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Abstract: Being equipped with a millimeter-wave radar allows a low-flying helicopter to sense the
surroundings in real time, which significantly increases its safety. However, nonhomogeneous clutter
environments, such as a multiple target situation and a clutter edge environment, can dramatically
affect the radar signal detection performance. In order to improve the radar signal detection
performance in nonhomogeneous clutter environments, this paper proposes a new automatic
censored cell averaging CFAR detector. The proposed CFAR detector does not require any prior
information about the background environment and uses the hypothesis test of the first-order
difference (FOD) result of ordered data to reject the unwanted samples in the reference window. After
censoring the unwanted ranked cells, the remaining samples are combined to form an estimate of
the background power level, thus getting better radar signal detection performance. The simulation
results show that the FOD-CFAR detector provides low loss CFAR performance in a homogeneous
environment and also performs robustly in nonhomogeneous environments. Furthermore, the
measured results of a low-flying helicopter validate the basic performance of the proposed method.

Keywords: low-flying helicopter safety; nonhomogeneous clutter environment; constant false alarm
rate (CFAR); first order difference (FOD)

1. Introduction

Helicopters, used in law enforcement, fire fighting, medical evacuation, civil emergencies,
search and rescue and new/traffic reporting, are often required to fly at low altitudes of limited
visibility [1,2]. Obstacles in the flight path or close to it often pose a significant threat to low-flying
helicopters [3]. Such obstacles may be power lines, aerial cableways, pylons and towers [3,4]. The absence
of adequate sensing and warning equipment for low-flying helicopters has proven to be of disastrous
consequence [5–8]. Many researchers developed optical sensors to improve the safety of low-flying
helicopters [1,3,4]. However, optical sensors are highly sensitive to atmospheric conditions, such as
clouds, fog, smoke, dust and precipitation [9,10]. Radar provides robustness to atmospheric conditions,
and it is widely used in a low-flying helicopters to sense the surrounding environment [2,10–16].
Automatic detection of obstacles would help conserve the pilot’s attention for the mission tasks, thus
contributing to mission success and, most importantly, saving lives [4]. This article focuses on radar
signal detection algorithm of low-flying helicopters.

Since the clutter and noise power are usually unknown, fixed threshold detection schemes
cannot be applied in the radar of low-flying helicopters. This calls for a class of constant false
alarm rate (CFAR) detection schemes whose threshold is calculated adaptively, and false alarm rate
performance is almost independent of the background clutter and noise power. The cell-averaging
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CFAR (CA-CFAR) [17] is often used for adaptive threshold generation in radar systems. If the outputs of
the references cells are statistically independent and identically distributed exponential random variables,
the detection performance of the CA-CFAR detector is optimum as the number of reference cells becomes
very large [18,19].

In a real low-flying helicopter application scenario, however, two cases of nonhomogeneous
environments are often encountered. The first situation of nonhomogeneous environments is often
modeled as multiple targets, where one or more large discrete and spiky clutters, such as power lines,
towers and steep mountains terrain, are presented in the reference window [20]. The second situation of
nonhomogeneous environments is modeled as clutter edges, which occurs as a consequence of weather
change, jamming, mountainous areas with rapid elevation/reflectivity variation and rapid land
cover variations [20,21]. Therefore, when the clutter background environment is nonhomogeneous,
such as multiple targets and clutter edges, the performance of the CA-CFAR detector is seriously
degraded, leading to excessive false alarms or target masking [22–30]. If excessive false alarms occur,
the low-flying aircraft will be encumbered by unnecessary obstacle avoidance. Meanwhile, if target
masking occurs in radar signal detection, it can result in a catastrophic collision accident.

Several variations of the CA-CFAR detectors called mean-level detectors have been proposed
in order to mitigate the impact of nonhomogeneous clutter environments. The smallest-of CFAR
(SO-CFAR) [31] offers better performance, reducing target masking in a multiple target environment, but
sacrifices the CFAR behavior in the clutter edge environment. The greatest-of CFAR (GO-CFAR) [32]
offers better performance than CA-CFAR in the case of a clutter edge, but has increased loss in a multiple
target environment. In [21], Smith and Varshney presented the concept of the variability index (VI)
detection. The VI-CFAR exhibits a low-loss CFAR in a homogeneous background and performs
robustly in nonhomogeneous environments [33]. However, its detection performance degrades if the
interfering targets are not confined to a single half of the reference window [21].

