in order
to allow a comparison between that value and the NIRS performance (SEC and SECV).

Raw absorbance spectra were processed with a combination of Standard Normal Variate
(SNV) and first derivative (Savitzky–Golay three points), as mathematical pretreatments. SNV is
a mathematical transformation method of the spectra used to remove slope variation and to correct for
scatter effects [35]. SNV removes the multiplicative interferences of scatter, particle size, and the change
of light distance. It corrects both multiplicative and additive scatter effects. First derivative eliminates
baseline drifts, and small spectral differences are enhanced. Derivatives in general are mainly used to
resolve peak overlap (or enhance resolution) and eliminate constant and linear baseline drift between
samples. Spectral first derivative has been calculated here by Savitzky-Golay polynomial fitting, where
the data within a moving window are fitted by a polynomial of a given degree to generate a differential
of a chosen degree. In this procedure, it is very important to select the proper differentiation width of
the moving window in the function. The width should not exceed one point five times the half width
of absorbance peak in the spectra [36].

The calibration for F. proliferatum concentration was then validated by means of external validation:
45 new samples were acquired to obtain additional data and evaluate the predictive capability of the
model. The prediction accuracy was considered in terms of squared correlation coefficient (R2) and
root mean standard error of prediction between predictions and reference values (RMSEP).

Identification of Fusarium proliferatum, genomic DNA extraction, and fungal biomass quantification in
garlic cloves. The reference F. proliferatum strain (s. designation: 1004.1) was grown on Potato-Dextrose-Agar
(PDA) medium (FLUKA- Sigma-Aldrich) at room temperature (25 ˝C) for 5–6 days under black light.
The surface is white, becoming purple-violet with age, and the pigment varies in violet intensity.
Fungal genomic DNA (gDNA) was extracted and purified from mycelium following the procedure
reported in Griffin [37]. To determine F. proliferatum concentration in garlic clove samples, each entire
clove was weighed and deprived of the outer surface, collecting it in a mortar with liquid nitrogen and
ground into fine powder with a sterile pestle. Then, 50–100 micrograms were withdrawn and lysed
with I-GENOMIC PLANT Mini Kit (iNtRON Biotechnology, New York, NY, USA). The residue of the
lyophilized material not useful for the extraction was stored at ´20˝ C. Quantitative determination
of fungal gDNA was obtained by electrophoresis (0.8% w/v agarose gel) and spectrophotometry
(ND-1000 Nano Drop, Thermo Scientific, Wilmington, NC, USA). Primer design, specificity evaluation,
and conventional PCR setting were carried out as reported by [38,39]. Sybr Green real-time PCR was
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used for evaluating specificity on the gDNA in reference F. proliferatum and in diseased garlic tissues.
Reactions were performed in a CFX apparatus (CFX96 Touch™ machine—USA-BioRad, Hercules, CA,
USA), and the results were analyzed using the manufacturer’s software (CFX Manager Software, v. 3.1;
BioRad, Hercules, CA, USA) [40–42]. qPCR was performed on two biological replicates of each sample.
Standard curves of DNA quantification were obtained from five dilutions of F. proliferatum four-fold,
starting from 14.3 ng/µL. The amount of fluorescence emission in qPCR correlates to the initial amount
of target template during exponential phase [43]. Results are expressed on fresh weight of clove and
are related to the total F. proliferatum concentration as active biomass and spore present in the sample.

3. Results and Discussion

3.1. Quantification of F. proliferatum in Garlic Cloves

Absolute quantification yields the exact number of target DNA molecules by comparison with
the DNA standards using a calibration curve, and in this case has allowed the quantification of active
biomass of F. proliferatum in each clove sample. The reliability of the absolute quantification method
depends on the PCR efficiency for the target and depends on the calibration curve. An average squared
regression (R2) of 0.999 and a PCR efficiency of 95% were obtained, and to extract quantification data
from any value, the following equation is used: Quantity = 10 (Cq´b)/m, where b is the y-intercept
and m is the slope of the linear regression. The quantity (in picograms) was defined by the serial
dilutions used to create the standard curve, because all gene data from garlic samples was obtained by
interpolating their PCR signals (Cq) into the standard curve.

Chemotypization analysis allowed us to determine the F. proliferatum concentration in garlic
cloves from its DNA extraction, because from the DNA it is possible to identify specific genes or the
microbial species present in a sample. Quantitative results on the 95 samples used as calibration set
are reported in Table 1.

