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Abstract: State-of-the-art pansharpening methods generally inject the spatial structures of a high
spatial resolution (HR) panchromatic (PAN) image into the corresponding low spatial resolution (LR)
multispectral (MS) image by an injection model. In this paper, a novel pansharpening method with
an edge-preserving guided filter based on three-layer decomposition is proposed. In the proposed
method, the PAN image is decomposed into three layers: A strong edge layer, a detail layer, and
a low-frequency layer. The edge layer and detail layer are then injected into the MS image by a
proportional injection model. In addition, two new quantitative evaluation indices, including the
modified correlation coefficient (MCC) and the modified universal image quality index (MUIQI) are
developed. The proposed method was tested and verified by IKONOS, QuickBird, and Gaofen (GF)-1
satellite images, and it was compared with several of state-of-the-art pansharpening methods from
both qualitative and quantitative aspects. The experimental results confirm the superiority of the
proposed method.

Keywords: pansharpening; guided filter; three-layer decomposition; panchromatic (PAN);
multispectral (MS)

1. Introduction

With the rapid development of satellite sensors, remote sensing images have become widely
used. In particular, images with both high spatial and spectral resolutions are highly desirable in
various remote sensing applications, such as image classification, segmentation, object detection,
etc. [1,2]. However, due to the technical limitations of the sensors and other imaging factors, such ideal
images cannot be obtained directly [3]. Most Earth observation satellites, such as QuickBird, IKONOS,
GeoEye-1, WorldView-2, etc., provide both high spatial resolution (HR) panchromatic (PAN) image
with a low spectral resolution, and low spatial resolution (LR) multispectral (MS) image with a relative
higher spectral resolution. The fusion process that makes full use of the complementary information
from the PAN and MS images to produce HR MS image is referred to as pansharpening.

To date, a variety of pansharpening methods have been proposed. In general, most of the
existing methods are based on a basic protocol, which can be summarized as: (1) determine the high
spatial structure information, and it can be obtained from the PAN image by a tool such as a filter
or other methods; and (2) inject the high spatial structure information into the MS image, based on
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a certain model. The image fusion methods based on this protocol can be sorted into several basic
categories: arithmetic combination (AC)-based fusion methods, component substitution (CS)-based
fusion methods, and multiresolution analysis (MRA)-based fusion methods. In addition, model-based
fusion methods [4–7] have been developed in recent years; however, due to their complexity and
time-consuming computations, these algorithms will not be discussed in detail in this paper.

Among the pansharpening methods described above, the AC-based fusion methods are the
simplest. They are based on the arithmetic combination of the PAN and MS bands. The most
representative are the Brovey fusion method [8] and the UNB-Pansharp fusion method [9], which
has been successfully commercialized in the PCI Geomatica software. The CS-based algorithms are
another popular pansharpening category; its basic idea is that the MS bands are firstly transformed
into another new space with decorrelated components to reduce information redundancy, one of the
components is then substituted by the HR PAN image to improve the spatial resolution of the MS
image. The representative methods include the popular intensity-hue-saturation (IHS) fusion [10–12],
the Gram-Schmidt (GS) fusion [13], principal component analysis (PCA) fusion [14], etc. In general, the
AC-based fusion methods and the CS-based fusion methods can achieve the fused products with better
spatial structures; however, they perform slightly poorer in the preservation of spectral information.

The MRA-based fusion methods are generally with relative less spectral distortions, though they
are slightly sensitive to the spatial distortions. In general, they extract the high frequency information
of the PAN image based on the wavelet transform [15–18] and the Laplacian pyramid [19,20],
etc. In addition, the edge-preserving filters have been introduced into MRA-based image fusion
algorithms [21–24]. In particular, the edge-preserving guided filter based fusion methods [25,26] have
attracted an ever-increasing attention in recent years. To the best of our knowledge, Li et al. [25]
were the first to introduce the guided filter into data fusion for multi-focus and multi-modal
images, where the guided filter was used to construct the weight map between the layers of
the source images. Joshi et al. [26] subsequently proposed an image fusion method using a
multistage guided filter. However, most of the fusion algorithms using the edge-preserving filters
decompose the PAN image into “low-frequency” (actually, the “low frequency” includes both the
low-frequency and large-scale features) and detail information, without giving sufficient concern to
the edge-preserving characteristics.

