
sensors

Article

Discrete Particle Swarm Optimization Routing
Protocol for Wireless Sensor Networks with
Multiple Mobile Sinks

Jin Yang 1,2, Fagui Liu 1,*, Jianneng Cao 3 and Liangming Wang 1

1 School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006,
China; goodskyfly@163.com (J.Y.); lmwang@scut.edu.cn (L.W.)

2 School of Medical Information and Engineering, Guangdong Pharmaceutical University,
Guangzhou 510006, China

3 Data Analytics Department, Institute for Infocomm Research, 1 Fusionopolis Way,
#21-01 Connexis (South Tower), Singapore 138632, Singapore; caojn@i2r.a-star.edu.sg

* Correspondence: fgliu@scut.edu.cn; Tel.: +86-20-3938-0282

Academic Editors: Mianxiong Dong, Zhi Liu, Anfeng Liu and Didier El Baz
Received: 4 June 2016; Accepted: 8 July 2016; Published: 14 July 2016

Abstract: Mobile sinks can achieve load-balancing and energy-consumption balancing across the
wireless sensor networks (WSNs). However, the frequent change of the paths between source
nodes and the sinks caused by sink mobility introduces significant overhead in terms of energy and
packet delays. To enhance network performance of WSNs with mobile sinks (MWSNs), we present
an efficient routing strategy, which is formulated as an optimization problem and employs the particle
swarm optimization algorithm (PSO) to build the optimal routing paths. However, the conventional
PSO is insufficient to solve discrete routing optimization problems. Therefore, a novel greedy discrete
particle swarm optimization with memory (GMDPSO) is put forward to address this problem. In the
GMDPSO, particle’s position and velocity of traditional PSO are redefined under discrete MWSNs
scenario. Particle updating rule is also reconsidered based on the subnetwork topology of MWSNs.
Besides, by improving the greedy forwarding routing, a greedy search strategy is designed to drive
particles to find a better position quickly. Furthermore, searching history is memorized to accelerate
convergence. Simulation results demonstrate that our new protocol significantly improves the
robustness and adapts to rapid topological changes with multiple mobile sinks, while efficiently
reducing the communication overhead and the energy consumption.

Keywords: discrete particle swarm optimization; wireless sensor network with mobile sinks; routing;
energy efficiency

1. Introduction

Recently, wireless sensor networks (WSNs) have gained enormous attention for their wide range
of applications [1]. WSNs consist of many tiny sensor nodes and one or multiple sinks, sensor nodes
gather data from the sensing environment to sinks by communicating with each other. Energy efficiency
is the most important issue in WSNs due to the limited battery capacity of sensor nodes. In WSNs with
static sinks, the nodes close to the sinks would become hotspots and die earlier than others, because
they are more likely to be the intersection of multihop routes and need to deplete their battery supplies
to transmit huge amounts of data for other sensor nodes to the sinks [2]. Node death will result in
a series of problems, such as disruptions in the topology, reduction of sensing coverage and packets
loss, and so on. Therefore, routing protocols designed for WSNs have to incorporate load-balancing in
order to achieve uniformity of energy consumption throughout the network. Mobile sinks are a good
solution to avoid the hotspots [3,4]. In mobile based routing protocols, the hotspots around the sink

Sensors 2016, 16, 1081; doi:10.3390/s16071081 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2016, 16, 1081 2 of 27

change as the sink moves, which means that each node in the network has the chance to become the
neighbor of the sink, so the high energy drainage around the sink is spread through the network,
which helps achieving uniform energy consumption, and the network lifetime can be prolonged.

However, due to the sink mobility, the paths between source nodes and sinks are frequently
updated, which introduces significant energy overhead. Therefore, mobile sink routing protocols
should minimize the energy overhead of such operations while avoiding an extremely high increase of
the sensor data delivery latency. A lot of distributed mobile sink protocols are proposed. Among these,
the hierarchical protocols [2,5,6] are the most important and the most widely adopted, which aim to
decrease the load of advertising the sink’s position to the network by constructing a virtual multitier
(two or more) hierarchy role among the nodes. The high-tier nodes that can be easily reachable
obtain and store the fresh sink position, while the remaining nodes query them to acquire the sink
position whenever needed. Such a scheme does not need the network-wide sink advertisement, and
thus significantly decreases the communication overhead and enhances the energy-efficiency of the
network. However, the high-tier nodes may become hotspots. Yet the non-hierarchical protocols utilize
mechanisms like flooding, overhearing or exploit geometric properties to advertise the sink’s position
to the source nodes [7,8]. Thus, they can eliminate the overhead of constructing the virtual hierarchical
structure and the possibility of hotspots on such a structure. However, they need the network-wide
sink advertisement. The review of prominent hierarchical and non-hierarchical mobile sink routing
protocols are presented in [9].

Recently, centralized nature-inspired algorithms have been studied to design routing protocol
for MWSNs and have been proven to be good a solutions [10–13]. PSO is now prevailing due to
its simple concept, easy implementation and effectiveness [14]; therefore, in this study, we employ
PSO to build the optimal routing tree. In PSO-based protocols, routing establishment is formulated
as an optimization problem; mobile sink masters the topology of the entire network by using
network-wide flooding and runs various improved PSO to build the optimal routing paths for all
source nodes. However, there are some shortages in existing schemes: (1) PSO is originally designed
for continuous optimization problem, thus, they cannot deal with the discrete optimization problem
as well as continuous optimization problems. Yet the routing optimization problem in MWSNs is
discrete, and none of the existing solutions attempt to solve this problem. Therefore, the main goal of
this paper is to propose a new discrete PSO algorithm by adapting the conventional PSO to build the
optimal path tree more effectively in MWSNs; (2) Network-wide flooding significantly increased the
communication overhead and energy consumption, while choosing the optimal routing result from
all nodes greatly increases the computation burden. Thus, the second goal of this paper is to design
a more efficient routing strategy; (3) As an evaluation criterion which helps us to periodically update
the particles’ personal best position Pbest and the swarm’s global best position Gbest, fitness function is
very important, because it directly affects the final results. Good fitness function improves the solution.
In order to achieve better network performance, the existing fitness functions focus on maximizing
the total remaining energy, and minimizing the total route length, total energy consumption and total
communication delay of the candidate routing result. No attempt has considered such a case that the
lifetime of a routing path just only depends on the relay node that has least lifetime, rather than the
total remaining energy and total energy consumption. Therefore, the third goal of this paper is to give
a better fitness function for our new routing protocol.

In this paper, we present an efficient routing strategy in which the greedy forwarding mechanism
is employed as the underlying routing solution and the unicast local flooding method, rather than
network-wide flooding, is adopted to reduce the communication and energy overhead caused by
frequent broadcast communications. In our strategy, building routing tree from some source nodes
to a mobile sink is formulated as an optimization problem, and the novel GMDPSO algorithm is put
forward to solve this optimal problem. The main highlights of the proposed GMDPSO are as follows.
First, we give a new fitness function in which we carefully calculated the energy consumption of relay
nodes and try to minimize the distance among them to achieve energy conservation. Besides, we also

Sensors 2016, 16, 1081 3 of 27

minimize the total communication delay of routing tree. Second, the particle’s velocity and position of
conventional PSO have been carefully redefined under discrete scenario so as to make them as easy as
possible to encode/decode. Third, to effectively reduce the exhaustive global searching space and drive
the particles to promising regions, the particle’s velocity and position updating principles have been
thoroughly reconsidered by taking the advantage of the network topology of the collected candidate
relay nodes by sink. Fourth, to avoid being trapped into local optima when building each optimal
routing path, a greedy searching strategy specially designed for the particles to adjust their positions
is proposed by improving the greedy forwarding mechanism. Fifth, searching history is memorized
to accelerate convergence. By employing the provided GMDPSO and new fitness function, our new
routing protocol is able to find the optimal routing tree, which well balances energy consumption of
the relay nodes, delay and the overall rout tree length.

In summary, the contribution of this paper can be listed as follows.

‚ An efficient routing strategy of the MWSNs is designed which is formulated as optimization problem.
‚ A novel greedy discrete PSO with memory (GMDPSO) algorithm, which offers faster global

convergence and higher solution quality, is put forward to quickly build the optimal routing tree,
which can decrease the control overhead and minimize energy consumption.

‚ Our new routing protocol is realized based on GMDPSO and more accurate new fitness function.
‚ Simulations of the proposed protocol are performed to demonstrate its performance against some

of the existing protocols.

The rest of the paper is organized as follows. The related work is presented in Section 2. Section 3
states the system model, which includes network model, energy model and fault model, and used
terminologies. In Section 4, we present the routing strategy and the flowchart of our protocol. Section 5
gives a detailed description of the proposed GMDPSO, which is the core algorithm of our routing
protocol. Section 6 evaluates the performance of our protocol by comparing it with other routing
protocols. Finally, Section 7 concludes the paper.

2. Related Work

Various routing protocols have been proposed for MWSNs. TTDD (a Two-Tier Data
Dissemination) [15] initially builds a rectangular grid structure which divides the network into cells
with several dissemination nodes that are used to relay the query and data to/from the proper source.
Whenever sinks request data, they query the network by local flooding within the cell and the query
packets are relayed to the source nodes through dissemination nodes. A data path from the source to the
sink is then established using the reverse of the path taken by the data request. However, TTDD suffers
from the high overhead of constructing a separate grid for each source node. Unlike TTDD, Grid-Based
Energy-Efficient Routing From Multiple Sources to Multiple Mobile Sinks (GBEER) [16] constructs
a single combined rectangular grid structure for all possible sources to eliminate the high overhead
of constructing separate grids for each source. However, the frequent grid change due to solving the
hotspots introduces extra traffic on numerous nodes residing between the crossing points. In place of
a rectangular grid, HPDD (Hexagonal Path Data Dissemination) [17] utilizes a common grid structure
composed of hexagons. Which can provide shorter data and sink advertisement routes, but it suffers
from the same hotspot problem. SEAD (Scalable Energy-efficient Asynchronous Dissemination) [18]
constructs a minimum-cost weighted Steiner tree for the mobile sink by considering the distance
and the packet traffic rate among nodes to save communication energy. Like TTDD, separate trees
are constructed for each source; thus, the overhead of establishing such trees is very high. Ring
Routing [19] designs an easily accessible ring structure to mitigate the anticipated hotspot problem
with low overhead and minimize the data reporting delays. However, its questionable scalability is not
good. Besides, the overhead of the initial ring construction for large or sparse networks will be high.

In agent-based schemes, one or more agents, which take on the role of representatives for the
sources or the sink, are selected to relay the traffic between sources and the sink. These protocols

Sensors 2016, 16, 1081 4 of 27

usually utilize infrequent flooding to advertise the location of the agents. IAR (Intelligent Agent-Based
Routing Protocol) [20] provides efficient data delivery to mobile sinks in large scale wireless sensor
networks with sink mobility. IAR reduces the packet loss and signal overhead, meanwhile improves
degraded route called triangular routing problem. However, as the hotspot, the agent (or IR) is chosen
only depending on the distance to the sink without considering its remaining energy. Thus, once
a node with low remaining energy is chosen to be the agent, it may die quickly, which leads to break
the existing path to the sink. DHA (Data Dissemination Protocol Based on Home Agent and Access
Node) [21] employs Home Agent and Access Node to design a simple protocol. Similar to IAR, the
load on the home agent is immense, and changing the home agent requires global flooding. To decrease
the frequency of global floods, SinkTrail [7] constructs and utilizes a logical coordinate space, which
does not require position aware sensors and enables simple data dissemination by logical greedy
geographic routing. However, the sink’s mobility is assumed to be nomadic and limits the applicability
of the protocol. VGE-MGP [22] is another efficient mobile sink based routing without the physical
geographic information.

Recently, nature-inspired algorithms are applied to solve the problem of the mobile based
protocol. SIMPLE (swarm intelligence based protocol) [23] is based on a swarm agent that integrates
the remaining energy of nodes into the route selection mechanism and maximizes the network’s
lifetime by evenly balancing the remaining energy across nodes and minimizing the protocol overhead.
The protocol is robust and scales well with both the network size and in the presence of multiple sinks.
The movement of sinks may lead to the breakage of the existing routes. In most routing protocols,
the query packets are broadcasted to repair a broken path from source node to sink, which causes
significant communication overhead in terms of both energy and delay. In order to repair the broken
path and maintain the available route from the source nodes to the mobile sink through a multi-hop
network with lower communication overhead, IOLPSOR (immune orthogonal learning particle swarm
optimization algorithm based routing recovery method) [11] is proposed to provide more efficient
routing recovery capability to MWSNs. Furthermore, a more efficient ECPSOAR (efficient routing
recovery protocol with endocrine cooperative particle swarm optimization algorithm) [10] is proposed
to repair the broken path caused by both the movement of the sink and failure of sensor nodes.
However, neither IOLPSOR nor ECPSOAR considers the following two cases. One case is that, the
lifetime of the routing tree depends on the relay node that has the least lifetime. The other case is that,
the improved PSOAs used by these two protocols do not well fit the discrete routing scenario.

3. System Mode and Terminologies

3.1. System Mode

We assume such a MWSN scenario: A wide open area is covered with a large number of
homogeneous sensor nodes; there are N source nodes and M mobile sinks. Sinks can move anywhere
within the sensor field, at any time with a fixed speed. Each source node sends its sensed data through
multi-hops to the nearest sink via one and only one routing path. Several nodes can route packets
to the mobile sink. In our network mode, individual node only owns the local information, such as
its unique ID, residual energy level, delay and the distances to its neighbors, which can be estimated
based on the received signal strength [24,25]. Our model does not need any extra positioning system
such as GSP.

We use the same energy model and fault model proposed in [10]. The energy consumption
equation of sensing and transferring m bit data is as follows:

Esenspmq “ α1ˆm (1)

Etxpm, dq “ pβ1 ` β2ˆ dispi, jqnqˆm (2)

Erxpmq “ γ1ˆm (3)

Sensors 2016, 16, 1081 5 of 27

where dis (i, j) is the distance between node i and node j, Esens is the energy consumption of sensing m
bits of data, Etx(m, d) and Erx(m) are the energy consumption of sending and receiving m bits of data,
n is the channel attenuation index, α1, β1, β2 and γ1 are energy consumption parameters of sensing
circuit, sending circuit, sending amplifier and receiving circuit, respectively. Let Pfault be the probability
of sensor node’s failure in the network. We assume that the probability of the mobile sink failure is
approximately 0. If any relay node is failed, it is handled by our routing algorithm.