Table 1. F. proliferatum concentration (expressed in ppb) ranges, average values, and outlier samples
grouped for grades of infection.

Grade of Infection Range (ppb) Average Value (ppb) # Samples # Outliers

1 0.34–20.68 10.51 20 6
2 18.31–79.88 49.10 20 4
3 59.76–322.13 190.94 20 2
4 345.27–1986.34 1165.80 15 2
5 2019.20–7231.15 4625.17 20 5

As can be noted, at a first glance, different grades of visual infection correspond to a specific
fungal concentration interval, even though overlapping of the extreme values occurred. Moreover,
the interesting fact is that several samples have been found outside the interval of the class of infection.
Namely, the F. proliferatum concentration in garlic cloves resulted higher or lower than expected by
the visual grade of infection. For higher values, a possible explanation could be found in the fact
that visual infection has not yet manifested itself in a manner corresponding to the presence of the
fungus. For lower concentrations, the damage manifested is reasonably not exclusively attributable
to F. proliferatum, but also to other fungal non-toxigenic species commonly present as contaminants
in cloves, such as Aspergillus spp., Penicillium spp., and Botrytis spp. [44]. It is worth noting that
such effects are more evident at the extreme classes, where the symptoms are absent or highly
manifested. Thus, to evaluate the grade of infection of garlic cloves caused by F. proliferatum, direct
quantification of fungus did not seem to be the most appropriate technique to be associated with the
visual grade of infection.
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3.2. NIR Spectra Analysis

Examples of original NIR absorption spectra of garlic cloves obtained over a wavelength range
between 1000 and 2500 nm are shown in Figure 2. Figure 2 shows the average spectrum for each grade
of infection. It is worth noting that absorption decreased in increasing grades of infection, being higher
for grade 1 and lower for grade 5, probably due to the progressive lower water content of the sample.Sensors 2016, 16, x 6 of 12 

 

 

Figure 2. Original raw near-infrared (NIR) spectra of garlic gloves at different grades of infection. 

Each spectrum represents the average spectrum for its grade of infection. 

Typically, spectra of highly complex vegetal materials do not allow easy visual interpretation, 

because of the presence of several interferences, water content, and light scattering of the sample 

surface. In these cases, spectra pretreatments are highly recommended to improve peaks resolution 

(Figure 3) [45]. 

 

Figure 3. Pretreated NIR average spectra (SNV, Standard Normal Variate; db1, first derivative) of 

garlic cloves at different grades of infection. Each spectrum represents the average spectrum for its 

grade of infection. 

Significative wavelengths were automatically selected by the software in the range of 1000–2000 

nm (as evidenced by the red bar in Figures 1 and 2). Spectra are dominated by peaks at 1150, 1360,  

1390–1400, and 1900 nm, respectively, together with a group of weaker signals in the interval  

1650–1750 nm. Peaks at 1150 and 1360 nm can be assigned to the second overtone of C–H stretching 

of CH3/CH2 groups [46]. These functional groups are present in the chitin molecule—an important 

cellular compound that contributes to the fungal cell wall. A relevant peak at 1390–1400 nm hides 

different overlapped signals derived from the second overtone of O–H stretching of water, of  

aryl–OH of fumonisins, and of pyran-OH of allixin—a phytoallexin present in high concentration in 

garlic gloves [47]. The first overtone of O-H stretching of water falls at 1900 nm. Different intensity 

of reflectance (and consequently of absorbance) appears to confirm that moisture in garlic gloves 

affects the overall extent of fungal infection. The moisture content of substrate is one of the most 

important factors governing the fungal growth and mycotoxin production [48]. A broadened and 

highly-overlapped group of weak signals in the interval 1650–1750 nm, combined with a signal at  

1900 nm, could correspond to sulfur amino acids (as S-allyl-cisteine) and allyl thiosulfinates (mainly 

allicin) present in garlic [49].  

3.3. NIRS Model Development 

The PLS calibration models were built using the whole spectra (choosing 1251 of a total of 1501 

wavelength points theoretically collectible). All spectral regions were used to assess correlations 

Figure 2. Original raw near-infrared (NIR) spectra of garlic gloves at different grades of infection.
Each spectrum represents the average spectrum for its grade of infection.