In this paper, a novel pansharpening method using a guided filter based on three-layer
decomposition is proposed. The proposed algorithm is based on an MRA framework, and the PAN
image is decomposed into a low-frequency layer, an edge layer, and a detail layer. The edge layer and
the detail layer are then as the high spatial structures to be injected into the MS image by a proportional
injection model. In addition, two new quantitative evaluation indices are developed.

The remainder of this paper is organized as follows. In Section 2, the guided filter is briefly
reviewed. The proposed method is presented in Section 3. In Section 4, the experimental results and
analyses are presented, and Section 5 concludes the paper.

2. Guided Filter

The guided filter is derived from a local linear model, it generates the filtering output by
considering the content of a guidance image, and the guidance image can be either the input image
itself or another different image. For convenience, we denote the guidance image as q, the input image
as y, and the output image as O. The output image O is assumed to be a linear transformation of the
guidance image q in a local window Ωk centered at pixel k:

Oi “ akqi ` bk @ i P Ωk (1)

where pak, bkq are linear coefficients, and i is the pixel location. It indicates that ∇O “ ak∇q, which
ensures that the output image O has an edge only when q has an edge. ak and bk can be solved by
minimizing the difference between y and O:
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Epak, bkq “
ÿ

iPΩk

ppakqi ` bk ´ yiq
2
` εak

2q (2)

here, ε is the regularization parameter to prevent ak from being too large.
For convenience, the guided filter can be also represented as:

Oi “
ÿ

j

wijpqqyj (3)

here, i and j are pixel indices, wij is a kernel function of the guidance image q, and it is independent of
the input image y. It is expressed as follows:

wij “ p1{|Ω|2q
ÿ

k:pi,jqPΩk

p1` pqi ´mkqpqj ´mkq{pδ
2
k ` εqq (4)

where mk and δ2
k are the mean and variance of the guidance image in the window Ωk, respectively.

After obtaining the kernel function, the output image O can be solved by Equation (3).

3. Proposed Method

3.1. Overview

The proposed pansharpening method is outlined in Figure 1. It is based on MRA framework
by using the popular edge-preserving guided filter. In the proposed method, the PAN image is
decomposed into three layers, i.e., the edge layer, the detail layer, and the low frequency layer, by
considering the edge-preserving characteristics of the guided filter. The edge layer and detail layer are
then injected into MS image by a proportional injection model [9,18,27–29]. The main processes of the
proposed method are as follows:

(1) The pixel values of the original MS and PAN images are normalized to 0–1 to strengthen the
correlation of the MS bands and PAN image. Then, histogram matching of the PAN image to the
intensity component is performed, and the intensity component is a linear combination of the
bicubic resampling MS, denoted as

>
MS, whose spectral responses is approximately covered by

the PAN [7,30]. Here, the linear combination coefficients are calculated by original MS and the
downsampled PAN image with least square regression [31].

(2) The histogram-matched PAN image is decomposed into three layers, i.e., a strong edge layer E,
a detail layer D, and a low-frequency layer L, based on three layer decomposition technique.

(3) The edge layer E and the detail layer D are injected into each MS band by a proportional injection
model to obtain the fused image. It is represented as: Fb “ M̃Sb `Wbpu ˚ E` v ˚Dq, where Fb
denotes the b-th band of the fused image, M̃Sb is the anti-aliasing bicubic resampling MS image
followed by guided filtering to suppress the spatial distortion, and here, the guidance image
is the resampling MS image to preserve its original spectral information as much as possible.
Wb represents the b-band weight to determine the amount of high-frequency information to be
injected, and it is represented as Wb “