3.2. Terminologies

Throughout this paper, we use the following terminologies:

‚ Sourcej the jth sensor node. Sinki is the ith mobile sink.
‚ Agenti is the agent node belonging to Sinki. One mobile sink has just only on agent node
‚ N is the number of source nodes and M is the number of mobile sinks
‚ R is the communication range of sensor node.
‚ RNk

j is the kth relay node on the path Pathj. RNk`1
j is the next relay node of RNk

j and RNk´1
j is

the previous relay node of RNk
j .

‚ NPathj
is the number of relay nodes in Pathj. NSinki

Path is the number of routing paths of Sinki.
‚ Pathj is the path from jth source node in the network to its nearest mobile sink Sinki,

Pathj = {Sourcej, RN1
j , RN2

j , . . . , RNk
j . . . , RN

NPathj
j , Agenti, Sinki}.

‚ PTreei is the routing tree of Sinki. Pathj P PTreei and RNk
j P PTreei.

‚ l f pRNk
j qmeans the lifetime of the RNk

j . l f pPTreeiqmeans the lifetime of the l f pPTreeiq.

‚ DelaypRNk
j) is the delay of the RNk

j . Delay pPTreeiqmeans the overall delay of the PTreei.
‚ Len(Pathjqmeans the length of the Pathj. Len(PTreeiqmeans the overall length of the PTreei.
‚ EconspRNk

j q is the energy consumed by RNk
j due to data forwarding.

‚ EPath
cons

`

Pathj
˘

is the total energy consumption of routing path Pathj.
‚ G(V,E) or G means the connected graph containing all candidate relay nodes.
‚ Set(V) is the set of all sensor nodes of G(V,E), i.e., the set of all candidate relay nodes.
‚ NV is the number of sensor nodes in Set(V). N1V is the number of sensor nodes in Set(V) except the

agent node, N1V “ N ´ 1, i.e., the number of Set(V)-{Agenti}.
‚ Neig(nodei) is the set of all those sensor nodes within the communication range of nodei, therefore,

Neig(nodei) = {nodej|0 < dis(nodei, nodej) ď R}.
‚ NextRelay(noded) is the sensor node which is selected as the next relay node for noded. Therefore,

NextRelay (noded) = {nodej|@nodej dis(nodej, Agent) < dis(noded, Agent)}.

4. New Routing Protocol for MWSNs

In this section, we design an efficient routing strategy, based on the routing strategy, a new routing
protocol is presented.

4.1. Our Efficient Routing Strategy in MWSNs

In our routing strategy, mobile sinks employ agent-based data gathering scheme [20,26,27] to
collect sensed data. Our routing strategy can be described as follows.

4.1.1. Design of the Neighbor Table

Above of all, we design the neighbor table that is the key component of our protocol. It is
illustrated in Table 1.

Sensors 2016, 16, 1081 6 of 27

Table 1. Neighbor table.

self_ID neighbor_ID Dis isRelay

7 3 20 1
7 9 15 0

self_ID means a node itself, neighbor_ID means its neighbor node, Dis is the distance
between seft_ID and neighbor_ID. isRelay is a Boolean flag indicating whether the node pair
<self_IDÑneighbor_ID > within a routing path, isRelay = 1 means true and data packet is routed from
self_ID to neighbor_ID, its initial value is set to 0. Table 1 is the neighbor table for node 7 and illustrates
that node 7 has two neighbor nodes: node 3 and node 9, the distance between node 7 and node 3 is 20,
the distance between node 7 and node 9 is 15, in addition, <7Ñ3> within a routing path.

Notably, our neighbor table is a wonderful issue. Some advantages can be summarized as
follows: Firstly, neighbor table is the basic component of our protocol. Its basic function is used to
record neighbor information which is the key information used to build the optimal routing path.
Secondly, neighbor table enhances the MWSN scalability and the protocol robustness. When some
nodes are failed, they will be deleted from its neighbors’ neighbor table on demand, and never be
used to build the new optimal routing path. If the failed nodes are repaired or replaced, or new
nodes are added in the MWSNs, corresponding neighbor information will be inserted into their
neighbors’ neighbor table, thus, they can be used to build the new optimal routing path. Beyond that,
when the routing path is changed, it is only to reset the isRelay flag of the relevant nodes, and this
feature is well suited to resolve the routing problem in MWSNs. Thirdly, the isRelay flag indicates
the routing information. It serves two purposes: routing tree establishment and locating the failed
nodes. The routing tree is established by resetting the isRelay flag. In addition, if a relay node has not
received any packet from its previous relay node after a reasonable time interval, it implies that the
previous relay node has failed. With the help of the isRelay flag, the relay node can quickly find failed
node ID from its neighbor table.

4.1.2. Building Routing Tree

Here, we detailed the procedure of building the routing tree from source nodes to sink.
This procedure consists of the following steps:

Step 1 Network initiation and neighbor discovery. After all sensor nodes are deployed in the sensed
field, all nodes can update their neighbor table using RSSI-based distant estimated scheme.

Step 2 Collect network statuses. When a sink move in a target area, the first thing has to be
completed is to find the appropriate agent by local-broadcasting 1-hop Agent Query packet (AQ).
The sink selected the closest node as the agent, and then broadcasts a Data Query (DQ) packet using
unicast local flooding. Each node that receives the DQ packet firstly forwards the DQ to its neighbors
and then updates its neighbor table if necessary. When a source matches DQ packet, it replies a Success
Response (SR) packet to the sink. Each node that receives the SR packet firstly forwards the SR
to its neighbors, then broadcast Data Query Response (DQR) packet that includes its newest state
information such as residual energy, delay, and neighbor table data and so on along with its ID to
the sink. Once the SR packet is received by sink, the data query procedure is finished immediately
or finished after a reasonable time from then. This procedure as illustrates as Figure 1a. There are
two special operations in this process are noteworthy. One is that all query packets (i.e., AQ and DQ)
and their reply packets (i.e., DQR) are unicast by local flooding to reduce the overall communication
and energy overhead. The other one is that, when a source node receivs multi DQ packets from multi
sinks, it only replies to the first received DQ packet, which can assure it only sends its sense data to the
nearest mobile sink to save energy.

Sensors 2016, 16, 1081 7 of 27
Sensors 2016, 16, 1081 7 of 26

9

11

10

13

2

3

4

5

6

7

8

1
12

2Source

1Agent

1 Mobile Sink

19

16

21

24

26

20

17
22

27
14

25

23

15

18
1Source

Query packet
flooding by sink

Ack packet
from Source

a.

9

11

10

13

2

3

4

5

6

7

8

1
12

1Source
2Source

1Agent

1 Mobile Sinkb.

Figure 1. Illustration of (a) sink queries MWSN; (b) graphic description of MWSN.

Step 3 Build optimal routing tree. In most situations, multi-source nodes send data packets to a

same sink, therefore, we need to build a routing tree. Root node is the agent, and the leaf nodes mean

its source nodes. An example of routing tree is shown in Figure 2a. There are two routing paths, i.e.,

{Path1, Path2}, in the routing tree, the root node is Agenti and the leaf nodes are Source1 and Source2.

The routing tree contains 5 relay nodes. Once finished Step 2. Sink has collected a number of

neighbor tables along with their remaining energy information and delay information which are

wrapped in DQR packets. As illustrated in Figure 1b, the network topology of candidate relay nodes

that extracted from the neighbor tables, i.e., G(V, E), can be constructed by sink. Where ei∈E

indicates that two adjacent sensor nodes can communicate with each other. G(V, E) is stored as

adjacency matrix A, A[i, j] can be calculated as follows:

     
 

0

, , ,

 ,

if i j

A i j dis i j dis i j R

if dis i j R

 


 
 

 (4)

where i, j are two adjacent nodes, and dis(i, j) denote the length of eij∈E.

9

10
2

3

4

5

6

7

8

1

1Source

2Source

1Agent

1 Mobile Sink

11

12

13

11,4e

1Path

2Path

1

1RN

2

1RN

3

1RN

4 5e ，

5,9e

9 13e ，

12,3e

3,10e

10,13e

1

2RN

2

2RN

a.

1Source 2Source

1Agent

1Sink

1Path

3Source 4Source

1Agent
2Sink

TA

Temporary
Path

×

Temporary
Path

Optimaized
Path

b. c.

Figure 2. (a) Illustration for routing tree; (b) Routing recover for mobile moves away; (c) Routing

recover for relay node failed.

Each optimal routing path from each source node towards the sink can be built by using the

improved greedy forwarding mechanism from candidates based on the network topology. Notably,

even though each routing path (or branch) of a sink is optimal, the routing tree of the sink may not

be the optimal due to the intersection relay nodes shared by multi paths. Therefore, the optimal

algorithm needs to be employed to achieve the global optimum (the optimal routing tree). We

designed GMDPSO , which is detailed in Section 5, to solve the problem.

Step 4 Establish routing tree and begin data transmission. After a mobile sink finished building the

optimal routing tree in Step 3, it sends Routing Result (RR) packet, in which the routing tree can be

stored as array, singly linked list or other forms, to its source nodes to establish the routing tree. The

routing path establishment process can be detailed as follows: Assuming that Pathj = {Sourcej→11→9

→7→3→𝐴𝑔𝑒𝑛𝑡𝑖→𝑆𝑖𝑛𝑘𝑖 } is a routing path of the routing tree. 𝑆𝑖𝑛𝑘𝑖 sends RR packet to its

Figure 1. Illustration of (a) sink queries MWSN; (b) graphic description of MWSN.

Step 3 Build optimal routing tree. In most situations, multi-source nodes send data packets to
a same sink, therefore, we need to build a routing tree. Root node is the agent, and the leaf nodes
mean its source nodes. An example of routing tree is shown in Figure 2a. There are two routing
paths, i.e., {Path1, Path2}, in the routing tree, the root node is Agenti and the leaf nodes are Source1 and
Source2. The routing tree contains 5 relay nodes. Once finished Step 2. Sink has collected a number
of neighbor tables along with their remaining energy information and delay information which are
wrapped in DQR packets. As illustrated in Figure 1b, the network topology of candidate relay nodes
that extracted from the neighbor tables, i.e., G(V, E), can be constructed by sink. Where eiPE indicates
that two adjacent sensor nodes can communicate with each other. G(V, E) is stored as adjacency matrix
A, A[i, j] can be calculated as follows:

A ri, js “

$

’

&

’

%

0 i f i “ j
dis pi, jq dis pi, jq ď R
8 i f dis pi, jq ą R

(4)

where i, j are two adjacent nodes, and dis(i, j) denote the length of eijPE.

Sensors 2016, 16, 1081 7 of 26

9

11

10

13

2

3

4

5

6

7

8

1
12

2Source

1Agent

1 Mobile Sink

19

16

21

24

26

20

17
22

27
14

25

23

15

18
1Source

Query packet
flooding by sink

Ack packet
from Source

a.

9

11

10

13

2

3

4

5

6

7

8

1
12

1Source
2Source

1Agent

1 Mobile Sinkb.

Figure 1. Illustration of (a) sink queries MWSN; (b) graphic description of MWSN.

Step 3 Build optimal routing tree. In most situations, multi-source nodes send data packets to a

same sink, therefore, we need to build a routing tree. Root node is the agent, and the leaf nodes mean

its source nodes. An example of routing tree is shown in Figure 2a. There are two routing paths, i.e.,

{Path1, Path2}, in the routing tree, the root node is Agenti and the leaf nodes are Source1 and Source2.

The routing tree contains 5 relay nodes. Once finished Step 2. Sink has collected a number of

neighbor tables along with their remaining energy information and delay information which are

wrapped in DQR packets. As illustrated in Figure 1b, the network topology of candidate relay nodes

that extracted from the neighbor tables, i.e., G(V, E), can be constructed by sink. Where ei∈E

indicates that two adjacent sensor nodes can communicate with each other. G(V, E) is stored as

adjacency matrix A, A[i, j] can be calculated as follows:

     
 

0

, , ,

 ,

if i j

A i j dis i j dis i j R

if dis i j R

 


 
 

 (4)

where i, j are two adjacent nodes, and dis(i, j) denote the length of eij∈E.

9

10
2

3

4

5

6

7

8

1

1Source

2Source

1Agent

1 Mobile Sink

11

12

13

11,4e

1Path

2Path

1

1RN

2

1RN

3

1RN

4 5e ，

5,9e

9 13e ，

12,3e

3,10e

10,13e

1

2RN

2

2RN

a.

1Source 2Source

1Agent

1Sink

1Path

3Source 4Source

1Agent
2Sink

TA

Temporary
Path

×

Temporary
Path

Optimaized
Path

b. c.

Figure 2. (a) Illustration for routing tree; (b) Routing recover for mobile moves away; (c) Routing

recover for relay node failed.

Each optimal routing path from each source node towards the sink can be built by using the

improved greedy forwarding mechanism from candidates based on the network topology. Notably,

even though each routing path (or branch) of a sink is optimal, the routing tree of the sink may not

be the optimal due to the intersection relay nodes shared by multi paths. Therefore, the optimal

algorithm needs to be employed to achieve the global optimum (the optimal routing tree). We

designed GMDPSO , which is detailed in Section 5, to solve the problem.

Step 4 Establish routing tree and begin data transmission. After a mobile sink finished building the

optimal routing tree in Step 3, it sends Routing Result (RR) packet, in which the routing tree can be

stored as array, singly linked list or other forms, to its source nodes to establish the routing tree. The

routing path establishment process can be detailed as follows: Assuming that Pathj = {Sourcej→11→9

→7→3→𝐴𝑔𝑒𝑛𝑡𝑖→𝑆𝑖𝑛𝑘𝑖 } is a routing path of the routing tree. 𝑆𝑖𝑛𝑘𝑖 sends RR packet to its

Figure 2. (a) Illustration for routing tree; (b) Routing recover for mobile moves away; (c) Routing
recover for relay node failed.

Each optimal routing path from each source node towards the sink can be built by using
the improved greedy forwarding mechanism from candidates based on the network topology.
Notably, even though each routing path (or branch) of a sink is optimal, the routing tree of the
sink may not be the optimal due to the intersection relay nodes shared by multi paths. Therefore, the
optimal algorithm needs to be employed to achieve the global optimum (the optimal routing tree).
We designed GMDPSO , which is detailed in Section 5, to solve the problem.