Typically, spectra of highly complex vegetal materials do not allow easy visual interpretation,
because of the presence of several interferences, water content, and light scattering of the sample
surface. In these cases, spectra pretreatments are highly recommended to improve peaks resolution
(Figure 3) [45].
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Figure 3. Pretreated NIR average spectra (SNV, Standard Normal Variate; db1, first derivative) of
garlic cloves at different grades of infection. Each spectrum represents the average spectrum for its
grade of infection.

Significative wavelengths were automatically selected by the software in the range of 1000–2000
nm (as evidenced by the red bar in Figures 1 and 2). Spectra are dominated by peaks at 1150,
1360, 1390–1400, and 1900 nm, respectively, together with a group of weaker signals in the interval
1650–1750 nm. Peaks at 1150 and 1360 nm can be assigned to the second overtone of C–H stretching
of CH3/CH2 groups [46]. These functional groups are present in the chitin molecule—an important
cellular compound that contributes to the fungal cell wall. A relevant peak at 1390–1400 nm hides
different overlapped signals derived from the second overtone of O–H stretching of water, of aryl–OH
of fumonisins, and of pyran-OH of allixin—a phytoallexin present in high concentration in garlic
gloves [47]. The first overtone of O-H stretching of water falls at 1900 nm. Different intensity
of reflectance (and consequently of absorbance) appears to confirm that moisture in garlic gloves
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affects the overall extent of fungal infection. The moisture content of substrate is one of the most
important factors governing the fungal growth and mycotoxin production [48]. A broadened and
highly-overlapped group of weak signals in the interval 1650–1750 nm, combined with a signal at
1900 nm, could correspond to sulfur amino acids (as S-allyl-cisteine) and allyl thiosulfinates (mainly
allicin) present in garlic [49].

3.3. NIRS Model Development

The PLS calibration models were built using the whole spectra (choosing 1251 of a total
of 1501 wavelength points theoretically collectible). All spectral regions were used to assess
correlations between the absorbance and the associated analytical information, with the exception
of the combination bands region beyond 2000 nm automatically excluded from calculation by the
software, because they were not correlated with analytical information.

A total of 285 spectra were collected (three spectra for each sample) and used to develop a
calibration model corresponding to the 95 samples of garlic gloves, in the range of F. proliferatum
concentration 0.34–7231.15 ppb; no outliers were found in the sample set. The blockwise
cross-validation was performed by the software by randomly choosing two samples at a time from the
calibration set (C-set) to be assigned to the validation set (V-set). Finally, 190 samples were allocated in
the C-set and 95 in the V-set. The regression model (four factors) and the cross-validation curve are
shown in Figure 4. The standard error of calibration (SEC) and the regression coefficient (R2) were
0.012 and 0.983, respectively; the validation samples were predicted with a SECV of 0.016 and a R2 of
0.945 (see Table 2). Based on the DW statistics, both the C-set and V-set showed no autocorrelation.
RPD for calibration and cross validation were satisfactory in terms of predictive ability of the model.
A comparison between SEL and SEC has shown an unavoidable strong worsening of the accuracy
when passing from reference assays to NIRS results (real-time PCR technique is known as very precise
and accurate), due to the intrinsic characteristic of NIRS to be a secondary technique. In fact, in order
to correlate the sample absorbance to the concentration of a specific compound, the accurate amount
of the compound under analysis must be known. For this reason, NIRS technologies are initially
dependent on other chemical methods (also known as reference methods or primary techniques) to
develop a calibration model and validate it properly. Precision and accuracy of NIRS calibrations will
be strictly determined by the quality of the reference data, and, principally due to statistical errors
propagation, part of them is unavoidably lost.Sensors 2016, 16, 1099 8 of 12 
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Table 2. Partial least squares regression (PLSR) results obtained for F. proliferatum concentration
(expressed in ppb). C-set: calibration set; DW: Durbin-Watson test; RPD: ratio of performance to
deviation; SEC: standard error of calibration; SECV: standard error of cross-validation; SEL: standard
error of the laboratory; WL: wavelength.