>
MSb{I. The u and v are parameters to control the relative

contribution of the edge layer and the detail layer, respectively.
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Figure 1. Schematic diagram of the proposed method. 
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traditional MRA-based fusion algorithms [15–17]; however, the decomposed “low-frequency” layer 
actually includes large-scale features. Bennett et al. [24] adopted a dual bilateral filter to fuse RGB 
and IR video streams, which decomposes the image into low frequencies, edges, and detail features. 
Inspired by this idea, a three-layer decomposition based on guided filter for pansharpening is 
proposed to split the PAN into a low-frequency layer, an edge layer, and a detail layer, as shown in 
Figure 2. The details are as follows: 

(1) Firstly, the guided filter is applied to decompose the histogram-matched PAN image into a base 
layer and a detail layer. 
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obtained, the detail layer can be easily obtained by subtracting the base layer from the histogram-
matched PAN image: 
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where D  denotes the detail layer. 

(2) Then the strong edges are separated from the base layer, by reason that although the detail layer 
is obtained, there are still strong edges remaining in the base layer, which can be clearly seen in 
Figure 2. It is represented as: 
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Figure 1. Schematic diagram of the proposed method.

3.2. Three-Layer Decomposition

The traditional pansharpening methods using edge-preserving filters generally decompose the
PAN image into a “low-frequency” layer and a detail layer [21–23] by drawing from the way of
traditional MRA-based fusion algorithms [15–17]; however, the decomposed “low-frequency” layer
actually includes large-scale features. Bennett et al. [24] adopted a dual bilateral filter to fuse RGB
and IR video streams, which decomposes the image into low frequencies, edges, and detail features.
Inspired by this idea, a three-layer decomposition based on guided filter for pansharpening is proposed
to split the PAN into a low-frequency layer, an edge layer, and a detail layer, as shown in Figure 2.
The details are as follows:

(1) Firstly, the guided filter is applied to decompose the histogram-matched PAN image into a base
layer and a detail layer.

M “ G ˚ P1 (5)

where M is the base layer, in which the low frequency layer and the strong edge layer are
included. P1 is the histogram-matched PAN image, and G denotes the guided filter. Here, the
guidance image is consistent with the input image, i.e., the histogram-matched PAN. Once the
base layer is obtained, the detail layer can be easily obtained by subtracting the base layer from
the histogram-matched PAN image:

D “ P1 ´M (6)

where D denotes the detail layer.
(2) Then the strong edges are separated from the base layer, by reason that although the detail layer

is obtained, there are still strong edges remaining in the base layer, which can be clearly seen in
Figure 2. It is represented as:

E “ M´ g ˚ P1 (7)

where E is the strong edge layer, g denotes the Gaussian low-pass filter, and the g ˚ P1 represents
the low frequency layer of the PAN image.
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4. Experimental Results and Analyses

In the experiments, several remote sensing satellite images including IKONOS, QuickBird, and
GF-1 were utilized to comprehensively verify the effectiveness of the proposed method. In Wald’s [32]
view, the synthetic image should be as similar as possible to the image that the corresponding sensor
would observe at the highest spatial resolution; however, as there is no ideal reference images, the
original PAN and MS images were firstly degraded to an inferior spatial resolution level by the ratio
of the spatial resolution of the PAN and MS images, and then the original MS was treated as the
reference image [7]. In addition, several state-of-the-art pansharpening methods were introduced for
comparison, including Gram-Schmidt (GS) fusion method (implemented with ENVI 4.7, and GS1 was
obtained by the average of the low-resolution MS files), principal component analysis (PCA) fusion
method (implemented with ENVI 4.7), adaptive intensity-hue-saturation (AIHS) fusion method [33],
and the additive wavelet luminance proportional (AWLP) method [18].