Step 4 Establish routing tree and begin data transmission. After a mobile sink finished building
the optimal routing tree in Step 3, it sends Routing Result (RR) packet, in which the routing
tree can be stored as array, singly linked list or other forms, to its source nodes to establish the
routing tree. The routing path establishment process can be detailed as follows: Assuming that
Pathj = {SourcejÑ11Ñ9Ñ7Ñ3ÑAgentiÑSinki} is a routing path of the routing tree. Sinki sends RR
packet to its agent. When Agenti received the RR packet, it firstly search its previous relay node from

Sensors 2016, 16, 1081 8 of 27

the received packet according its ID, i.e., node 3. Then it sets isRelay = 1 for node pair {AgentiÑnode3}
in its neighbor table. Next, Agenti replaces the destination address of RR packet with node3 and
forwards it to node3. After received the RR packet, node 3 forwards it to its previous relay node7 as
the same way, and so on for each relay node in the routing path. Finally, the source Sourcej received the
RR packet, which means that the routing path is established completely and source can begin the data
packet transmitting via the reverse path of RS packet towards source node. The detailed data forward
process is described as follows: Sourcej generates a data packet and queries the neighbor_ID from its
neighbor table as its next relay node using the condition isRelay = 1, i.e., node11, then the data packet
is send to node11. After received the data packet, node 11 immediately queries its next relay node
(i.e., node 9) and forwards data packet to node 9 in the same way, and so on for each relay node in the
routing path. Finally, all data packets from Sourcej are received by Agenti, and then Sinki receives data
packet from Agenti directly.

4.1.3. Routing Path Recovery

When sink moves out of the radio rang of agent or relay node fails, the original routing path need
to be recovered to continue the data gathering. The routing recover procedure is detailed in two cases:

(1) When sink moves out of the radio rang of agent.

Sinki cannot receive any packet from Agenti, then it needs to select a new agent and build a new
routing path to continue the data gathering. To ensure no previous data packet is lost, Temporary Agent
node (TA) is introduced in our routing strategy. This routing recovery result is shown in Figure 2b.
In order to help the sink to judge whether or not it is within the radio rang of an agent, the agent
and relay nodes are required to send at least one packet to sink for a time interval T. Therefore, even
though they have nothing to send, they also need to send a NULL packet to sink. Therefore, if not any
packet has been received from Agenti for time interval T, Sinki can knows that it moves away from
Agenti. To continue the data gathering, the following steps need to be completed:

Step 1 Select the TA.

Sink selects the closest node as the TA. If the sink moves faster, then TA is farther away from
Agenti ,which means that more relay nodes are required between TA and Agenti.

Step 2 Build the temporary routing path

After TA is selected, Sinki sends Temporary Routing Path Setup (TRPS) packet to Agenti via
TA. Once received the TRPS packet, Agenti sends its cached data packets which come from source
Sourcej to TA along the reverse path of TRPS packet, the reverse path is named Temporary Path (TP).
Because some data packets will be lost after the sink moved away from Agenti and before TP is
established, the Agenti needs to cache the data packets in this time interval to avoid data loss. Once the
Agenti received the TRPS packet, these cached data packets are routed to TA via TP.

Step 3 Collect network statuses.

The procedure is the same to Step 2 in Section 4.1.2. The only difference is that the sink sends
Routing Path Reset (RPRS) packet to source Sourcej to collect the newly network status information.

Step 4 Build optimal routing path.

As same as Step 3 in Section 4.1.2. The only difference is that the optimal routing tree is built for
the nearest source nodes using those nodes whose response packet (RPRSR) are received by sink.

Step 5 Establish routing tree and begin data transmission.

The procedure is the same as Step 4 in Section 4.1.2.

Sensors 2016, 16, 1081 9 of 27

Step 6 Clear original routing path.

Notably, when the new optimal routing path established, the original routing path is still work
on. Before source node begin routing data packet via new optimal routing path, it sends Routing Path
Clear (RPC) packet to TA along the original routing path and TP, each relay node on the path that
received RPC packet will reset its isRelay = 0 to remove routing state information. Once the original
routing path and TP is cleared, TA becomes the new agent Agenti.

(2) When the relay node fails

Now we consider the relay node fault tolerant. This routing recovery procedure is shown in
Figure 2c.

Step 1 Locate the failed node

When a relay node (e.g., RNk
j) in Pathj = {Sourcej, RN1

j , RN2
j , . . . , RNk

j . . . , RNn
j , Agenti, Sinki}

has failed, e.g., exhausted its battery power, then Pathj is broken, its next relay node RNk`1
j can

realize this situation if it cannot receive any packet from RNk
j for a predetermined time interval T.

Once detecting routing path is broken, RNk`1
j immediately queries its neighbor table to obtain the

failure node ID (i.e., RNk
j) and sends a relay node failure (RNF) packet, which includes the failure

node ID to Agenti via the original path. The relay node in the original path that received the RNF
packet, e.g., RNk`2

j , forward it to the next relay node (RNk`3
j) and reset its isRelay = 0 to remove

routing information.

Step 2 Build new routing path without failed node

After received the RNF packet, Agenti removes the failure node RNk
j from the set of all candidates

Set(V) and executes our new protocol to re-build new optimal routing path with Set(V)-{RNk
j }.

The subsequent steps are the same as routing recover for mobile moves away the current agent,
which are described in Section 4.1.2.

4.2. Overview of New Protocol

Based on our efficient routing strategy, a new centralized discrete PSO routing protocol is
presented to solve the problem of routing in MWSNs.

The new protocol consists of two phases, the various steps are depicted in the flowchart as shown
in Figure 3. When a mobile sink moves in the sense area, the routing tree from nearest source nodes
towards it will be established in phase 1. When a mobile sink moves away its agent, or its relay
node fails, its original routing path is recovered in phase 2. The detailed description can be seen in
Section 4.1.

Sensors 2016, 16, 1081 9 of 26

Step 6 Clear original routing path.

Notably, when the new optimal routing path established, the original routing path is still work

on. Before source node begin routing data packet via new optimal routing path, it sends Routing

Path Clear (RPC) packet to TA along the original routing path and TP, each relay node on the path

that received RPC packet will reset its isRelay = 0 to remove routing state information. Once the

original routing path and TP is cleared, TA becomes the new agent 𝐴𝑔𝑒𝑛𝑡𝑖.

(2) When the relay node fails

Now we consider the relay node fault tolerant. This routing recovery procedure is shown in

Figure 2c.

Step 1 Locate the failed node

When a relay node (e.g., 𝑅𝑁𝑗
𝑘) in Pathj = {Sourcej, 𝑅𝑁𝑗

1, 𝑅𝑁𝑗
2, … , 𝑅𝑁𝑗

𝑘 … , 𝑅𝑁𝑗
𝑛, 𝐴𝑔𝑒𝑛𝑡𝑖 , 𝑆𝑖𝑛𝑘𝑖} has

failed, e.g., exhausted its battery power, then Pathj is broken, its next relay node 𝑅𝑁𝑗
𝑘+1 can realize this

situation if it cannot receive any packet from 𝑅𝑁𝑗
𝑘 for a predetermined time interval T. Once detecting

routing path is broken, 𝑅𝑁𝑗
𝑘+1 immediately queries its neighbor table to obtain the failure node ID

(i.e., 𝑅𝑁𝑗
𝑘) and sends a relay node failure (RNF) packet, which includes the failure node ID to

iAgent

via the original path. The relay node in the original path that received the RNF packet, e.g., 𝑅𝑁𝑗
𝑘+2,

forward it to the next relay node (𝑅𝑁𝑗
𝑘+3) and reset its isRelay = 0 to remove routing information.

Step 2 Build new routing path without failed node

After received the RNF packet, 𝐴𝑔𝑒𝑛𝑡𝑖 removes the failure node 𝑅𝑁𝑗
𝑘 from the set of all

candidates Set(V) and executes our new protocol to re-build new optimal routing path with

Set(V)-{𝑅𝑁𝑗
𝑘}. The subsequent steps are the same as routing recover for mobile moves away the

current agent, which are described in Section 4.1.2.

4.2. Overview of New Protocol

Based on our efficient routing strategy, a new centralized discrete PSO routing protocol is

presented to solve the problem of routing in MWSNs.

The new protocol consists of two phases, the various steps are depicted in the flowchart as

shown in Figure 3. When a mobile sink moves in the sense area, the routing tree from nearest source

nodes towards it will be established in phase 1. When a mobile sink moves away its agent, or its

relay node fails, its original routing path is recovered in phase 2. The detailed description can be seen

in Section 4.1.

Step 1. Network initiation and neighbor discovery

Step 2.Collect network status information

Step 4.Build routing path using GMDPSO

Step 5. Establish routing tree

For

 each

mobile

sink

2.1 Rout

recover

for

mobile

sink

moves

away

Mobile sink cannot receive any packet for a predeterminaed time interval T

Mobile sink moves out of the radio rang of its agent?
YES

Step 1. Select closest node

Step 3 Select agent

Step 2. Build temporary routing path

Step 3. Collect network statuses

Step 4. Build new routing path

 GMDPSO

Step 5. Establish routing tree

Step 6. Clear original routing path

2.2 Rout

recover

for nodes

failed

NO

Step 1. Locate the failed node

Step 2. Build new routing

path without failed node

 GMDPSO

Step 3. Establish routing tree

Step 4. Clear original routing

path

Phase 2:

Routing recovery

Phase 1:

 Routing path first building

Figure 3. Flowchart of new routing protocol.
Figure 3. Flowchart of new routing protocol.

Sensors 2016, 16, 1081 10 of 27

It can be seen from Figure 3 that the GMDSPO is the core algorithm of our new protocol, which is
used to build the optimal tree from the nearest source nodes to the mobile sink in both phase 1 and
phase 2.

5. The Proposed GMDPSO for Our Protocol

5.1. PSO

PSO is a population-based stochastic searching algorithm, which is inspired by social behavior
of bird flocking and fish schooling. The easy implementation, concise framework and fast
computational convergence make PSO a popular optimization technique for solving continuous
optimization problems.

PSO works with a swarm of a predefined size (say Np) of particles. Each particle has a position
and a velocity vector. The position vector gives a complete candidate solution to the optimization
problem, and the velocity vector denotes the position-changing tendency. Each particle is evaluated
by a fitness function to judge the quality of the solution to the problem .To search for the optimal
solution, a particle iteratively updates its flying velocity and current position according to its own
flying experience, i.e., personal best called Pbesti and according to the other particles’ flying experiences,
i.e., global best called Gbest.

In canonical PSO, a particle updates its position and velocity using the following simple rules:

Vi pt` 1q “ wˆVi ptq ` c1 ˆ r1 ˆ pPbesti ´ Xi ptqq ` c2 ˆ r2 ˆ pGbest´ Xi ptqq (5)

Xi pt` 1q “ Xi ptq `Vi ptq (6)

where Vi = {v1
i ,v2

i , . . . , vD
i } and Xi = {x1

i , x2
i , 13

I , . . . , xD
i } are the ith particle’s (say Pi) velocity and

position vector. w is the inertial weight. t means the current iteration and t + 1 is the next itreration.
c1 and c2 are acceleration factors term as cognitive and socail componeents. r1 and r2 are two different
uniformly distributed random numbers in the range [0,1]. Pbesti = {pbest1

i , pbest2
i , pbest3

I , . . . , pbestD
i }

is the personal best position of Pi and Gbest = {gbest1, gbest1, . . . , gbestD} is the global best position of
the whole swarm.

Conventional PSO was designed to optimize continuous problems. However, its fast convergence
and easy implementation yet effectiveness have driven us to extend continuous PSO to solve the
discrete routing optimization problem in MWSNs.

5.2. GMDPSO: Greedy Discrete PSO with Memory

The GMDPSO makes use of the network topology of candidate relay nodes to guide particle’s
position and velocity updates. The greedy strategy originated from greedy forwarding mechanism is
proposed to direct particles to move towards better position. Some small operators, such as position
initialization and memory mechanism, are introduced to speed up convergence. This section will
describe the proposed algorithm in detail. The whole framework of GMDPSO is given in Algorithm 1.

It is worthy noted that the Prev variable is delicately designed in GMDPSO, it memorizes the
search history to avoid the same position be updated more than once during the iterative process,
and thus can avoid lots of reduplicative search and promote particle to find a better position faster.
In other words, it can speed up the convergence of the algorithm. The function of Prev is called
memory mechanism.

The positions are iteratively updated until the termination condition is satisfied. In our approach,
there are two termination conditions: predefined iteration number and accuracy requirements.
Once one of the two conditions is satisfied, the algorithm stops and the particle Gbest is found,
Gbest.X represents the clustering result or routing result.

Sensors 2016, 16, 1081 11 of 27

Algorithm 1 Framework of GMDPSO Algorithm

Parameters: particle swarm size Np, number of iterations Gen, inertia weight w, learning factors c1
and c2;
Input:
(1) adjacency matrix A for Sinki;
(2) the residual energy vector Eres = {Eres (1), Eres (1), . . . , Eres (N ´ 1)}
(3) the delay vector Del = {Del(1), Del(2), . . . , Del(N ´ 1)};
Output: Gbext.X: the routing result
Step 1: initialize Prev
Step 2: for i = 1 to Np do//Initialize the population
P[i]. X = initPathTree // seeing Section 5.2.3 for more information
Prev = PrevYP[i].X If P[i].XRPrev// memorize new position
P[i]. V = 0
Pbest[i] = P[i]
Calculate Fitness P ris . f it //Using Equation (26)
end
Step 3: Gbest = {P[k]|Fitness(Pbest[k]) = min(Fitness(Pbest[i]))}//update Gbest
Step 4: While (!(Terminate))
for i = 1 to Np do
Update P[i]//carefully described in Section 5.2.4
Memorize new position: Prev = Prev Y new P[i].X If P[i]. XRPrev
Calculate Fitness P ris . f it
Update the Pbesti Pbest[i].X = P[i].X if Pbest[i].fit > P[i]. fit
end
Update the Gbest: Gbest = Pbest[best]
end
Step 5: output Gbest.X

5.2.1. Fitness Function Derivation

Fitness function is an important issue because it directly affects the final results. Now, we construct
our fitness function (fitness) to evaluate the individual particle of population, in GMDPSO, the optimal
tree is built such that it minimizes the fitness value. We have three objectives when build the optimal
routing tree for Sinki (i.e., PTreei): The first one is to maximize the lifetime of the routing tree to achieve
energy-consumption balancing; The second one is to minimize the length of the routing tree to achieve
energy conservation and enhance reliability; and the third one is to minimize the communication
delay to enhance network throughout. In order to tune the three objectives to build optimal routing
tree, we need to normalize the above three objectives and use the weight sum approach (WSA) [28] to
construct our multi-objective fitness function fitness. Therefore, our fitness function depends on the
following parameters:

(1) Lifetime of relay node

Our first objective is to maximize the routing tree lifetime, which is defined as the time interval
from the establishment of the routing tree till its first relay node dies (FND). This is possible if we can
maximize the lifetime of relay node that has least lifetime. Let RNk

j be the kth relay node on the Pathj.