Statistical Parameter Calibration Cross Validation

Units ppb ppb
SEL-reproducibility 0.10 0.10

# Samples 190 95
Outliers 0 0

Min 0.34 0.95
Max 7231.15 6541.89
SD 1391.17 1467.98

Segment (nm) 4 4
WL range/step (nm) 1000–2500/8 1000–2500/8

Pretreatments SNV/D1 SNV/D1
Regression method PLSR blockwise CV
Number of factors 4 -

SEC 615.17 -
R2 0.829 0.774

SECV - 717.41
NIRS repeatability 0.11 0.11

DW 2.09 1.84
C-Set Durbin–Watson in range 1.5 to 2.5? yes yes

Q-value 0.85 -
RPD 2.26 2.04

The best-performing calibration model—obtained with the PLSR (fitting four factors)—and the
cross-validation curve are shown in Figure 4.

Figure 5 shows the regression coefficients obtained from PLSR model for F. proliferatum concentration,
namely which wavelength are highly correlated to the parameter of interest in building calibration.
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As expected, the graph shows that wavelengths at 1150, 1390–1400 nm (corresponding to fungal
characteristics), and 1900 nm (related to moisture content of the matrix) have the strongest effect
on the model, because they bring the most analytical information related to fungal concentration.
Such absorptions confirmed results obtained by Sirisomboon, et al. [23], who isolated the same
wavelengths related to fungal presence (even though in a rice matrix), or identified as fundamental by
Wang, et al. [50] to discriminate fungal-damaged soybean seeds. At the moment, it is quite difficult to
compare our results with those obtained in the cereal sector, where NIRS application for the healthy
status of vegetal matrices has been earlier developed, because they are more interested in quantifying



Sensors 2016, 16, 1099 9 of 13

the presence of the mycotoxins produced by fungi than in the fungal concentration itself. It could
be justified by the fact the the actual regulation in that field gives limits only for the presence of
mycotoxins in kernels or flour and not for fungal concentration. Finally, at this stage of the research,
NIR seems to be a promising technique to quantitatively determine fungal concentration in garlic
cloves samples infected by F. proliferatum, because a positive correlation has been found between
reference assay data and NIRS predicted results; however, at the moment we are not able to assume
that NIRS could discriminate among different species of fungi developed in samples and probably
altogether responsible for visual grade of infection.

3.4. NIRS Model External Validation

External validation was carried out for F. proliferatum concentration in order to evaluate the actual
predictive capability and robustness of the calibration model. An internal validation procedure
cannot be considered a sufficient test, especially when NIRS signals are strongly affected by
sample composition and structure, and in the case of low concentrations of parameter of interest.
External validation of the model has to demonstrate the performance of the chosen model for future
(unknown) samples, using an independent validation set consisting of samples that have not be used
in the creation of the calibration. In particular, the calibration model was built using peeled cloves,
because the main aim of the present study was to demonstrate the feasibility of NIR method proposed
and principally the existence of a positive correlation between NIR spectra and fungal concentration
in intact samples. Nevertheless, as expected, the possibility of predicting fungal concentration in
unpeeled cloves is the future challenge of this application, because, in field, cloves used as seeds
are always unpeeled. The advantage of using NIRS as an “instrumental eye” able to see through
the peel (instead of people) could provide an important step forward in avoiding errors in healthy
state attribution. External validation was carried out in two steps—firstly using peeled samples, so as
to verify the prediction ability of the model without adding further sources of variability, and then
using unpeeled samples, to get closer to the real application. Accordingly, an additional 15 peeled
and 30 unpeeled garlic cloves samples were collected, as previously described, and submitted to
NIRS detection and reference assays. The results of these supplementary tests have been reported
in terms of NIR-predicted F. proliferatum concentration against the off-line analytical assay results
(Figures 6 and 7).
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4. Conclusions 

The application of NIR spectroscopy for quantitative determination of F. proliferatum 
concentration in garlic cloves at different stages of infection has been studied in this research. From 
the study, the NIR spectra show that a positive correlation exists and statistical parameters of 
calibration and external validation for peeled cloves are promising, even though further 
improvement of the model accuracy should be considered. NIRS is not able to predict the fungal 
concentration in unpeeled samples using the basic calibration developed here, and needs further 
study. Once properly improved, this method could be useful not only in seeding, as an automatic 
selection method of healthy unpeeled cloves, but also in evaluating the healthy state of garlic bulbs 
in post-harvest and storage. Additional samples, also characterized for other fungal species, have to 
be included in the model in order to investigate the capacity of NIRS to discriminate among  
different species. 
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in 30 unknown samples of unpeeled garlic cloves.