4.1. Quantitative Evaluation Indices

The proposed methods were verified from both qualitative and quantitative aspects. The
qualitative evaluation involved analyzing the fused image directly from visual effects. To quantitatively
analyze the fused image, several popular evaluation indices were used, i.e., the correlation coefficient
(CC) [18,32], the spectral angle mapper (SAM) [34], the universal image quality index (UIQI) [35],
the root-mean-square error (RMSE) [18], and the relative dimensionless global error in synthesis
(ERGAS) [18,34,36]. In addition, two new quantitative evaluation indices, i.e., the modified correlation
coefficient (MCC) and the modified universal image quality index (MUIQI), were developed in this
paper, as shown in Table 1. Here, F denotes the fused image, R represents the reference image, and
σVpFi,b“1...BqpRi,b“1...Bq denotes the covariance of the spectral bands in vector at the pixel position i. N1N2

represents the spatial dimension. In fact, the existing CC and UIQI are mainly focused on the evaluation
of the radiance distortion; however, the developed MCC and MUIQI can be more comprehensively
evaluated on both radiance distortion and interrelationship preservation among the spectral bands.
In addition, to avoid the subjective evaluation from spectral profiles by selecting only few specific
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pixels in existing studies [7], the horizontal profiles of the column means for each band were introduced
to more comprehensively and objectively evaluate the fused results.

Table 1. Quantitative evaluation indices.

Evaluation Indices Definitions Meaning

CC [18,32] CC “ 1
B

B
ř

b“1

σFb ,Rb
σFb σRb

the bigger the better

UIQI [35] UIQI “ 1
B

B
ř

b“1

4σFb Rb mFb mRb
pσ2

Fb
`σ2

Rb
qpm2

Fb
`m2

Rb
q

the bigger the better

RMSE [18] RMSE “ 1
B

B
ř

b“1

b

||Fb´Rb||
2
F

N1 N2
the smaller the better

ERGAS [18,34,36] ERGAS “ 100 ¨ h
l ¨

d

1
B

B
ř

b“1

RMSE2
b

m2
Rb

the smaller the better

SAM [34] SAM “ 1
N1 N2

N1 N2
ř

i“1
cos´1

B
ř

b“1
pFi,b¨Ri,bq

d

B
ř

b“1
F2

i,b

B
ř

b“1
R2

i,b

the smaller the better

Proposed MCC MCC “ 1
N1 N2

N1 N2
ř

i“1

σVpFi,b“1...Bq,pRi,b“1...Bq

σVpFi,b“1...Bq
σVpRi,b“1...Bq

the bigger the better

Proposed MUIQI MUIQI “ 1
N1 N2

N1 N2
ř

i“1

4σVpFi,b“1...Bq,pRi,b“1...Bq
mVpFi,b“1...Bq

mVpRi,b“1...Bq

pσ2
VpFi,b“1...Bq

`σ2
VpRi,b“1...Bq

qpm2
VpFi,b“1...Bq

`m2
VpRi,b“1...Bq

q
the bigger the better

4.2. Experimental Results

The experiments were implemented on IKONOS, QuickBird, and GF-1 satellite images. Firstly, the
IKONOS experiment is shown. Figure 3 shows the experimental results of the IKONOS satellite images
from Huangshi City, Hubei Province, China. The proposed fusion result is shown in Figure 3g with the
parameter u being 1.0 and v being 1.2, and the radius of the window size and the parameter ε of guided
filter were empirically set to 2 and 0.01, respectively. Figure 3c,f show the fused results of the GS,
PCA, AIHS, and the AWLP methods, respectively. It can be seen that the PCA fusion result generates
obvious color distortion. In contrast, the spectral distortion of the GS fusion result is relatively smaller,
indicating that the GS method is more stable than the PCA method for vegetation areas. Figure 4
shows that the profiles, especially bands 1–3, of GS and PCA fusion results are quite different to
the profiles of the original image, which indicates the poor spectral information preservation of the
two methods. For comparison, the AIHS and AWLP fusion results give relative better visual effects
for spectral preservation; however, Figure 4 shows that some local sections of the AIHS and AWLP
profiles have some degree of deviation from the original image. In contrast, the fusion result of the
proposed method is the most similar to the reference image, and the spectral profiles of the proposed
fusion result are also the closest to the reference image, which indicts the good spectral information
preservation. Table 2 shows the quantitative evaluation results. This shows that only the CC and MCC
values of the proposed method are 0.0001 and 0.0008 lower, respectively, than the best value; however,
all the other indices of the proposed method are better than the other fusion methods. Therefore, it is
demonstrated that the proposed method can obtain a higher spectral fidelity result with good spatial
texture information.
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Figure 3. Fusion results of IKONOS experiment. (a) PAN image; (b) MS image; (c) GS fusion result; 
(d) PCA fusion result; (e) AIHS fusion result; (f) AWLP fusion result; (g) proposed fusion result;  
(h) original MS image. 
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(c) band 3; (d) band 4. 
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Table 2. Quantitative evaluation results of the IKONOS experiment (the best result is marked in bold,
and the second best result is underlined).