Besides, a class of order statistic-based thresholding schemes has been proposed to overcome the
performance limitations of the CA-CFAR and its variations. In [34], Rohling proposed the order statistic
CFAR (OS-CFAR) schemes, which rely on the power ranking of the reference cells. Nevertheless, the
performance of OS-CFAR suffers from excessive false alarms during clutter transitions [35]. It is
also shown in [35] that OS-CFAR can resolve the primary target from up to k interfering targets.
Rickard and Dillard [36] introduced the censored mean level detector (CMLD), where some largest
range cells are censored from the reference window. Afterward, a generalization of the OS-CFARAand
the CMLD, known as the trimmed mean (TM-CFAR) detector [35], has been proposed. In CMLD
and TM-CFAR, the censoring point is preset. This implies that some a priori knowledge about
the background environment is needed in order to censor the unwanted samples [37,38]. To evade
this problem, Himonas and Barkat [37] introduced the automatic CMLD (ACMLD) and generalized
two-level censored mean level detector (GTL-CMLD), which do not require any prior information
about the environment. The ACMLD and the GTL-CMLD are based on the same cell-by-cell
procedure for rejecting the unwanted cells and suffer from substantial computational requirements [38].
Then Farrouki and Barkat [38] proposed an automatic censored cell averaging (ACCA) CFAR
detector based on ordered data variability (ODV) for nonhomogeneous background environments.
The ACCA-ODV detector exhibits small detection loss in homogeneous environments and performs
robustly in the presence of interference in the reference window. In [39], the authors introduced a
automatic dual censoring cell averaging (ADCCA)-CFAR detector that uses the membership function
of the OS processor and two threshold values to determine and censor the unwanted samples in the
reference window. In [40], Boudemagh and Hammoudi presented an automatic censoring (AC)-CFAR
detector for heterogeneous Gaussian clutter. The proposed detector dynamically switches to the
optimal conventional detector CA-, CMLD- or TM-CFAR. The AC-CFAR exhibits a low-loss CFAR in a
homogeneous background and performs with considerable robustness in the presence of interfering
targets and/or clutter edge situations.
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In this paper, we develop a new CFAR detector operating in a nonhomogeneous clutter
environment. The proposed CFAR detector does not require any prior information about the
background environment and uses the hypothesis test of the first-order difference (FOD) result of
ordered data to reject the unwanted samples in the reference window. After censoring the unwanted
ranked cells, the remaining samples are combined to form an estimate of the background power level,
thus getting better radar signal detection performance of low-flying aircraft. As FOD is the main
feature of this algorithm that distinguishes it from other CFAR detectors, we call it FOD-CFAR.

The paper is organized as follows. In Section 2, the target detection model of a low-flying
helicopter is introduced. In Section 3, the FOD-CFAR concept is detailed. Section 4 describes the
procedure by which the FOD-CFAR parameters are determined. The FOD-CFAR performance analysis
results for various environments are summarized in Section 5. Detection analysis for Swerling II targets
and single pulse processing is presented in this paper. Meanwhile, measured data validate the basic
performance of FOD-CFAR. Section 6 summarizes and concludes the paper.

2. Target Detection Model of a Low-Flying Helicopter

The main objective of a low-flying helicopter is to maintain a relatively fixed altitude above the
terrain without hitting anything. However, there are a wide variety of ground-based obstacles that
present a hazard to low-flying helicopters. The need to detect obstacles in the flight path and to alert
the pilot in time to take corrective measures is critical to the safety of the helicopter. Many systems
first generate a trajectory to the mission destination based on a digital terrain elevation database and
then control the helicopter to follow the trajectory within maneuvering capabilities. However, the
terrain elevation database is not updated very quickly when new features arise, and it contains some
systematic errors; other real-time measurement methods are also required [2,5]. Because optical sensors
are highly sensitive to atmospheric conditions, such as clouds, fog, smoke, dust and precipitation,
radar is widely used in a low-flying aircraft to sense the surrounding environment.