External validation with peeled samples showed that the prediction ability of the model, even
though improvable, was quite satisfactorily and demonstrated a promising predictive ability of
unknown samples, with R2 of 0.7614 and RMSEP of 1458 ppb. Unfortunately, the external validation of
unknown unpeeled samples has completely failed, and any correlation has been evidenced, indicating
that the presence of peel dramatically influences the spectra signal. Assuming that validation failed
due to the different sample characteristics, the subsequent step could be to integrate the 30 spectra
of unpeeled samples in the calibration set and to repeat the calibration development, including the
variable “presence of peel” in the model and then re-validating based on an iterative procedure to
reach satisfactory prediction ability.

4. Conclusions

The application of NIR spectroscopy for quantitative determination of F. proliferatum concentration
in garlic cloves at different stages of infection has been studied in this research. From the study, the NIR
spectra show that a positive correlation exists and statistical parameters of calibration and external
validation for peeled cloves are promising, even though further improvement of the model accuracy
should be considered. NIRS is not able to predict the fungal concentration in unpeeled samples using
the basic calibration developed here, and needs further study. Once properly improved, this method
could be useful not only in seeding, as an automatic selection method of healthy unpeeled cloves,
but also in evaluating the healthy state of garlic bulbs in post-harvest and storage. Additional samples,
also characterized for other fungal species, have to be included in the model in order to investigate the
capacity of NIRS to discriminate among different species.

Acknowledgments: The authors gratefully acknowledge the financial support provided by Consorzio di Tutela
dell’Aglio di Voghiera DOP.

Author Contributions: Elena Tamburini has worked for years on the development of NIR in agri-food, and has
carried out the experimental tests and chemometric evaluation required to build up the NIR calibrations and
validation. Maria Gabriella Marchetti, Elisabetta Mamolini and Morena De Bastiani has great experience in the
field of chemotypization and PCR analysis, and carried out all the experimental assays and data processing related
to reference methods.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2016, 16, 1099 11 of 13

References

1. Rheeder, J.P.; Marasas, W.F.O.; Vismer, H.F. Production of fumonisin analogs by Fusarium species.
Appl. Environ. Microbiol. 2002, 68, 2101–2105. [CrossRef] [PubMed]

2. Da Rocha, M.E.B.; Freire, F.D.C.O.; Maia, F.E.F.; Guedes, M.I.F.; Rondina, D. Mycotoxins and their effects on
human and animal health. Food Control 2014, 36, 159–165. [CrossRef]
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8. Stępień, Ł.; Koczyk, G.; Waśkiewicz, A. Diversity of Fusarium species and mycotoxins contaminating
pineapple. J. Appl. Genet. 2013, 54, 367–380. [CrossRef] [PubMed]

9. Von Bargen, S.; Martinez, O.; Schadock, I.; Eisold, A.M.; Gossmann, M.; Buttner, C. Genetic variability of
phytopathogenic Fusarium proliferatum associated with crown rot in Asparagus officinalis. J. Phytopathol. 2009,
157, 446–456. [CrossRef]

10. Waskiewicz, A.; Stepien, L.; Wilman, K.; Kachlicki, P. Diversity of Pea-Associated F. proliferatum and
F. verticillioides Populations Revealed by FUM1 Sequence Analysis and Fumonisin Biosynthesis. Toxins
2013, 5, 488–503. [CrossRef] [PubMed]

11. Bhale, U.N.; Chatage, V.S.; Ambuse, M.G. First Report of Fusarium proliferatum Inciting Wilt of Rumex
acetosa L. in Maharashtra, India. J. Plant Pathol. Microbiol. 2012, 3, 116. [CrossRef]

12. Medina, Á.; Rodríguez, A.; Magan, N. Climate change and mycotoxigenic fungi: Impacts on mycotoxin
production. Curr. Opin. Food Sci. 2015, 5, 99–104. [CrossRef]

13. Spanjer, M.C.; Rensen, P.M.; Scholten, J.M. LC–MS/MS multi-method for mycotoxins after single extraction,
with validation data for peanut, pistachio, wheat, maize, cornflakes, raisins and figs. Food Addit. Contam.
2008, 25, 472–489. [CrossRef] [PubMed]