The lifetime of RNk
j is defined as follows:

l f
´

RNk
j

¯

“ Eres

´

RNk
j

¯

{Econs

´

RNk
j

¯

(7)

Sensors 2016, 16, 1081 12 of 27

where Eres(RNk
j) is the residual energy of relay node RNk

j , and EconspRNk
j q is its consumed energy.

It can be seen from Equation (7) that, even though RNk
j keeps more Eres(RNk

j), it maybe die faster if its

EconspRNk
j q is bigger than others at the same time.

Now, we begin the energy consumption analysis for relay node. RNk
j must consume energy

to forward the incoming data packets, which come from source node whose routing path to sink
goes through it. Before calculating the routing energy consumption, it is needed to calculate the total
number of incoming packets, which come from other relay node toward sink. Since multi routing
paths may share some relay nodes, the number of incoming packets can be recursively calculated
as follows:

Nin

´

RNk
j

¯

“

$

&

%

0 i f NextRelay
`

RNx
l
˘

‰ RNk
j , @l 1 ď l ď Nsinki

path ,@RNx
l P Pathl

ř

!

Nin
`

RNx
l
˘

ˇ

ˇ

ˇ
NextRelaypRNx

l q “ RNk
j

)

, otherwise
(8)

The relay node RNk
j will consume its energy to receive Nin(RNk

j) incoming packets and forward

them. Therefore, the total data forwarding energy consumption of RNk
j can be calculated as follows:

EconspRNk
j q “ Nin

´

RNk
j

¯

ˆ ER ` Nin

´

RNk
j

¯

ˆ ET

´

RNk
j , RNk`1

j

¯

“ Nin

´

RNk
j

¯

ˆ

´

ER ` ET

´

RNk
j , RNk`1

j

¯¯

“ Nin

´

RNk
j

¯

ˆmˆ
´

γ1 ` β1 ` β2 ˆ dis
´

RNk
j , RNk`1

j

¯n¯
(9)

where m is the size of data packet.
Let minL fPTreei be the minimum lifetime of the routing tree PTreei. Therefore, our first objective is:

Objective 1 : Maximize minL fPTreei “ min
!

l f
´

RNk
j

¯
ˇ

ˇ

ˇ
RNk

j P PTreei

)

(10)

Using Equation (9) to substitute the EconspRNk
j q in Equation (7), then,

l f
´

RNk
j

¯

“ Eres

´

RNk
j

¯

{Econs

´

RNk
j

¯

“ Eres

´

RNk
j

¯

{Nin

´

RNk
j

¯

ˆmˆ
´

γ1 ` β1 ` β2 ˆ dis
´

RNk
j , RNk`1

j

¯n¯
(11)

It can be seen that, if Eres(RNk
j) and Nin(RNk

j) are fixed, then lf (RNk
j) is negatively correlated with

dis(RNk
j , RNk`1

j). Therefore, it can be deduced that relay node with minimum lifetime is the relay
node with the longest transition distance. That is,

minL fPTreei “ RNk
j “ arg maxdis

´

RNk
j , RNk`1

j

¯

|@j, 1 ď j ď Nsinki
path and @k, 1 ď k ď NPathj

(12)

where argmaxf (x) returns the value of x that maximizes f (x).
Bigger minL fPTreei means smaller fitness value. Therefore, fitness is inversely proportional to the

minL fPTreei , i.e.,
f itness 9 1{minL fPTreei (13)

where 0 < 1/minL fPTreei ď 1.
minL fPTreei is used to avoid node with lower residual energy being selected as sharing relay node

whose load burden is heavy.

(2) Routing Path Length

In our network mode, the energy is mainly consumed to collect network statuses and forward data
to sink. The unicast local flooding mechanism is adopted to save energy for collecting network statuses.
It is well known that the energy consumption of sensor node in WSNs is subject to the transmission
distance—shorter data dissemination paths lead to decreased energy consumption together with

Sensors 2016, 16, 1081 13 of 27

increased throughput and reliability, which also can be deduced from Equation (9). Therefore, our
second objective is to minimize the length of the routing tree to minimize the forwarding data energy
consumption. Let Pathj be routing tree of Agenti. Now, we calculate the total energy consumption

of PTreei (i.e., EPTreei
cons). According to Equation (9), the energy consumption of each routing path Pathj

(Pathj Ď PTreei), i.e., E
Pathj
cons , can be calculated as follows:

E
Pathj
cons “

NPathj
ř

k“1
Econs

´

RNk
j

¯

“

NPathj
ř

k“1
Nindata

´

RNk
j

¯

ˆmˆ
´

γ1 ` β1 ` β2 ˆ dis
´

RNk
j , RNk`1

j

¯n¯

“

NPathj
ř

k“1
Nin

´

RNk
j

¯

ˆmˆ pγ1 ` β1q ` β2 ˆ

NPathj
ř

k“1
dis

´

RNk
j , RNk`1

j

¯n
(14)

Therefore, EPTreei
cons can be calculated as follow:

EPTreei
cons “

N
sinki
path
ř

j“1
E

Pathj
cons “

N
sinki
path
ř

j“1

NPathj
ř

k“1
Nindata

´

RNk
j

¯

ˆmˆ pγ1 ` β1q ` β2 ˆ

N
sinki
path
ř

j“1

NPathj
ř

k“1
dis

´

RNk
j , RNk`1

j

¯n
(15)

For each Pathj assume that no packet is lost during routing data to agent, then Nin(RNk
j) is the

same for each relay node in Pathj which can be considered as a constant value. Let Nin(RNk
j) = Nin.

Then Equation (14) is improved as follows:

EPath
cons

`

Pathj
˘

“ NPathj
ˆ Nin ˆmˆ pγ1 ` β1q ` β2 ˆ

NPathj
ÿ

k“1

dis
´

RNk
j , RNk`1

j

¯n
(16)

where
ř

NPathj
i“1 dis

´

RNk
j , RNk`1

j

¯

is length of the routing path Pathj. It is can be seen that E
Pathj
cons is only

positively correlated with routing path.
Therefore, to minimize EPTreei

cons , the total routing tree length Len(PTreei) needs to be minimized.
That is, our second objective can be described as follows:

Objective 2 : Minimize Len pPTreeiq “

N
sinki
path
ÿ

j“1

NPathj
ÿ

k“1

dis
´

RNk
j , RNk`1

j

¯

(17)

Smaller Len (PTreei) is better. Therefore, fitness is proportional to the Len (PTreei) i.e.,

f itness 9Len pPTreeiq (18)

Now, we normalize Len (PTreei) by allLen, i.e.,

Len pPTreeiq “

N
sinki
path
ÿ

j“1

NPathj
ÿ

k“1

dis
´

RNk
j , RNk`1

j

¯n
{allLen (19)

allLen can be calculated as follows:

allLen “
NV
ř

i“1

NV
ř

j“1
dispi, jq ˆ aij where

aij “

#

1 i f nodej within the communicaiton rang o f nodei, @i, j : 1 ď i, j ď NV
0 Otherwise

(20)

Sensors 2016, 16, 1081 14 of 27

where NV is the number of candidate relay nodes. Therefore,

Len pPTreeiq “

N
sinki
path
ÿ

j“1

NPathj
ÿ

k“1

dis
´

RNk
j , RNk`1

j

¯n
{

NV
ÿ

i“1

NV
ÿ

j“1

dispi, jq ˆ aij (21)

It can be deduced from Equation (21) that 0 < Len (PTreei) ď 1.

(3) Communication Delay

End-to-end delay is another important performance metric of MWSNs. Given a fixed channel
bandwidth, less the delay, higher the throughout. Let Delay pPTreeiq be the total communication delay
of PTreei. Then Delay pPTreeiq can be calculated as following:

Delay pPTreeiq “
ÿ

RNk
j PPTreei

delay
´

RNk
j

¯

(22)

Therefore, our third objective is:

Objective 3 : Minimize Delay pPTreeiq “
ÿ

RNk
j PPTreei

delay
´

RNk
j

¯

(23)

Clearly, smaller Delay pPTreeiq is better. Then our fitness is proportional to the Delay pPTreeiq i.e.,

f itness 9Delay pPTreeiq (24)

Similar with Equation (19), Delay pPTreeiq also can be normalized as follows:

Delay pPTreeiq “
ÿ

RNk
j PPTreei

delay
´

RNk
j

¯

{
ÿ

nodeiPV

delay pnodeiq (25)

After normalizing the above three objectives, the final fitness function for PTreei is:

f itness pPTreeiq “ ω1 ˆminL fPTreei `ω2 ˆ Len pPTreeiq `ω3 ˆDelay pPTreeiq (26)

where ω1, ω2 and ω3 are three control parameters, 0 < ωi ď 1 and ω1 + ω2 + ω3 = 1. In the paper,
we give the same weight to them, that is, ω1 = ω2 = ω3 = 0.33.

5.2.2. Particles Representation

How to encode the routing tree is very critical. To make GMDPSO feasible for discrete MWSNs
scenario, the position and velocity of particle in our protocol are redefined.

Definition 1 (Position). The position vector provides a routing tree. The position vector of ith particle is
defined as Xi = {x1

i , x2
i , x3

I , . . . , xN1

i }, where N1 = N´ 1 is dimension of Xi which means the number of candidate
relay nodes excluding the agent, the d component xd

i P {0, N} is the sensor ID, which maps nodek (k = xd
i) as the

next relay node of noded. That is to say, xd
i indicates that noded forwards data to nodek.

Notably, Xi means a routing path tree that includes multi routing paths from multi source nodes
to the same root node. Suppose mobile sink Sinki has NS source nodes, and then Xi includes NS routing
paths. A graphical illustration of particle representation can be seen in Figure 4.

Sensors 2016, 16, 1081 15 of 27

Sensors 2016, 16, 1081 14 of 26

Therefore, our third objective is:

    : Minimize = k
j i

k

i jRN PTree
Delay PTree delay RN

Objective 3 (23)

Clearly, smaller 𝐷𝑒𝑙𝑎𝑦(𝑃𝑇𝑟𝑒𝑒𝑖) is better. Then our fitness is proportional to the 𝐷𝑒𝑙𝑎𝑦(𝑃𝑇𝑟𝑒𝑒𝑖) i.e.,

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ∝ 𝐷𝑒𝑙𝑎𝑦(𝑃𝑇𝑟𝑒𝑒𝑖) (24)

Similar with Equation (19), 𝐷𝑒𝑙𝑎𝑦(𝑃𝑇𝑟𝑒𝑒𝑖) also can be normalized as follows:

     = k
j i i

k

i j iRN PTree node V
Delay PTree delay RN delay node

   (25)

After normalizing the above three objectives, the final fitness function for 𝑃𝑇𝑟𝑒𝑒𝑖 is:

     1 2 3
ii PTree i ifitness PTree minLf Len PTree Delay PTree        (26)

where ω1, ω2 andω3 are three control parameters, 0 < ωi ≤ 1 and ω1 + ω2 + ω3 = 1. In the paper, we give

the same weight to them, that is, ω1 = ω2 = ω3 = 0.33.

5.2.2. Particles Representation

How to encode the routing tree is very critical. To make GMDPSO feasible for discrete MWSNs

scenario, the position and velocity of particle in our protocol are redefined.

Definition 1 (Position). The position vector provides a routing tree. The position vector of ith particle is

defined as Xi = {x
1

i , x
2

i , x
3

I , …, 𝑥𝑖
𝑁′

 }, where 𝑁′ = N − 1 is dimension of Xi which means the number of

candidate relay nodes excluding the agent, the d component x
d

i ∈{0, N} is the sensor ID, which maps nodek (k = x
d

i) as the next relay node of noded. That is to say, x
d

i indicates that noded forwards data to nodek.

Notably, Xi means a routing path tree that includes multi routing paths from multi source

nodes to the same root node. Suppose mobile sink Sinki has NS source nodes, and then Xi includes NS

routing paths. A graphical illustration of particle representation can be seen in Figure 4.

Figure 4. (a) Network topology; (b) Position vector encoded for (a); (c) Routing tree decoded from

(b).

Illustration 1. Consider mobile sink Sinki masters a subnet of MWSN G (V, E) with 13 sensor nodes and one

mobile node as shown in Figure 4a. V = {node1, node2, …, node13}. node13 is selected as agent, node11 and node12

are two source nodes, which means two routing paths will be built. The dimension of the particle position vector

is 𝑁′ =N − 1 = 13 − 1 = 12. As shown in Figure 4b. Particle i is encoded as Xi = {x
1

i , x
2

i , x
3

I , …, x
12

i } = {6, 9, 10,

5, 9, 5, 5, 13, 13, 13, 4, 3}, in Xi, for example, x
11

I = 4 indicates that source node node11 sends data packet to

node4. A routing tree is constructed by decoding the encoded particle, in which each route path from a source

node to sink can be built by appending relay nodes one by one till the agent node is selected as the end.

As shown in Figure 4c, the path tree can be decoded as follows: firstly, the routing path of

Source1 (i.e., node11) is built as Path1: Source1→node4→node5→node9→Agent1.Then, routing path of

Source2 (i.e., node12) is built as Path2:Source2→node3→node10→Agent1, and at last, the whole routing

tree can be constructed by combining Path1 and Path2.

9

11

10

13

2

3

4

5

6

7

8

1
12

1Source
2Source

1Agent

1 Mobile Sink

 ,GV E
a.

1 2 3 4 5 6 7 8 9 10Node 11 12
310 131313 45 96 59 5

 6,9,10,5,9,10,5,13,13,13,4,3iX 

Position

b. Position vector

9

10
2

3

4

5

6

7

8

1

1Source
2Source

1Agent

1 Mobile Sink

11

12

13

c.
routing tree

Figure 4. (a) Network topology; (b) Position vector encoded for (a); (c) Routing tree decoded from (b).