The working principle and target detection model of a low-flying helicopter is shown in Figure 1.
There are two radar antenna scan patterns used in a low-flying helicopter. In TF, the antenna scans
several vertical bars oriented along the helicopter velocity vector and generates an altitude-range
profile that is displayed to the pilot. In TA, the antenna scan is in a horizontal plane. Several altitude
plane cuts are estimated and presented to the pilot [6]. The object of the TF scan helps aircraft to fly
over obstacles, whereas TA scan flies around obstacles. In both the TF and TA scan, one main task of
the radar is to detect obstacles, including man-made structures, towers, power lines, etc. [5].

TA 

Elevation Beam 
Positions 

Azimuth Beam
Positions

TF 

Antenna Scan Pattern

 Figure 1. Target detection model of a low-flying helicopter.
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Since the clutter and noise power are usually unknown, adaptive threshold techniques must
be adopted in radar signal detection of a low-flying helicopter. Meanwhile, nonhomogeneous
environments, such as multiple targets and clutter edges, are easily encountered in real application
scenarios. These limitations seriously affect the detection performance of traditional detectors. To
obtain a better detection performance in these cases, we develop the FOD-CFAR detector.

3. FOD-CFAR Processor

3.1. Idea Behind FOD-CFAR

For each test cell, the CFAR processor makes a target present/absent decision based on
a comparison of the value of the test cell to an adaptive threshold. The adaptive threshold is defined
as the product of a background multiplier constant and a background noise/clutter power estimate.
The uniqueness of FOD-CFAR lies in how the background power estimation is performed.

It is generally known that the FOD result describes the variation of adjacent data. After ordered
samples from a homogeneous environment are computed by the FOD, we assumed that the FOD
results will not exceed an explicit threshold with a certain error probability. If the results exceed
the threshold, it means that interference samples from a nonhomogeneous environment exist in the
ordered samples. Thus, after censoring the interference samples in the ordered data, we can obtain
a better performance of background power estimation.

Figure 2 shows the idea of FOD-CFAR. The N reference cells are first ranked to form the ordered
samples. In a homogeneous environment, it is shown that none of the FOD results of ordered data have
exceeded the explicit threshold β. Then, all of the ordered data are retained. In a nonhomogeneous
environment, the difference between x(M− 1) and x(M) has exceeded the threshold β. Thus, the
ordered cells being greater than x(M− 1) are censored from reference window, and the remaining
M− 1 samples are reserved.
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Figure 2. The idea behind first-order difference (FOD)-CFAR.

Based on the above analysis and conclusion, the proposed FOD-CFAR detector first uses the
hypothesis test of FOD results of ordered data to reject the interference samples in the reference
window and then utilizes the remaining reference cells to calculate the background power.
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3.2. Description of the FOD-CFAR Algorithm

The FOD-CFAR processor block diagram is provided in Figure 3. In-phase and quadrature (I and
Q) signals correspond to samples of radar time/range returns from a matched filter receiver. The I
and Q signals are first square-law envelope detected. Then, the N + 1 square-law detected samples
are sent serially into a tapped delay line. The N + 1 samples correspond to a test cell x0 centered in
N samples of the reference cell. For a homogeneous noise/clutter environment, the I and Q input
signals are assumed to be independent and identically distributed (IID) Gaussian random processes
with zero mean. Consequently, the envelope amplitude at the output of a square-law detector is also
an IID process with an exponentially distributed random variable.
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Figure 3. FOD-CFAR block diagram.

The FOD-CFAR algorithm can be described as follows.

1. The reference cells are first ranked to form the ordered samples:

X̄N = {x(i), i = 1, 2, . . . , N and x(1) ≤ x(2) ≤ · · · ≤ x(N)} (1)

2. After computing the first-order forward difference of X̄N , we obtained:

ȲN−1 = {y(i) = x(i + 1)− x(i), i = 1, 2, . . . , N − 1} (2)

3. We use p lowest cells of ordered samples X̄N to calculate the threshold βα. The implementation
method of βα is described in the next section.