14. Yörük, E.; Albayrak, G. Chemotyping of Fusarium graminearum and F. culmorum isolates from Turkey by
PCR assay. Mycopathologia 2012, 173, 53–61. [CrossRef] [PubMed]

15. Santos, C.; Fraga, M.E.; Kozakiewicz, Z.; Lima, N. Fourier transform infrared as a powerful technique for
the identification and characterization of filamentous fungi and yeasts. Res. Microbiol. 2010, 161, 168–175.
[CrossRef] [PubMed]

16. Siesler, H.W.; Ozaki, Y.; Kawata, S.; Heise, H.M. Near-Infrared Spectroscopy: Principles, Instruments, Applications;
Wiley-VCH Verlag GmbH: Weinheim, Germany, 2008.

17. McClure, W.F. 204 years of near infrared technology: 1800–2003. J. Near Infrared Spectros. 2003, 11, 487–518.
[CrossRef]

18. Pettersson, H.; Åberg, L. Near infrared spectroscopy for determination of mycotoxins in cereals. Food Control
2003, 14, 229–232. [CrossRef]

19. Fernández-Ibañez, V.; Soldado, A.; Martínez-Fernández, A.; De la Roza-Delgado, B. Application of near
infrared spectroscopy for rapid detection of aflatoxin B1 in maize and barley as analytical quality assessment.
Food Chem. 2009, 113, 629–634. [CrossRef]

20. Hossain, M.Z.; Goto, T. Near- and mid-infrared spectroscopy as efficient tools for detection of fungal and
mycotoxin contamination in agricultural commodities. World Mycotoxin J. 2014, 7, 507–515. [CrossRef]

21. Hernández-Hierro, J.M.; García-Villanova, R.J.; González-Martín, I. Potential of near infrared spectroscopy
for the analysis of mycotoxins applied to naturally contaminated red paprika found in the Spanish market.
Anal. Chim. Acta 2008, 622, 189–194. [CrossRef] [PubMed]

22. Tripathi, S.; Mishra, H.N. A rapid FT-NIR method for estimation of aflatoxin B 1 in red chili powder.
Food Control 2009, 20, 840–846. [CrossRef]

http://dx.doi.org/10.1128/AEM.68.5.2101-2105.2002
http://www.ncbi.nlm.nih.gov/pubmed/11976077
http://dx.doi.org/10.1016/j.foodcont.2013.08.021
http://dx.doi.org/10.1016/j.foodcont.2012.02.007
http://dx.doi.org/10.1016/j.fm.2009.08.001
http://www.ncbi.nlm.nih.gov/pubmed/19913692
http://dx.doi.org/10.1007/s13314-014-0142-1
http://dx.doi.org/10.1023/A:1020679029993
http://dx.doi.org/10.1080/02652030701513834
http://www.ncbi.nlm.nih.gov/pubmed/17886185
http://dx.doi.org/10.1007/s13353-013-0146-0
http://www.ncbi.nlm.nih.gov/pubmed/23572446
http://dx.doi.org/10.1111/j.1439-0434.2008.01525.x
http://dx.doi.org/10.3390/toxins5030488
http://www.ncbi.nlm.nih.gov/pubmed/23470545
http://dx.doi.org/10.4172/2157-7471.1000116
http://dx.doi.org/10.1016/j.cofs.2015.11.002
http://dx.doi.org/10.1080/02652030701552964
http://www.ncbi.nlm.nih.gov/pubmed/18348046
http://dx.doi.org/10.1007/s11046-011-9462-2
http://www.ncbi.nlm.nih.gov/pubmed/21847609
http://dx.doi.org/10.1016/j.resmic.2009.12.007
http://www.ncbi.nlm.nih.gov/pubmed/20079832
http://dx.doi.org/10.1255/jnirs.399
http://dx.doi.org/10.1016/S0956-7135(03)00011-2
http://dx.doi.org/10.1016/j.foodchem.2008.07.049
http://dx.doi.org/10.3920/WMJ2013.1679
http://dx.doi.org/10.1016/j.aca.2008.05.049
http://www.ncbi.nlm.nih.gov/pubmed/18602552
http://dx.doi.org/10.1016/j.foodcont.2008.11.003


Sensors 2016, 16, 1099 12 of 13

23. Sirisomboon, C.D.; Putthang, R.; Sirisomboon, P. Application of near infrared spectroscopy to detect
aflatoxigenic fungal contamination in rice. Food Control 2013, 33, 207–214. [CrossRef]