Illustration 1. Consider mobile sink Sinki masters a subnet of MWSN G (V, E) with 13 sensor nodes and one
mobile node as shown in Figure 4a. V = {node1, node2, . . . , node13}. node13 is selected as agent, node11 and
node12 are two source nodes, which means two routing paths will be built. The dimension of the particle position
vector is N1 = N ´ 1 = 13 ´ 1 = 12. As shown in Figure 4b. Particle i is encoded as Xi = {x1

i , x2
i , x3

I , . . . , x12
i }

= {6, 9, 10, 5, 9, 5, 5, 13, 13, 13, 4, 3}, in Xi, for example, x11
I = 4 indicates that source node node11 sends data

packet to node4. A routing tree is constructed by decoding the encoded particle, in which each route path from
a source node to sink can be built by appending relay nodes one by one till the agent node is selected as the end.

As shown in Figure 4c, the path tree can be decoded as follows: firstly, the routing path of Source1
(i.e., node11) is built as Path1: Source1Ñnode4Ñnode5Ñnode9ÑAgent1.Then, routing path of Source2
(i.e., node12) is built as Path2:Source2Ñnode3Ñnode10ÑAgent1, and at last, the whole routing tree can
be constructed by combining Path1 and Path2.

It can be seen from Figure 4 that our discrete position definition is straightforward and easy to
decode and will lower the computational complexity, especially in the case of large-scale MWSNs,
because the dimensions of the fitness function is equal to the size of candidate relay nodes collected by
sink which is smaller than the entire MWSN size.

Definition 2 (Velocity). Velocity is a very crucial component in PSO, by working on the position vector, it
guides a particle and determines whether it can reach its destination and by how fast it could. Our discrete
velocity of particle i is defined as Vi = {v1

i , v2
i , . . . , vN1

i }, where vj
i P{0,1} is binary-coded, vj

i = 1 means that

the corresponding element xj
i in Xi will be changed, otherwise, xj

i keeps its original state. vj
i and xj

i have the
same dimension.

In canonical PSO, velocity is used to learn knowledge from itself and swarm and finally leads
the particle to a better position. In addition, a threshold Vmax is used to inhibit particles from flying
out of the boundaries because there is a situation whereby when the speed of a particle is substantial.
Unlike the continuous optimization, we have known that, in our discrete MWSNs scenarios, to compare
two different routing paths from the same source node to the same agent, we only take care about
whether their relay nodes are the same. Furthermore, we only need to compare the two relay nodes ID
value in the same position of two different routing paths. There are only two results: is equal or no,
therefore, the velocity can be encoded binary, and we defined 0 means two relay nodes are the same,
1 means they are different.

The first motivation of the velocity definition is to actually reflect the differences between two
position vectors. The second motivation of the velocity definition is to prevent particles from flying
away, because our velocity is binary-coded, we no longer need Vmax parameter.

5.2.3. Particle Swarm Initialization

A good initialization mechanism can reduce the searching space to reach global optima faster
and promote diversity. Conventional random initialization method for PSO based algorithm is not
applicable for our algorithm. The main reason is that random sequence of edges usually results in
invalid routing tree that does not terminate on the agent node or that have loops. Therefore, we need

Sensors 2016, 16, 1081 16 of 27

to design a more efficient initialization method for our protocol. Based on our particle representation
for discrete MWSNs, the position vectors initialization focus on how to map the next relay node, in
other words, how to select the next relay node for the current one, for example, how to map another
node as the next relay node for current node noded. Our main idea to solve this problem is that the
next relay node for the current one is randomly selected from its neighbors. The mapping is done
as follows:

Let Neig(noded) = {node1, node2, . . . , nodeK} = {xj
t|0 ď j ď N1V & 0 < A[d, j] <8} be the neighbors

of noded, and A is the adjacent matrix for G (V, E), Then,

nodek “ Index pNeig pnodedq , nq , 1 ď n ď |Neig pnodedq| (27)

where Index (Neig(noded), n) is an indexing function that indexes nth node of Neig(noded) as the next
relay node, and n is a randomly generated uniformly distributed integer number. Table 2 shows the
nodes and their neighbors. Besides, Table 1 also illustrates how the next relay node is chosen.

Table 2. Next relay node selection for position initiation.

noded Neig(noded) n NextRelay(noded)

node1 {node3, node6, node12} 2 node6
node2 {node4, node5, node9} - node9
node3 {node6, node8, node10, node12} - node10
node4 {node2, node5, node7, node11} 2 node5
node5 {node2, node4, node6, node7, node9, node10} - node9
node6 {node1, node3, node5, node7, node10} - node10
node7 {node4, node5, node6, node11} 2 node5
node8 {node3, node10, node13} - node13
node9 {node2, node5, node10, node13} - node13
node10 {node3, node5, node6, node8, node9, node13} - node13
node11 {node4, node7} 1 node4
node12 {node1, node3} 2 node3
node13 {node8, node9, node10, sink} sink

Blue color means the corresponding node are mapped in step1. Green color means the corresponding node are
mapped in step 2.Black color means the corresponding node are mapped in step 3.

In order to reduce the randomicity and blindness of swarm initialization, and at the same time
speed up the convergence of our algorithm, the position vectors are initialized in such way:

Step 1 Agent node is forced to be mapped as the relay node of its neighbor nodes (seeing the
blue number in Figure 4b. In detail, firstly, position vector of i particle is empty, that is, Xi = (0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0). Then assign agent node (i.e., node13) to its neighbor nodes, as shown in Table 2,
then Xi = ({0, 0, 0, 0, 0, 0, 0, 13, 13, 13, 0, 0}. Marker ‘-’ in Table 2 means that the relay node of the
corresponding node is specified directly instead of choosing from its neighbors using Equation (27).

Step 2 Maps agent’s neighbors to be relay node of the agent’s neighbor’s neighbor. Notably, if some
of the agent’s neighbors have the same neighbor, which cause more than one node will be mapped as the
relay node of the same neighbor at the same time, and then we chose the nearest neighbor as the relay
node. For example, as shown in Table 2, the neighbor of the agent (i.e., node13) is Neig (node13) = {node8,
node9, node10}, then node13 is the common next relay node of Neig (node13). Next, we assign node8,
node9, and node10 to their neighbors respectively. Neig(node8)YNeig(node9)YNeig(node10) = {node2,
node3, node5, node6}, which means that node8, node9, and node10 should be assigned to node2, node3,
node5 and node6 ,that is to say, the third column of Table 2 (i.e., column n) of the corresponding
nodes, i.e., node8, node9, node10, node2, node3, node5 and node6 should be marked with ‘-’. It is
easy to be seen form Figure 4a that Neig (node2) = node9, Neig (node6) = node10. For node5, because
Neig (node9)XNeig(node10) = {node5}, which means that node9 can be chosen as the next relay node
for node5, and so do node10. We chose node9 as the relay node of node5 with assumption that node9 is

Sensors 2016, 16, 1081 17 of 27

the nearest neighbor of node5. For node6, we choose node10 as its next relay node in the same way.
After finished Step 2, then the position vector Xi will look as following: Xi = {0, 9, 10, 0, 9, 10, 0, 13, 13,
13, 0, 0}.

Step 3 The relay nodes of remaining nodes are mapped by randomly choosing a node from their
neighbor. For example, for Source1 (i.e., node11), let random n = 1, then its first neighbor is chosen as
the next relay node.

Step 4 Finally, after finished the above three initiation steps, position vector Xi is initiated as
Xi = {6, 9, 10, 5, 9, 10, 5, 13, 13, 13, 4, 3}.

It is worth noting that the invalid routing tree, in which contains one or more invalid routing
path (that does not terminate on the agent node or that have loops), will be punished with a very
high fitness.

The velocity vectors are initialized as all-zero vectors. The Pbest vectors are initialized in
the same manner as the position vectors, and the vector is set as the best position vector in the
original population.

Comparing to the conventional random initialization, the advantages of our initiation method
are follows:

(1) Since node can and only can select its next relay node from its neighbors based on the network
topology of G(V, E), our method takes advantage of this feature to reduce the vast search
space significantly.

(2) In our method, agent node and its neighbors are mapped firstly in step1 and step3, and this
reduces the likelihood of invalid routing path. In addition, it further reduces search space and
drives particle to find its personal best position faster. That is, it speeds the algorithm convergence.

5.2.4. Velocity and Position Update

In canonical PSO, velocity gives a particle the moving direction and tendency. After updating
its velocity, the particle builds its new position using the new velocity. However, in the proposed
algorithm, the particle position and velocity vectors have been redefined in a discrete integer form,
and thus, the mathematical updating rules in the canonical continuous PSO no longer fit the discrete
case. In order to meet the requirements of building routing tree in discrete MWSNs, the particle’s
velocity and position updating rules have been redefined as follows:

Vi pt` 1q “ wˆVi ptq ‘ c1 ˆ r1 ˆ ppbesti a Xi ptqq ` c2 ˆ r2 ˆ pGbesta Xi ptqq (28)

Xi pt` 1q “ Xi ptq bVi ptq (29)

where w is the dimensional inertial weight vector, c1 and c2 are two N1V dimensional cognitive and
social components, r1 and r2 are two N1V dimensional random vectors in rang [0,1]. Equation (28) is
used to update the old velocity, and Equation (29) is the position updating rule. It can be observed
that the new updating rules take the same form in canonical PSO but different the key operator.
The following will detail our new operators in discrete PSO.

Definition 3 (Position Operator). a. Position a Position builds a velocity vector. Assume that we are given
two position vector Xi = {x1

i , x2
i , x3

i . . . xN1

i } and Xj = {x1
j , x2

j , x3
j , . . . , xN1

j }, Xi a Xj = V = {v1, v2, . . . , vN1 },
the element vd is defined as:

vd “

#

0 i f xk
i “ xk

j
1 otherwise

(30)

Definition 3 is inspired from the following two aspects:
First, it is well known that, in canonical PSO, a particle adjusts its velocity by learning from its old

velocity (Vi(t)), personal best position (Pbesti-Xi(t)) and the swarm global best position (Gbest-Xi(t)).
It can be seen that the learning process is actually a comparison between the positions, that is to say,

Sensors 2016, 16, 1081 18 of 27

two position vectors should generate a velocity vector. Second, two position vectors represent two
different routing trees. The defined a operation actually is used to find which relay nodes are different
between these two routing paths, and these differences will give a particle the fly direction.

Definition 4 (Velocity Operator). ‘. Velocity ‘ Velocity is also a velocity vector. Given two velocity vectors
V1 = {v1

1, v2
1, . . . , vN1

1 } and V2 = {v1
2, v2

2, . . . , vN1

2 }, then V3 = V1 ‘ V2 = {v1
3, v2

3, . . . , vN1

3 }. vi
3 can be compute

as follows:

vk
3 “

#

1 condition 1 : i f vk
1 ` vk

2 ě 1
0 condition 2 : otherwise

(31)

Suppose V1 = Pbesti aXi(t) and V2 = Gbest aXi(t), then, condition1 means that once the kth relay
node in particle i (i.e., vk

1 = 1) needs to be changed, which is decided by its own knowledge (i.e., vk
1 = 1)

or by swarm knowledge (i.e., vk
2 = 1) or both of them (i.e., vk

1 = 1 & vk
2 = 1), it must be changed finally.

The definition of the operator ‘ is easy to understand and easy to perform. Moreover, it can ensure
binary-coded consistency for velocity, which is easier for the position to work with.

Definition 5 (Coefficient ˆ Velocity). Coefficient ˆ Velocity is still velocity vector. Given the Coefficient ω

and the velocity vector V1 = v1
1, v2

1, . . . , vN1

1 }, then V2 = ω ˆ V1 = {v1
2, v2

2, . . . , vN1

2 }. Where vi
2 can be compute

as follows:

vi
3 “

$

’

&

’

%

1 condition 1 : i f vi
1 “ 1

1 condition 2 : i f vi
1 “ 0 & ω ě 0.5

0 condition 3 : i f vi
1 “ 0 & ω ă 0.5

(32)

condition1 means that if a relay node needs to be changed , then change it without regard to the ω. Condition2
and condition3 are conditions for mutation operation of particle, which means that although a relay node does not
need to be changed(i.e., vi

1 = 0), it still maybe be changed in a mutation probability (i.e., 0.5). Mutation operation
of particle can promote the diversity of particles and avoid falling into the local optimum.

Definition 6 (Position Updating Operator)b. b is very important component in our update rules, which is
used by particle to update its position with its new velocity. Position b Velocity generates a new position. A good
design for operatorb should drive a particle to a better position. Given an old position Xt = {x1

t , x2
t , . . . , xN1

2 } and
a new velocity Vt+1 = {v1

t`1, v2
t`1, . . . , vN1

t`1}, then the new position Xt+1 = Xt b Vt+1 = {x1
t`1, x2

t`1, . . . , vN1

t`2},
the element xi

t`1 of Xt+1 can be computed as follows:

xi
t`1 “

#

bestRNi i f vi
t`1 “ 1 & xi

t P Patht`1
j

xi
t otherwise

(33)

where xj
t PPatht`1

j means that the old node xj
t is selected as a relay node in the Patht`1

j in Xt+1, in other words, if

xj
t is not a relay node, it need not to be changed. Notably, Xi means a routing path tree that contains NS routing

path branches, and Pathj is only one routing path branch of the routing path tree. Therefore, only these old nodes
will be changed that satisfies the following conditions simultaneously: they are chosen as the relay nodes and
their corresponding velocities are set to 1, i.e. vi

t`1 “ 1 & xi
t P Patht`1

j . bestRNi is the node ID which can be
calculated by:

bestRNi “ argminkϕ pi, k|k P Neig piqq (34)

argmink f(k) returns the value of k that minimizes f(k). φ is calculated using the following equation:

ϕ pi, j|k P Neig piqq “ f it
`

Pathj pi Ñ kq
˘

(35)

where iÑk means that nodek is chosen as the next relay node of nodei. fit(x) is the fitness function (i.e.,
Equation (26)), and fit(Pathj(iÑk)) means that we only calculate the fitness value of the two adjacent relay nodes
in Pathj. Similar to greedy forwarding mechanism, Equation (35) means we choose the best next relay node

Sensors 2016, 16, 1081 19 of 27

for the current node from all its neighbors. However, unlike greedy mechanism that only chooses the nearest
neighbor as the best next relay node, our approach chooses the neighbor node, which achieves the best balance
of lifetime, distance and delay as the best next relay node by using our fitness function. Therefore, with the
beginning from Sourcej. Pathj can be built by selecting the best relay node one after one until the agent node
is chosen, and Pathj that is built in this way is the optimal routing path. For example, let first bestRN1 be
RN1

j , then Path1
j “ pSourcej Ñ RN1

j q is the current optimal routing path. Let Path2
j be the bestRN2 of RN1

j ,
Path2

j “ pRN1
j Ñ RN2

j q is the current optimal routing path. Then,

Path1
j “ pSourcej Ñ RN1

j q

Path2
j “ pRN1

j Ñ RN2
j q

+

ñ Pathj “ pSourcej Ñ RN1
j Ñ RN2

j q (36)

where Pathj is also the optimal routing. Using the same way, the other routing branches of Xt can be built. Next,
the fitness of the Xt can be calculated using Equation (26).