Quality
Indices

Ideal
Value

Fusion Methods

GS PCA AIHS AWLP Proposed

CC 1 0.9370 0.8111 0.9509 0.9451 0.9508
RMSE 0 57.8762 86.2993 50.2334 53.6589 47.6828
UIQI 1 0.9129 0.7982 0.9381 0.9435 0.9500

ERGAS 0 2.7924 4.2949 2.4145 2.5517 2.2823
SAM 0 3.9072 6.0003 3.6110 3.5631 3.4877
MCC 1 0.9226 0.8546 0.9299 0.9323 0.9315

MUIQI 1 0.8869 0.8073 0.8958 0.8960 0.8975

The QuickBird experimental results are shown in Figure 5. The QuickBird PAN and MS images
are located in Nanchang City, Jiangxi Province, China, and they were acquired on 8 October 2004.
Figure 5g shows the proposed fusion result with the parameter u = 1.0 and v = 1.0. In addition,
the radius of the window size and the parameter ε of guided filter were empirically set to 2 and
0.01, respectively. Figure 5c,f show the fused results of the GS, PCA, AIHS, and the AWLP methods,
respectively. On the whole, all the methods can obtain good fused results. For comparison, the AIHS
and the AWLP fusion results present slightly spatial distortions in this experiment. The proposed
method can well suppress the spatial distortions, and it has better spatial visual effect and higher
spectral fidelity. To evaluate the fusion result objectively, the horizontal profiles of the column means
for each band are displayed in Figure 6. The black dotted line represents the original image, and the
closer to the black dotted line, the better of the fused result. Figure 6 shows that there is a certain degree
of deviation between the horizontal profiles of GS and PCA and the original image. The horizontal
profiles of AIHS, AWLP, and the proposed method are closest to the original image, and the difference
is small between them. To comprehensively compare the fusion methods, the quantitative indices are
shown in Table 3. It shows that most of the evaluation indices for the proposed method are the best.
The reason why some of the spectral indices from the PCA and GS methods are slightly better is that
the two methods are relatively more stable for buildings and roads, which are the main features of
the image. Overall, the proposed method, not only obtains a good spatial effect, but also has a higher
spectral fidelity than other methods.
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Table 3. Quantitative evaluation results of the QuickBird experiment (the best result is marked in bold,
and the second best result is underlined).

Quality
Indices

Ideal
Value

Fusion Methods

GS PCA AIHS AWLP Proposed

CC 1 0.9734 0.9739 0.9649 0.9691 0.9726
RMSE 0 9.4454 9.0217 10.5901 9.4798 8.5592
UIQI 1 0.9665 0.9715 0.9609 0.9688 0.9723

ERGAS 0 0.5842 0.5649 0.6608 0.5811 0.5163
SAM 0 0.7240 0.7766 0.7524 0.7004 0.6851
MCC 1 0.9964 0.9962 0.9960 0.9965 0.9962