24. Singh, C.B.; Jayas, D.S.; Paliwal, J.; White, N.D.G. Fungal damage detection in wheat using short-wave
near-infrared hyperspectral and digital colour imaging. Int. J. Food Prop. 2012, 15, 11–24. [CrossRef]

25. FAOSTAT. 2014. Available online: http://faostat.fao.org/site/291/default.aspx (accessed on 21 April 2016).
26. Palmero, D.; de Cara, M.; Nosir, W.; Galvez Patón, L.; Cruz, A.; Woodward, S.; González-Jaén, M.T.; Tello, J.C.

Fusarium proliferatum isolated from garlic in Spain: Identification, toxigenic potential and pathogenicity on
related Allium species. Phytopathol. Mediter. 2013, 51, 207–218.

27. Clewer, A.G.; Scarisbrick, D.H. Practical Statistics and Experimental Design for Plant and Crop Science; John Wiley
& Sons: Hoboken, NJ, USA, 2013.

28. Isaksson, T.; Næs, T. The effect of multiplicative scatter correction (MSC) and linearity improvement in NIR
spectroscopy. Appl. Spectrosc. 1988, 42, 1273–1284. [CrossRef]

29. Martens, H.; Naes, T. Multivariate Calibration; John Wiley & Sons: Chichester, UK, 1988.
30. Williams, P.C. Near-Infrared Technology in the Agricultural and Food Industries, 2nd ed.; American Association

of Cereal Chemists: Saint Paul, MN, USA, 2001.
31. Wold, S.; Antti, H.; Lindgren, F.; Öhman, J. Orthogonal signal correction of near-infrared spectra.

Chemom. Intell. Lab. Syst. 1998, 44, 175–185. [CrossRef]
32. Rocke, D.M.; Woodruff, D.L. Identification of Outliers in Multivariate Data. J. Am. Stat. Assoc. 1996, 91, 1047–1061.

[CrossRef]
33. Durbin, J.; Watson, G.S. Testing for serial correlation in least squares regression. Biometrika 1950, 37, 409–428.

[PubMed]
34. Tamburini, E.; Marchetti, M.G.; Pedrini, P. Monitoring Key Parameters in Bioprocesses Using Near-Infrared

Technology. Sensors 2014, 14, 18941–18959. [CrossRef] [PubMed]
35. Dhanoa, M.S.; Lister, S.J.; Sanderson, R.; Barnes, R.J. The link between multiplicative scatter correction (MSC)

and standard normal variate (SNV) transformations of NIR spectra. J. Near Infrared Spectrosc. 1994, 2, 43–47.
[CrossRef]

36. Vivó-Truyols, G.; Schoenmakers, P.J. Automatic selection of optimal Savitzky-Golay smoothing. Anal. Chem.
2006, 78, 4598–4608. [CrossRef] [PubMed]

37. Griffin, D.W.; Kellogg, C.A.; Peak, K.K.; Shinn, E.A. A rapid and efficient assay for extracting DNA from
fungi. Lett. Appl. Microbiol. 2002, 34, 210–214. [CrossRef] [PubMed]

38. Geiser, D.M.; Jiménez-Gasco, M.; Kang, S.; Makalowska, I.; Veeraraghavan, N.; Ward, T.J.; Zhang, N.;
Kuldau, G.A.; O’donnell, K. FUSARIUM-ID v.1.0: A DNA sequence database for identifying Fusarium.
Eur. J. Plant Pathol. 2004, 110, 473–479. [CrossRef]

39. Kennedy, S.; Oswald, N. PCR Troubleshooting and Optimization: The Essential Guide; Caister Academic:
Edinburgh, UK, 2011.