This search mechanism of bestRNi (i.e., Equation (34)) actually act as our particle searching strategy
in GMDPSO, in which a particle update its position by selecting the next relay node that can generate
the largest decrement of the fitness value, so it can be regard as a greedy local search strategy.

Our motivation of searching bestRNi in this way is based on the divide-conquer strategy, in
order to build an optimal routing tree of Xt, we firstly build each optimal routing path branch of Xi
respectively. When all routing path branches are built completely, then, the whole routing path tree is
finished. Similarly, in order to build the optimal routing path branch Pathj, we choose the best next
relay node for the previous relay node one after one, until the whole Pathj is completed.

However, Equation (34) is only used to build the single optimal routing path branch, rather than
build the routing path tree (i.e., Xi). Because when we choose the best relay node for the current node
of Pathj, we do not consider the effect of the other routing path branch. Therefore, this method may
neglect such a case, each routing branch is optimal, but the whole routing tree are weak due to the
intersection relay nodes of multi routing paths. In other words, optimal routing path branches do
not mean the optimal routing tree. As shown in Figure 5, many source nodes send their data packets
to same next relay node, and these relay nodes will consume more energy to forward more packets.
For example, node6 need forward data packets of Source1, Source2 and Source3 to node10, while, node10
needs forward data packets of Source1, Source2, Source3, Source4 and Source5 to Agent1. The worst result
is that these sharing relay nodes will die quickly because they deplete their energy of forwarding too
many packets. This will lead to the expensive routing recover.

Sensors 2016, 16, 1081 19 of 26

is finished. Similarly, in order to build the optimal routing path branch Pathj, we choose the best next

relay node for the previous relay node one after one, until the whole Pathj is completed.

However, Equation (34) is only used to build the single optimal routing path branch, rather

than build the routing path tree (i.e., Xi). Because when we choose the best relay node for the current

node of Pathj, we do not consider the effect of the other routing path branch. Therefore, this method

may neglect such a case, each routing branch is optimal, but the whole routing tree are weak due to

the intersection relay nodes of multi routing paths. In other words, optimal routing path branches do

not mean the optimal routing tree. As shown in Figure 5, many source nodes send their data packets

to same next relay node, and these relay nodes will consume more energy to forward more packets.

For example, node6 need forward data packets of Source1, Source2 and Source3 to node10, while, node10

needs forward data packets of Source1, Source2, Source3, Source4 and Source5 to Agent1. The worst result

is that these sharing relay nodes will die quickly because they deplete their energy of forwarding too

many packets. This will lead to the expensive routing recover.

9

11

10

13

2

3
4

5 6

7

8

1

12

1Source
2Source

1Agent

1 Mobile Sink

5Source

3Source

4Source

Figure 5. Multi routing paths share some relay nodes.

Therefore, after all of individual optimal routing path branches are built, the corresponding

routing tree Xi should be evaluated using fitness function.

From the above description of our new GMDPSO algorithm, the proposed algorithm has the

following features: (1) with a concise framework; (2) the newly defined particle position and velocity

are direct and easy to decode; and (3) redefined updating rules based on the new operators are easy

to realize and will significantly reduce the computational complexity, especially for large-scale WSNs.

6. The Redesigned GMDPSO Seems to be Very Suitable for Solving Routing Problem in

MWSNs6. Simulations and Results

In this section, we test our protocol against several well-known protocols: ECPSOAR, IAR, and

TTDD, which all can deal with routing problem of multi mobile sinks. The performance is compared

in terms of the following metrics: average packet delivery ratio (PDR, measured as the average

number of successfully delivered packets versus required packets per round), average end-to-end

delay (EED) [29], and average energy consumption ratio (ECR, measured as the average energy

consumption from source to sink versus the initial energy per round). All simulations are performed

using MATLAB R2012b on Windows 7 with Intel core i5-2520M Dual-Core CPU (2.50 GHz) and 8 G

RAM. For ease of description for the comparison results of the above metrics, we define another

notation, which is called metric comparative advantage for our new protocol as defined below:

 

 100

Metric comparative advantage

Metric of GMDPSO Metric of other protocol

Metric of other protocol






 (37)

For example, PDR comparative advantage to ECSPOAR can be calculated as follow:

Figure 5. Multi routing paths share some relay nodes.

Therefore, after all of individual optimal routing path branches are built, the corresponding
routing tree Xi should be evaluated using fitness function.

From the above description of our new GMDPSO algorithm, the proposed algorithm has the
following features: (1) with a concise framework; (2) the newly defined particle position and velocity

Sensors 2016, 16, 1081 20 of 27

are direct and easy to decode; and (3) redefined updating rules based on the new operators are easy to
realize and will significantly reduce the computational complexity, especially for large-scale WSNs.

6. The Redesigned GMDPSO Seems to be Very Suitable for Solving Routing Problem in
MWSNs6. Simulations and Results

In this section, we test our protocol against several well-known protocols: ECPSOAR, IAR, and
TTDD, which all can deal with routing problem of multi mobile sinks. The performance is compared in
terms of the following metrics: average packet delivery ratio (PDR, measured as the average number of
successfully delivered packets versus required packets per round), average end-to-end delay (EED) [29],
and average energy consumption ratio (ECR, measured as the average energy consumption from
source to sink versus the initial energy per round). All simulations are performed using MATLAB
R2012b on Windows 7 with Intel core i5-2520M Dual-Core CPU (2.50 GHz) and 8 G RAM. For ease
of description for the comparison results of the above metrics, we define another notation, which is
called metric comparative advantage for our new protocol as defined below:

Metric comparative advantage “
pMetric o f GMDPSO ´ Metric o f other protocolq

Metric o f other protocol ˆ 100
(37)

For example, PDR comparative advantage to ECSPOAR can be calculated as follow:

PDR comparative advantage to ECPSOAR “
pPDR o f GMDPSO ´ PDR o f ECPSOARq

PDR o f ECPSOAR ˆ 100
(38)

6.1. Simulation Setting

Simulations are performed on the MWSN, which consists of diverse number of homogenous
sensor nodes ranging from 50 to 450. Each sensor node is assumed to have initial energy of 120 J and
the mobile sink is assumed to have sufficient energy and cannot be fault.

To build a level playing field, the characteristics of the networks and communication models
are configured as illustrated in [10] and as shown in Table 3. The extra PSO parameters used for
ECPSOA are fixed to: particle updating energy consumption EPU = 80 pJ the endocrine selection
energy consumption EES = 50 pJ at per iteration, function dimension D = 30, division factory k = 6, and
maximum iteration PGen = 800 .The extra PSO parameters used for GMDPSO are fixed to: ω = 0.7968,
c1 = c2 = 1.4926 In addition, the population size of ECPSOA and DPSORR is set to be 60; both of the
two algorithms are run for maximum of 800.

Table 3. Simulation parameters.

Parameter Value Parameter Value

Area 5000 ˆ 5000 m2 Packet size 1 KB
Sensor nodes 50, 150, 250, 350, 450 Deliver packets rate 20 per round
Mobile sinks 5 Simulation iterations number 200

Initial energy of nodes 120 J α1 60 nj/bit
communication rang 600 m β1 45 nj/bit

sensing rang R 300 m β2 10 nj/bit
Speed of mobile vsink 5 m/s, 10 m/s, 20 m/s γ1 135 nj/bit

Pfault 0.1, 0.2, 0.4 Channel attenuation n 2

For the weight sum approach, in our proposed algorithms, we give equal weight to each
sub-objective. That to say, we set w1 = w2 = w3 = 0.33.

Sensors 2016, 16, 1081 21 of 27

6.2. Results and Analysis

6.2.1. Performance of GMDPSO

First, we compare the performance of the proposed GMDPSO with ECPSOA, standard PSO [30]
and the CPSOA [31]. In order to ensure a fair comparison, we configure these tree algorithms based on
the same fitness function in Equation (26) with 450 sensor nodes, all simulation parameters are set to
the same value, and the iterated generation for three protocols is fixed to 300.

The test result is shown in Figure 6. It can be seen that: GMDPSO outperforms the other PSOAs
in term of convergence rate and the minimum fitness value. This is mainly due to the greedy search
strategy based on the MWSNs topology, which avoid the blind search of the particle; another reason
is that the memory mechanism reduces the repeated and invalid searching. It also can be seen that
GMDPSO has the best initial fitness value, which is achieved by our special particle initial mechanism.

Sensors 2016, 16, 1081 20 of 26

 

 -
 100

PDR comparative advantage to ECPSOAR

PDR of GMDPSO PDR of ECPSOAR

PDR of ECPSOAR




 (38)

6.1. Simulation Setting

Simulations are performed on the MWSN, which consists of diverse number of homogenous

sensor nodes ranging from 50 to 450. Each sensor node is assumed to have initial energy of 120 J and

the mobile sink is assumed to have sufficient energy and cannot be fault.

To build a level playing field, the characteristics of the networks and communication models

are configured as illustrated in [10] and as shown in Table 3. The extra PSO parameters used for

ECPSOA are fixed to: particle updating energy consumption EPU = 80 pJ the endocrine selection

energy consumption EES = 50 pJ at per iteration, function dimension D = 30, division factory k = 6, and

maximum iteration PGen = 800 .The extra PSO parameters used for GMDPSO are fixed to: ω = 0.7968,

c1 = c2 = 1.4926 In addition, the population size of ECPSOA and DPSORR is set to be 60; both of the

two algorithms are run for maximum of 800.

Table 3. Simulation parameters.

Parameter Value Parameter Value

Area 5000 × 5000 m2 Packet size 1 KB

Sensor nodes 50, 150, 250, 350, 450 Deliver packets rate 20 per round

Mobile sinks 5 Simulation iterations number 200

Initial energy of nodes 120 J α1 60 nj/bit

communication rang 600 m β1 45 nj/bit

sensing rang R 300 m β2 10 nj/bit

Speed of mobile vsink 5 m/s, 10 m/s, 20 m/s γ1 135 nj/bit

Pfault 0.1, 0.2, 0.4 Channel attenuation n 2

For the weight sum approach, in our proposed algorithms, we give equal weight to each

sub-objective. That to say, we set w1 = w2 = w3 = 0.33.

6.2. Results and Analysis

6.2.1. Performance of GMDPSO

First, we compare the performance of the proposed GMDPSO with ECPSOA, standard PSO [30]

and the CPSOA [31]. In order to ensure a fair comparison, we configure these tree algorithms based

on the same fitness function in Equation (26) with 450 sensor nodes, all simulation parameters are set

to the same value, and the iterated generation for three protocols is fixed to 300.

Figure 6. Compare of convergence.

0 50 100 150 200 250 300
0.1

0.2

0.3

0.4

0.5

0.6

Iterations

F
it
n

e
s
s
 V

a
lu

e

GMDPSO

ECPSOA

CPSO

SPSO

Figure 6. Compare of convergence.

6.2.2. Packet Delivery Ratio

A routing protocol’s reliability depends on PDR to the sink. Here, we run these protocols for
comparing average PDR. Figure 7 and Table 4 show the comparison results when the speed of sinks is
5 m/s. Figure 7 shows that our protocol is more reliable and robust. In detail, firstly, average PDR of
all protocols are decreasing as the number of nodes increases; however, our protocol still outperforms
the others and the advantage (i.e., Equation (17)) is becoming more and more obvious as the number
of sensor nodes increase in Figure 7d. Secondly, PDR reduces with the increase of the node failure
probability (Figure 7a–c). Still, our protocol can deliver more packets than the other protocols with the
same network size. Thirdly, with each same Pf ault,t, our protocol always keeps the maximum average
PDR (Figure 7a–c), which means that our protocol can find a better solution than others respect to
different sensor nodes. Meanwhile, Table 4 illustrated that, with each same sensor node, our protocol
keeps the maximum average PDR, which means that our protocol can find a better solution than others
respect to different Pf ault. That is to say, no matter with different sensor nodes or different node failure
probability, our protocol can find the best path tree among the 4 protocols. Therefore, based on the
above two results, we conclude that our protocol is more robust in PDR.

Our protocol improved the average PDR noticeably due to the following three reasons: The first
reason is, the temporary path (TP) is designed to continue the old data packets transmission when
sink moves away the old agent, which can avoid the packets loss before the new optimal routing path
coming into services. The second reason is: our protocol can quickly locate the failure node and quickly
build an alternative optimal path to recover the broken path link by its fast convergence feature and
without any flooding when relay nodes fail, which also can reduce the data packets loss. The third
reason is: the proposed GMDPSO can build better alternative routing path than others due to its ability
of achieving global optimum, such as shorter total transmission distance and small communication

Sensors 2016, 16, 1081 22 of 27

delays, which can enhance the communication reliability and PDR. Moreover, our fitness function
minimizes the energy consumption of the relay nodes to reduce the premature death probability of the
relay node, which also can reduce the data packets loss due to the broken routing path.

Sensors 2016, 16, 1081 21 of 26

The test result is shown in Figure 6. It can be seen that: GMDPSO outperforms the other PSOAs

in term of convergence rate and the minimum fitness value. This is mainly due to the greedy search

strategy based on the MWSNs topology, which avoid the blind search of the particle; another reason

is that the memory mechanism reduces the repeated and invalid searching. It also can be seen that

GMDPSO has the best initial fitness value, which is achieved by our special particle initial mechanism.

6.2.2. Packet Delivery Ratio

A routing protocol’s reliability depends on PDR to the sink. Here, we run these protocols for

comparing average PDR. Figure 7 and Table 4 show the comparison results when the speed of sinks

is 5 m/s. Figure 7 shows that our protocol is more reliable and robust. In detail, firstly, average PDR

of all protocols are decreasing as the number of nodes increases; however, our protocol still

outperforms the others and the advantage (i.e., Equation (17)) is becoming more and more obvious

as the number of sensor nodes increase in Figure 7d. Secondly, PDR reduces with the increase of the

node failure probability (Figure 7a–c). Still, our protocol can deliver more packets than the other

protocols with the same network size. Thirdly, with each same 𝑃𝑓𝑎𝑢𝑙𝑡,t, our protocol always keeps

the maximum average PDR (Figure 7a–c), which means that our protocol can find a better solution

than others respect to different sensor nodes. Meanwhile, Table 4 illustrated that, with each same

sensor node, our protocol keeps the maximum average PDR, which means that our protocol can

find a better solution than others respect to different 𝑃𝑓𝑎𝑢𝑙𝑡. That is to say, no matter with different

sensor nodes or different node failure probability, our protocol can find the best path tree among

the 4 protocols. Therefore, based on the above two results, we conclude that our protocol is more

robust in PDR.