MUIQI 1 0.9958 0.9956 0.9954 0.9954 0.9958

Figure 7 shows the experimental results of GF-1 satellite images from Nanyang City, Henan
Province, China, acquired on 6 August 2013. The parameter u was set to 1.0 and v was set to 0.9, the
radius of the window size and the parameter ε of guided filter were empirically set to 2 and 0.01,
respectively. It shows that the experimental results are similar with the IKONOS experiment. As with
the IKONOS experiment in Figure 3c,d, the GS and PCA methods show serious spectral distortion in
this GF-1 experiment. Visually, the color of AIHS, AWLP, and the proposed fusion result is the closest
to the reference image. Figure 8 shows that the profiles of AWLP, AIHS, and the proposed fusion
results are also the closest to the reference image, and it is hard to distinguish between them. Hence, to
more objectively evaluate the fusion results, the quantitative indices of the fusion results are displayed
in Table 4. It is shown that the proposed method has relative slight better fusion performance than
other methods.
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Table 4. Quantitative evaluation results of the GF-1 experiment (the best result is marked in bold, and
the second-best result is underlined).

Quality
Indices

Ideal
Value

Fusion Methods

GS PCA AIHS AWLP Proposed

CC 1 0.6072 0.4019 0.9308 0.9226 0.9326
RMSE 0 63.756 80.3908 28.3677 29.731 27.7250
UIQI 1 0.5959 0.3974 0.9258 0.9221 0.9317

ERGAS 0 4.9706 6.0991 2.1309 2.1918 2.0526
SAM 0 6.9835 9.4628 2.4487 2.4777 2.4206
MCC 1 0.7970 0.7454 0.9336 0.9347 0.9349

MUIQI 1 0.7159 0.6342 0.9036 0.9042 0.9054

4.3. Discussion

This paper proposed a pansharpening method using an edge-preserving guided filter based on
the three-layer decomposition, and it is different from the existing pansharpening method with the
edge-preserving filters, which decomposes the PAN image into the “low frequency” layer (actually,
the “low frequency” includes both the low-frequency information and large-scale features, as shown
in Figure 2) and a detail layer. In this paper, the PAN image is decomposed into three layers by
considering the edge-preserving characteristics.

To verify the advantage of the proposed three-layer decomposition over the traditional
two-layer decomposition, the statistical experimental results by using the three-layer and two-layer
decomposition are shown. In this experiment, the IKONOS PAN (Figure 9a) and MS images (Figure 9b)
are utilized, and statistical results of the CC, UIQI, RMSE, ERGAS, SAM, MCC, and MUIQI are shown
in Figure 10. The blue curve denotes quantitative results of the traditional two-layer decomposition,
and the red curve represents the statistical quantitative results by using the three-layer decomposition.
Here, the abscissa denotes the different setting of parameter u with v being set to 1, indicating
the different amount of injected edge layer. When the parameter u is 0, it denotes the result of
two-layer decomposition.
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Figure 10. The statistical results for the comparison of the proposed three-layer decomposition to the
two-layer decomposition. (a) Results of CC; (b) results of UIQI; (c) results of RMSE; (d) results of
ERGAS; (e) results of SAM; (f) results of MCC; (g) results of MUIQI.
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It is shown that all the quantitative evaluation results can be improved with the increase of
parameter u at first. This indicates that the proposed three-layer decomposition has better fusion
results than the traditional two-layer decomposition as the injected edge layer within a certain degree.
It is because that the traditional two-layer decomposition neglects the large-scale features, as clearly
shown in Figure 2. On the whole, the three-layer decomposition has the advantage over the traditional
two-layer decomposition.

5. Conclusions

This paper has presented a pansharpening method with an edge-preserving guided filter based
on three-layer decomposition. In the proposed method, the PAN image is decomposed into three
layers, i.e., the edge layer, the detail layer, and the low frequency layer, and then the edge layer and
the detail layer are injected into the MS image by a proportional injection model. In addition, two new
quantitative evaluation indices of MCC and MUIQI have been proposed. The proposed method is
comprehensively verified by IKONOS, QuickBird, and GF-1 satellite images, and it is compared with
several of the state-of-the-art pansharpening methods on both qualitative and quantitative aspects.
The evaluation results confirm that the proposed three-layer decomposition for pansharpening, based
on edge-preserving guided filter, is better than the traditional two-layer decomposition, and it can
improve the spatial resolution while preserving the spectral fidelity.
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