40. Martínez, N.; Martín, M.C.; Herrero, A.; Fernández, M.; Alvarez, M.A.; Ladero, V. qPCR as a powerful
tool for microbial food spoilage quantification: Significance for food quality. Trends Food Sci. Technol. 2011,
22, 367–376. [CrossRef]

41. Nam, H.-M.; Srinivasan, V.; Gillespie, B.E.; Murinda, S.E.; Oliver, S.P. Application of SYBR green real-time
PCR assay for specific detection of Salmonella spp. in dairy farm environmental samples. Int. J. Food Microbiol.
2005, 102, 161–171. [CrossRef] [PubMed]

42. Postollec, F.; Falentin, H.; Pavan, S.; Combrisson, J.; Sohier, D. Recent advances in quantitative PCR (qPCR)
applications in food microbiology. Food Microbiol. 2011, 28, 848–861. [CrossRef] [PubMed]

43. Levin, R.E. Rapid Detection and Characterization of Foodborne Pathogens by Molecular Techniques; CRC Press:
Boca Raton, FL, USA, 2010; pp. 8–20.

44. Dugan, F.M.; Hellier, B.C.; Lupien, S.L. Pathogenic fungi in garlic seed cloves from the United States and
China, and efficacy of fungicides against pathogens in garlic germplasm in Washington State. J. Phytopathol.
2007, 155, 437–445. [CrossRef]

45. Sun, J. Statistical analysis of NIR data: Data pretreatment. J. Chemom. 1997, 11, 525–532. [CrossRef]
46. Workman, J., Jr.; Weyer, L. Practical Guide to Interpretive Near-Infrared Spectroscopy; CRC Press: Boca Raton, FL,

USA, 2008.
47. Kodera, Y.; Ayabe, M.; Ogasawara, K.; Yoshida, S.; Hayashi, N.; Ono, K. Allixin accumulation with long-term

storage of garlic. Chem. Pharm. Bull. 2002, 50, 405–407. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.foodcont.2013.02.034
http://dx.doi.org/10.1080/10942911003687223
http://faostat.fao.org/site/291/default.aspx
http://dx.doi.org/10.1366/0003702884429869
http://dx.doi.org/10.1016/S0169-7439(98)00109-9
http://dx.doi.org/10.1080/01621459.1996.10476975
http://www.ncbi.nlm.nih.gov/pubmed/14801065
http://dx.doi.org/10.3390/s141018941
http://www.ncbi.nlm.nih.gov/pubmed/25313494
http://dx.doi.org/10.1255/jnirs.30
http://dx.doi.org/10.1021/ac0600196
http://www.ncbi.nlm.nih.gov/pubmed/16808471
http://dx.doi.org/10.1046/j.1472-765x.2002.01071.x
http://www.ncbi.nlm.nih.gov/pubmed/11874544
http://dx.doi.org/10.1023/B:EJPP.0000032386.75915.a0
http://dx.doi.org/10.1016/j.tifs.2011.04.004
http://dx.doi.org/10.1016/j.ijfoodmicro.2004.12.020
http://www.ncbi.nlm.nih.gov/pubmed/15913820
http://dx.doi.org/10.1016/j.fm.2011.02.008
http://www.ncbi.nlm.nih.gov/pubmed/21569926
http://dx.doi.org/10.1111/j.1439-0434.2007.01255.x
http://dx.doi.org/10.1002/(SICI)1099-128X(199711/12)11:6&lt;525::AID-CEM489&gt;3.0.CO;2-G
http://dx.doi.org/10.1248/cpb.50.405
http://www.ncbi.nlm.nih.gov/pubmed/11911208


Sensors 2016, 16, 1099 13 of 13

48. Gregori, R.; Meriggi, P.; Pietri, A.; Formenti, S.; Baccarini, G.; Battilani, P. Dynamics of fungi and related
mycotoxins during cereal storage in silo bags. Food Control 2013, 30, 280–287. [CrossRef]

49. Lawson, L.D.; Gardner, C.D. Composition, Stability, and Bioavailability of Garlic Products Being Used in a
Clinical Trial. J. Agric. Food. Chem. 2005, 53, 6254–6261. [CrossRef] [PubMed]

50. Wang, D.; Dowell, F.E.; Ram, M.S.; Schapaugh, W.T. Classification of fungal-damaged soybean seeds using
near-infrared spectroscopy. Int. J. Food Prop. 2004, 7, 75–82. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.foodcont.2012.06.033
http://dx.doi.org/10.1021/jf050536+
http://www.ncbi.nlm.nih.gov/pubmed/16076102
http://dx.doi.org/10.1081/JFP-120022981
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Materials and Methods 
	Results and Discussion 
	Quantification of F. proliferatum in Garlic Cloves 
	NIR Spectra Analysis 
	NIRS Model Development 
	NIRS Model External Validation 

	Conclusions 