(a) (b)

(c) (d)

Figure 7. Average packet delivery ratio with respect to different node failure probabilities. (a) When

the node failure probability is 0.01; (b) When the node failure probability is 0.02; (c) When the node

failure probability is 0.04; (d) Average PDR comparative advantage.

Our protocol improved the average PDR noticeably due to the following three reasons: The first

reason is, the temporary path (TP) is designed to continue the old data packets transmission when

sink moves away the old agent, which can avoid the packets loss before the new optimal routing

path coming into services. The second reason is: our protocol can quickly locate the failure node and

50 100 150 200 250 300 350 400 450

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of nodes

P
a

c
k
e

t
d

e
li
v
e

ra
y
 r

a
ti
o

GMDPSO

ECPSOAR

IAR

TTDO

50 100 150 200 250 300 350 400 450
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of nodes

P
a

c
k
e

t
d

e
li
v
e

ra
y
 r

a
ti
o

GMDPSO

ECPSOA

IAR

TTDO

50 100 150 200 250 300 350 400 450
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of nodes

P
a

c
k
e

t
d

e
li
v
e

ra
y
 r

a
ti
o

GMDPSO

ECPSOAR

IAR

TTDO

ECPSOAR IAR TTDD
0

5

10

15

20

25

30

Algorithms

 c
o

m
p

a
ra

ti
v
e

 a
d

v
a

n
ta

g
e

(%
)

50 nodes

150 nodes

250 nodes

350 nodes

450 nodes

Figure 7. Average packet delivery ratio with respect to different node failure probabilities. (a) When
the node failure probability is 0.01; (b) When the node failure probability is 0.02; (c) When the node
failure probability is 0.04; (d) Average PDR comparative advantage.

Table 4. Average packet delivery ratio (PDR) with respect to different Pf ault.

Algorithms
150 Sensor Nodes 350 Sensor Nodes 450 Sensor Nodes

Pfault.01 Pfault.02 Pfault.04 Pfault.01 Pfault.02 Pfault.04 Pfault.01 Pfault.02 Pfault.04

GMDPSO 0.924 0.852 0.821 0.843 0.781 0.721 0.794 0.728 0.694
ECPSOAR 0.896 0.814 0.771 0.803 0.721 0.634 0.736 0.643 0.571

IAR 0.829 0.773 0.679 0.737 0.626 0.595 0.633 0.571 0.456
TTDD 0.755 0.6890 0.698 0.670 0.643 0.551 0.620 0.567 0.486

6.2.3. End-to-End Delay

Next, we compare the average EED of the proposed protocol on the same experiment environment
as Section 6.2.1. Figure 8 and Table 5 show the comparison result. It can be observed from Figure 8
that the proposed protocol has smaller end-to-end delay than the existing protocols.

More specifically, firstly, with the increase of the number of nodes, EED of all these protocols
is increased. Again, our protocol performs best. This is because our protocol adopts the GMDPSO
algorithm, whose better performance in reaching the global optimum allows it to build the optimal
routing tree with shorter transmission distance. Furthermore, its faster convergence feature make it
can build the optimal routing tree more quickly. Moreover, by using our neighbor table, the routing
information is stored in each node to improve the speed of route establishment. All these advantages
of GMDPSO can help to decrease the end-to-end delay. It is worthy to note that, as illustrated in
Figure 8d, the average EED comparative advantage (i.e., Equation (17)) decreases as the number of
sensor nodes increases, this is because our greedy search rule spends more time to select the best
relay nodes from larger scale nodes to build the optimal routing tree. Nevertheless, the fast response

Sensors 2016, 16, 1081 23 of 27

of routing recovery and less communication control overhead by our unicast flooding mechanism
also make our protocol end-to-end delay lower than the other protocols. Secondly, the end-to-end
delay increases with the increase of the node failure probability by comparing Figure 8a–c, as the less
stable topology causes more route recovery operation, which consumes more time for the protocols to
maintain the network and prolong the delay. However, our protocol can still achieve the optimal delay;
this is because we have designed the quick routing recovery mechanism for failure relay nodes. Thirdly,
similar to average PDR, it can be observed from Figure 8a–c and Table 5 that our protocol achieves
best average EED with respect to different sensor nodes and different Pf ault, which means that our
protocol can find a better solution than others. That to say, our protocol keeps better robustness of EED,
this is because that the GMDPSO adopted in our protocol can also build the global optimum routing
tree in different network size, however, others maybe build different suboptimal routing solutions for
different network sizes, which increase the volatility of delay. Moreover, once the existing routing path
is broken due to failure nodes, an alternative optimal path can be quickly established for the source
node in our protocol. In addition, the other failure nodes (i.e., not the relay nodes) never be selected as
the relay nodes due to our fitness function.

Sensors 2016, 16, 1081 22 of 26

quickly build an alternative optimal path to recover the broken path link by its fast convergence

feature and without any flooding when relay nodes fail, which also can reduce the data packets loss.

The third reason is: the proposed GMDPSO can build better alternative routing path than others due

to its ability of achieving global optimum, such as shorter total transmission distance and small

communication delays, which can enhance the communication reliability and PDR. Moreover, our

fitness function minimizes the energy consumption of the relay nodes to reduce the premature death

probability of the relay node, which also can reduce the data packets loss due to the broken routing

path.

Table 4. Average packet delivery ratio (PDR) with respect to different 𝑃𝑓𝑎𝑢𝑙𝑡.

Algorithms
𝟏𝟓𝟎 Sensor Nodes 𝟑𝟓𝟎 Sensor Nodes 𝟒𝟓𝟎 Sensor Nodes

𝑷𝒇𝒂𝒖𝒍𝒕.01 𝑷𝒇𝒂𝒖𝒍𝒕.02 𝑷𝒇𝒂𝒖𝒍𝒕.04 𝑷𝒇𝒂𝒖𝒍𝒕.01 𝑷𝒇𝒂𝒖𝒍𝒕.02 𝑷𝒇𝒂𝒖𝒍𝒕.04 𝑷𝒇𝒂𝒖𝒍𝒕.01 𝑷𝒇𝒂𝒖𝒍𝒕.02 𝑷𝒇𝒂𝒖𝒍𝒕.04

GMDPSO 0.924 0.852 0.821 0.843 0.781 0.721 0.794 0.728 0.694

ECPSOAR 0.896 0.814 0.771 0.803 0.721 0.634 0.736 0.643 0.571

IAR 0.829 0.773 0.679 0.737 0.626 0.595 0.633 0.571 0.456

TTDD 0.755 0.6890 0.698 0.670 0.643 0.551 0.620 0.567 0.486

6.2.3. End-to-End Delay

Next, we compare the average EED of the proposed protocol on the same experiment

environment as Section 6.2.1. Figure 8 and Table 5 show the comparison result. It can be observed

from Figure 8 that the proposed protocol has smaller end-to-end delay than the existing protocols.

(a) (b)

(c) (d)

Figure 8. Average end-to-end delay with respect to different node failure probabilities. (a) When the

node failure probability is 0.01; (b) When the node failure probability is 0.02; (c) When the node

failure probability is 0.04; (d) Average EED comparative advantage.

More specifically, firstly, with the increase of the number of nodes, EED of all these protocols is

increased. Again, our protocol performs best. This is because our protocol adopts the GMDPSO

algorithm, whose better performance in reaching the global optimum allows it to build the optimal

routing tree with shorter transmission distance. Furthermore, its faster convergence feature make it

can build the optimal routing tree more quickly. Moreover, by using our neighbor table, the routing

50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of nodes

E
n

d
-t

o
-e

n
d

 d
e

la
y
(s

)

GMDPSO

ECPSOAR

IAR

TTDO

50 100 150 200 250 300 350 400 450
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of nodes

E
n

d
-t

o
-e

n
d

 d
e

la
y
(s

)

GMDPSO

ECPSOAR

IAR

TTDO

50 100 150 200 250 300 350 400 450
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

 Number of nodes

E
n

d
 t
o

 e
n

d
 d

e
la

y
(s

)

GMDPSO

ECPSOAR

IAR

TTDO

ECPSOAR IAR TTDD
0

20

40

60

80

100

Algorithms

A
v
e

ra
g

e
 c

o
m

p
a

ra
ti
v
e

 a
d

v
a

n
ta

g
e

(%
)

50 nodes

150 nodes

250 nodes

350 nodes

450 nodes

Figure 8. Average end-to-end delay with respect to different node failure probabilities. (a) When the
node failure probability is 0.01; (b) When the node failure probability is 0.02; (c) When the node failure
probability is 0.04; (d) Average EED comparative advantage.

Table 5. Average end-to-end delay (EED) with respect to different Pf ault.

Algorithms
150 Sensor Nodes 350 Sensor Nodes 450 Sensor Nodes

Pfault.01 Pfault.02 Pfault.04 Pfault.01 Pfault.02 Pfault.04 Pfault.01 Pfault.02 Pfault.04

GMDPSO 0.155 0.173 0.551 0.457 0.417 1.273 0.563 0.513 1.585
ECPSOAR 0.223 0.220 0.659 0.571 0.605 1.431 0.635 0.646 1.908

IAR 0.212 0.260 0.700 0.620 0.702 1.878 0.729 0.835 2.278
TTDD 0.357 0.349 1.056 0.684 0.815 1.911 0.780 0.929 2.383

Sensors 2016, 16, 1081 24 of 27

6.2.4. Energy Consumption

Although mobile sink protocol can alleviate hotspots implicitly by changing the possible high
energy consumption zones around the sinks as the sinks move. However, these operations may cause
the overall energy consumption in the network to increase. Now, we compare the average ECR of
these protocols, which is used to measure the influence of node failure probability and mobile sink
speed to the network. Simulations are performed on different network sizes with different sink speeds
(speed of 5 m/s, 10 m/s and 20 m/s). Here, the node failure probability is set to 0.1. Figure 9 and
Table 6 illustrate that the energy consumption of our protocol is the smallest among these protocols,
and the comparative advantage (i.e., Equation (17)) becomes larger as the number of sensor nodes
increases in Figure 9d. It worth to note that the average ECR of all these protocols increases as the
mobile sinks move faster, because the change of the frequent topology results in frequent routing
recovery which introduces heavier communication and energy overhead due to flooding operation.
In this situation, our protocol can still consume less energy than the other protocols with the same
network size. Besides, similar to average PDR, we can also conclude that our protocol achieves better
robustness of EED than others from Figure 9a–c and Table 6.Sensors 2016, 16, 1081 24 of 26

(a) (b)

(c) (d)

Figure 9. Average energy consumption ratio (ECR) with respect to different speeds of mobile sinks.

(a) When the moving speed of sinks is 5 m/s; (b) When the moving speed of sinks is 10 m/s; (c) When

the moving speed of sinks is 20 m/s; (d) Average ECR comparative advantage.

Table 6. Average ECR with respect to different 𝑉𝑆𝑖𝑛𝑘.

Algorithms
𝟏𝟓𝟎 Sensor Nodes 𝟑𝟓𝟎 Sensor Nodes 𝟒𝟓𝟎 Sensor Nodes

𝑽𝑺𝒊𝒏𝒌5 𝑽𝑺𝒊𝒏𝒌10 𝑽𝑺𝒊𝒏𝒌20 𝑽𝑺𝒊𝒏𝒌5 𝑽𝑺𝒊𝒏𝒌10 𝑽𝑺𝒊𝒏𝒌20 𝑽𝑺𝒊𝒏𝒌5 𝑽𝑺𝒊𝒏𝒌10 𝑽𝑺𝒊𝒏𝒌20

GMDPSO 0.264 0.302 0.352 0.382 0.482 0.549 0.416 0.539 0.618

ECPSO 0.321 0.341 0.395 0.487 0.605 0.634 0.512 0.646 0.749

IAR 0.336 0.445 0.486 0.607 0.702 0.737 0.643 0.835 0.880

TTDS 0.405 0.512 0.560 0.618 0.815 0.869 0.728 0.929 0.941

7. Conclusions

In this paper, the routing of MWSNs is formulated as an optimization problem and we employ

PSO to design an efficient routing protocol to achieve higher energy efficiency and lower communication

delay. However, conventional PSO was originally designed for continuous optimization problems,

which limits its application in discrete optimization domains. In addition, conventional PSO suffers

from the curse of dimensionality, i.e., its performance deteriorates quickly as the dimensionality of

the search space increases exponentially. To address these problems, we design a novel GMDPSO to

build the optimal route tree. In GMDPSO, we first deduced a new more suitable fitness function,

then redefined the particle position and velocity in a discrete form and subsequently redesigned the

particle update rules based on the network topology; consequently a discrete PSO framework was

established. When applying the proposed discrete PSO framework to solve the mobile sink route

problem, to alleviate prematurity, a greedy local search based method was specially designed for the

particle position update rule by improving the greedy forwarding mechanism. Simulations

demonstrated that the proposed protocol is effective and promising.

50 100 150 200 250 300 350 400 450
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of nodes

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 r

a
ti
o

GMDPSO

ECPSOAR

IAR

TTDO

50 100 150 200 250 300 350 400 450
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of nodes

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 r

a
ti
o

GMDPSO

ECPSOAR

IAR

TTDO

50 100 150 200 250 300 350 400 450
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of nodes

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 r

a
ti
o

eGMDPSOR

ECPSOAR

IAR

TTDO

ECPSOAR IAR TTDD
0

10

20

30

40

50

60

Algorithms

A
v
e

ra
g

e
 c

o
m

p
a

ra
ti
v
e

 a
d

v
a

n
ta

g
e

(%
)

50 nodes

150 nodes

250 nodes

350 nodes

450 nodes

Figure 9. Average energy consumption ratio (ECR) with respect to different speeds of mobile sinks.
(a) When the moving speed of sinks is 5 m/s; (b) When the moving speed of sinks is 10 m/s; (c) When
the moving speed of sinks is 20 m/s; (d) Average ECR comparative advantage.

Table 6. Average ECR with respect to different VSink.

Algorithms
150 Sensor Nodes 350 Sensor Nodes 450 Sensor Nodes

VSink5 VSink10 VSink20 VSink5 VSink10 VSink20 VSink5 VSink10 VSink20

GMDPSO 0.264 0.302 0.352 0.382 0.482 0.549 0.416 0.539 0.618
ECPSO 0.321 0.341 0.395 0.487 0.605 0.634 0.512 0.646 0.749

IAR 0.336 0.445 0.486 0.607 0.702 0.737 0.643 0.835 0.880
TTDS 0.405 0.512 0.560 0.618 0.815 0.869 0.728 0.929 0.941

Sensors 2016, 16, 1081 25 of 27

Our protocol outperforms others in term of ECR. The main reasons are as follows: the improved
greedy forwarding mechanism is used ensure each routing branch has the mining energy consumption
by selecting the relay node with optimized QoS parameters (energy, delay, energy consumption and
so on). In addition, the unicast local flooding mechanism reduces the communication overhead in the
network, which can minimize and indirectly reduce energy consumption.

In summary, the overall performance of our protocol outperforms LEACH, SEP, ERP and TPSO-CR
in terms of the PDR, EED and EDR, while maintaining the best robust.

7. Conclusions

In this paper, the routing of MWSNs is formulated as an optimization problem and we employ PSO
to design an efficient routing protocol to achieve higher energy efficiency and lower communication
delay. However, conventional PSO was originally designed for continuous optimization problems,
which limits its application in discrete optimization domains. In addition, conventional PSO suffers
from the curse of dimensionality, i.e., its performance deteriorates quickly as the dimensionality of
the search space increases exponentially. To address these problems, we design a novel GMDPSO
to build the optimal route tree. In GMDPSO, we first deduced a new more suitable fitness function,
then redefined the particle position and velocity in a discrete form and subsequently redesigned
the particle update rules based on the network topology; consequently a discrete PSO framework
was established. When applying the proposed discrete PSO framework to solve the mobile sink
route problem, to alleviate prematurity, a greedy local search based method was specially designed
for the particle position update rule by improving the greedy forwarding mechanism. Simulations
demonstrated that the proposed protocol is effective and promising.

Acknowledgments: The authors would like to thank the anonymous reviewers and guest editor for their valuable
reviews that are very useful for the improvement of quality of this paper. This work was partially supported by the
Second Batch of Strategic Emerging Industrial Core Technology Research Project in Guangdong Province under
Grant No. 2012A010701005; the Key Lab of cloud computing and big data in Guangzhou under Grant No. SITGZ
[2013]268-6; Engineering and Technology Research Center of Guangdong Province for Big Data Intelligent
Processing under Grant No. GDDST[2013]1513-1-11; Key Project of the Combination of “Production, Education
and Research” supported by Guangdong province and Ministry of Education, under Grant No. 2012B091000109
and Science and Technology Program in Guangzhou, China (International Science and Technology Cooperation
Program) under Grant No. 2012J5100018; The Natural Science Foudation of Guangdong Province, under Grant
No.2014A030313585; Guang Dong Provincial Natural fund project, under Grant No. 2016A030310300.

Author Contributions: Fagui Liu and Jin Yang defined problem and developed the ideal. Jin Yang, Jianneng Cao
and Liangming Wang carried out the experiments and data analysis and wrote the relevant sections.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rault, T.; Bouabdallah, A.; Challal, Y. Energy efficiency in wireless sensor networks: A top-down survey.
Comput. Netw. 2014, 67, 104–122. [CrossRef]

2. Jaichandran, R.; Irudhayaraj, A.A.; Raja, J.E. Effective Strategies and Optimal Solutions for Hot Spot Problem
in Wireless Sensor Networks (WSN). In Proceedings of the 2010 10th International Conference on Information
Sciences Signal Processing and their Applications (ISSPA), Kuala Lumpur, Malaysia, 10–13 May 2010;
pp. 389–392.

3. Francesco, M.D.; Das, S.K.; Anastasi, G. Data Collection in Wireless Sensor Networks with Mobile Elements:
A Survey. ACM Trans. Sens. Netw. 2011, 8. [CrossRef]

4. Liang, W.; Luo, J.; Xu, X. Prolonging Network Lifetime via a Controlled Mobile Sink in Wireless Sensor
Networks. In Proceedings of the 2010 IEEE Global Telecommunications Conference (GLOBECOM 2010),
Miami, FL, USA, 6–10 December 2010. [CrossRef]

5. Nazir, B.; Hasbullah, H. Mobile Sink based Routing Protocol (MSRP) for Prolonging Network Lifetime in
Clustered Wireless Sensor Network. In Proceedings of the 2010 International Conference on Computer
Applications and Industrial Electronics (ICCAIE), Kuala Lumpur, Malaysia, 5–8 December 2010; pp. 624–629.

http://dx.doi.org/10.1016/j.comnet.2014.03.027
http://dx.doi.org/10.1145/1993042.1993049
http://dx.doi.org/10.1109/GLOCOM.2010.5683095

Sensors 2016, 16, 1081 26 of 27

6. Oh, S.; Yim, Y.; Lee, J.; Park, H.; Kim, S.H. Non-Geographical Shortest Path Data Dissemination for Mobile
Sinks in Wireless Sensor Networks. In Proceedings of the 2011 IEEE Vehicular Technology Conference
(VTC Fall), San Francisco, CA, USA, 5–8 September 2011. [CrossRef]

7. Liu, X.; Zhao, H.; Yang, X.; Li, X. SinkTrail: A Proactive Data Reporting Protocol for Wireless Sensor Networks.
IEEE Trans. Comput. 2013, 62, 151–162. [CrossRef]

8. Shi, G.; Zheng, J.; Yang, J.; Zhao, Z. Double-Blind Data Discovery Using Double Cross for Large-Scale
Wireless Sensor Networks With Mobile Sinks. IEEE Trans. Veh. Technol. 2012, 61, 2294–2304.

9. Tunca, C.; Isik, S.; Donmez, M.Y.; Ersoy, C. Distributed Mobile Sink Routing for Wireless Sensor Networks:
A Survey. IEEE Commun. Surv. Tutor. 2014, 16, 877–897. [CrossRef]

10. Hu, Y.F.; Ding, Y.S.; Ren, L.H.; Hao, K.R.; Han, H. An endocrine cooperative particle swarm optimization
algorithm for routing recovery problem of wireless sensor networks with multiple mobile sinks. Inf. Sci.
2015, 300, 100–113. [CrossRef]

11. Hu, Y.F.; Wu, X.M.; Wang, F.Q.; Han, H. A particle swarm algorithm based routing recovery method for
mobile sink wireless sensor networks. In Proceedings of the 26th Chinese Control and Decision Conference
(2014 CCDC), Changsha, China, 31 May–2 June 2014; pp. 887–892.

12. Hu, Y.F.; Wu, X.M.; Wang, F.Q.; Liu, X.Z.; Han, H. A novel routing recovery strategy based on particle
swarm algorithm for wireless sensor networks with multiple mobile sinks. In Proceedings of the
2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), Singapore,
10–12 December 2014; pp. 681–686.

13. Chengetanai, G.; Reilly, G.B.O. Review of swarm intelligence routing algorithms in wireless mobile ad hoc
networks. In Proceedings of the 2015 IEEE 9th International Conference on Intelligent Systems and Control
(ISCO), Coimbatore, India, 9–10 January 2015. [CrossRef]

14. Tang, D.; Cai, Y.; Zhao, J.; Xue, Y. A quantum-behaved particle swarm optimization with memetic algorithm
and memory for continuous non-linear large scale problems. Inf. Sci. 2014, 289, 162–189. [CrossRef]

15. Luo, H.; Ye, F.; Cheng, J.; Lu, S.; Zhang, L. TTDD: Two-Tier Data Dissemination in Large-Scale Wireless
Sensor Networks. Wirel. Netw. 2005, 11, 161–175. [CrossRef]

16. Kweon, K.; Ghim, H.; Hong, J.; Yoon, H. Grid-Based Energy-Efficient Routing from Multiple Sources to
Multiple Mobile Sinks in Wireless Sensor Networks. In Proceedings of the ISWPC 2009 4th International
Symposium on Wireless Pervasive Computing, Melbourne, Australia, 11–13 February 2009. [CrossRef]

17. Minhan, S.; Chunum, K.; Choo, H. Hexagonal path data dissemination for energy efficiency in wireless sensor
networks. In Proceedings of the 2009 International Conference on Information Networking, Chiang Mai,
Thailand, 21–24 January 2009; pp. 1–5.

18. Kim, H.S.; Abdelzaher, T.F.; Kwon, W.H. Minimum-energy asynchronous dissemination to mobile sinks
in wireless sensor networks. In Proceedings of the 1st International Conference on Embedded Networked
Sensor Systems, Los Angeles, CA, USA, 5–7 November 2003; pp. 193–204.

19. Tunca, C.; Isik, S.; Donmez, M.Y.; Ersoy, C. Ring Routing: An Energy-Efficient Routing Protocol for Wireless
Sensor Networks with a Mobile Sink. IEEE Trans. Mob. Comput. 2015, 14, 1947–1960. [CrossRef]

20. Kim, J.W.; In, J.S.; Hur, K.; Kim, J.W.; Eom, D.S. An intelligent agent-based routing structure for mobile sinks
in WSNs. IEEE Trans. Consum. Electron. 2010, 56, 2310–2316. [CrossRef]

21. Lee, J.H.; Kim, J.M.; Jang, B.T.; Lee, E.-S. Data Dissemination Protocol Based on Home Agent and Access Node
for Mobile Sink in Mobile Wireless Sensor Networks. In Proceedings of the 5th International Conference
on Convergence and Hybrid Information Technology (ICHIT 2011), Daejeon, Korea, 22–24 September 2011;
Lee, G., Howard, D., Ślęzak, D., Eds.; Springer Berlin Heidelberg: Berlin, Germany, 2011; pp. 306–314.

22. Jiang, Y.; Shi, W.; Wang, X.; Li, H. A distributed routing for wireless sensor networks with mobile sink based
on the greedy embedding. Ad Hoc Netw. 2014, 20, 150–162. [CrossRef]

23. Yang, H.; Ye, F.; Sikdar, B. SIMPLE: Using Swarm Intelligence Methodology to Design Data Acquisition
Protocol in Sensor Networks with Mobile Sinks. In Proceedings of the 25th IEEE International Conference
on Computer Communications, Barcelona, Spain, 23–29 April 2006. [CrossRef]

24. Yang, W.; Xing, P.; Liu, Y. A positioning method of WSN based on self-adapted RSSI distance model. Chin. J.
Sens. Actuators 2015, 28, 137–141.

25. Chen, Y.; Wang, Z.; Ren, T.; Lv, H. Lifetime Optimization Algorithm with Mobile Sink Nodes for Wireless
Sensor Networks Based on Location Information. Int. J. Distrib. Sens. Netw. 2015. [CrossRef]

http://dx.doi.org/10.1109/VETECF.2011.6093179
http://dx.doi.org/10.1109/TC.2011.207
http://dx.doi.org/10.1109/SURV.2013.100113.00293
http://dx.doi.org/10.1016/j.ins.2014.11.052
http://dx.doi.org/10.1109/ISCO.2015.7282367
http://dx.doi.org/10.1016/j.ins.2014.08.030
http://dx.doi.org/10.1007/s11276-004-4753-x
http://dx.doi.org/10.1109/ISWPC.2009.4800585
http://dx.doi.org/10.1109/TMC.2014.2366776
http://dx.doi.org/10.1109/TCE.2010.5681105
http://dx.doi.org/10.1016/j.adhoc.2014.04.007
http://dx.doi.org/10.1109/INFOCOM.2006.184
http://dx.doi.org/10.1155/2015/857673

Sensors 2016, 16, 1081 27 of 27

26. Yang, G.; Xu, H.; He, X.; Wang, G.; Xiong, N.; Wu, C. Tracking Mobile Sinks via Analysis of Movement Angle
Changes in WSNs. Sensors 2016, 16. [CrossRef] [PubMed]

27. Ahmad, A.; Rathore, M.M.; Paul, A.; Chen, B.W. Data Transmission Scheme Using Mobile Sink in Static
Wireless Sensor Network. J. Sens. 2015, 2015. [CrossRef]

28. Konak, A.; Coit, D.W.; Smith, A.E. Multi-objective optimization using genetic algorithms: A tutorial.
Reliab. Eng. Syst. Saf. 2006, 91, 992–1007. [CrossRef]

29. Maia, G.; Guidoni, D.L.; Viana, A.C.; Aquino, A.L.L.; Mini, R.A.F.; Loureiro, A.A.F. A distributed data storage
protocol for heterogeneous wireless sensor networks with mobile sinks. Ad Hoc Netw. 2013, 11, 1588–1602.
[CrossRef]

30. Hu, M.; Wu, T.; Weir, J.D. An Adaptive Particle Swarm Optimization With Multiple Adaptive Methods.
IEEE Trans. Evol. Comput. 2013, 17, 705–720. [CrossRef]

31. Lin, C.-J.; Chen, C.-H.; Lin, C.-T. A hybrid of cooperative particle swarm optimization and cultural algorithm
for neural fuzzy networks and its prediction applications. IEEE Trans. Syst. Man Cybern. C Appl. Rev.
2009, 39, 55–68.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s16040449
http://www.ncbi.nlm.nih.gov/pubmed/27043562
http://dx.doi.org/10.1155/2015/279304
http://dx.doi.org/10.1016/j.ress.2005.11.018
http://dx.doi.org/10.1016/j.adhoc.2013.01.004
http://dx.doi.org/10.1109/TEVC.2012.2232931
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Related Work
	System Mode and Terminologies
	System Mode
	Terminologies

	New Routing Protocol for MWSNs
	Our Efficient Routing Strategy in MWSNs
	Design of the Neighbor Table
	Building Routing Tree
	Routing Path Recovery

	Overview of New Protocol

	The Proposed GMDPSO for Our Protocol
	PSO
	GMDPSO: Greedy Discrete PSO with Memory
	Fitness Function Derivation
	Particles Representation
	Particle Swarm Initialization
	Velocity and Position Update

	The Redesigned GMDPSO Seems to be Very Suitable for Solving Routing Problem in MWSNs6. Simulations and Results
	Simulation Setting
	Results and Analysis
	Performance of GMDPSO
	Packet Delivery Ratio
	End-to-End Delay
	Energy Consumption

	Conclusions