4. Then, ȲN−1 is compared to the corresponding threshold βα, and a binary decision is made in
favor of H1 or H0 according to the hypothesis test:

H1 : ȲN−1 ≥ βα; H0 : ȲN−1 < βα (3)

Hypothesis H1 corresponds to the case where the reference cell is declared nonhomogeneous,
while H0 denotes the hypothesis where the reference cell is declared homogeneous. While the
hypothesis H1 is true, we find ȲN−1(k), which is greater than βα. Then, we decide that the ordered
subset [x(1) ≤ x(2) ≤ · · · ≤ x(k)] corresponds to homogeneous returns. After that, the N − k
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highest cells will be censored. In the censoring process, k corresponds to the estimated number
of samples to be reserved in the reference window, and N − k denotes the estimated number of
samples to be censored from the upper end of ordered samples X̄N .

5. After censoring the unwanted ranked cells, the remaining k samples are combined to form
an estimate Zk of the background power level:

Zk =
k

∑
i=1

x(i) (4)

6. Next, the corresponding scaling factor Tk is selected based on the k and the desired probability of
false alarm (PFA). The implementation method of Tk is described in the next section.

7. Finally, a target present decision is made if the value of the test cell exceeds the adaptive threshold
according to the hypothesis test:

H1 : x0 ≥ TkZk; H0 : x0 < TkZk (5)

Here, H1 denotes the presence of a target in the test cell, while H0 corresponds to the absence of
a target in the test cell.

From the above algorithm flow, we can see that the FOD-CFAR method discussed in this paper
has the following characteristics that distinguish it from other traditional CFAR algorithms.

1. In the automatic censoring process, the proposed CFAR detector does not require any prior
knowledge about the background environment. It makes FOD-CFAR more suitable to a
changing environment.

2. The detector discussed here employs a fixed detection threshold to reject interference targets,
and it is not a cell-by-cell censoring procedure, which allows acceptance or rejection of the
ordered cells by performing a successive threshold design. It can bring some benefits to
computational efficiency.

4. FOD-CFAR Parameter Selection

Compared to other CFAR detectors, the performance of the FOD-CFAR is dependent on the
values used for the threshold βα and scaling factor Tk. This section gives the selection method of
these parameters.

4.1. Threshold βα

From the algorithm flow in Section 3, we can see that the use of the hypothesis tests in Step 4
requires the values of the corresponding threshold βα. We use p lowest cells of ordered samples X̄N to
calculate the threshold βα. In order to obtain better censoring efficiency of FOD-CFAR, it is imperative
to select the quantity of p properly. The authors [38] have derived the expression of the probability γ

that the p lowest cells are homogeneous in either multiple target situations or a uniform background.

γ = 1− c1

p−1

∑
j=0

(−1)j
(

p− 1
j

)
(c2 + j)(c3 + j)

(6)

where:

c1 = p
(

N−m
p

)
m

1 + INR
, c2 = N−m− p + 1, c3 =

m
1 + INR

+ c2 (7)

m is the number of interference targets and INR stands for interference target-to-noise/clutter ratio.
Table 1 gives some examples of probability γ obtained for different m and INR. We observe that the
probability γ is close to one as INR increases and m decreases.
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Table 1. Probability γ that p lowest cells are homogeneous in the interference environment.

(N, p) m
INR

15 dB 20 dB 25 dB 30 dB 40 dB

(24, 16)
2 0.9269 0.9757 0.9922 0.9975 0.9998
4 0.8316 0.9419 0.9811 0.9940 0.9994
8 0.4554 0.7687 0.9187 0.9734 0.9973

(36, 24)
4 0.8490 0.9483 0.9832 0.9947 0.9995
8 0.6398 0.8646 0.9546 0.9854 0.9985
12 0.2735 0.6454 0.8679 0.9559 0.9955

After determining the proper quantity of (N, p), then βα is calculated using:

βα = α

√√√√ 1
p− 1

p

∑
i=1

(x(i)− x̄)2 (8)

where x̄ is the arithmetic mean of the p lowest cells of X̄N . Formally, βα is α times the standard
deviation of p lowest cells of X̄N .

The selection of α requires that the values of corresponding thresholds βα be determined to ensure
the explicit probability of the hypothesis test error in a homogeneous environment. The hypothesis test
error is defined as the probability of error Perror, such that a homogeneous environment is classified
as variable:

Perror = Prob[ȲN−1 ≥ βα | Homogeneous Environment] (9)

Table 2 shows some examples of α as a function of Perror and (N, p) in a homogeneous background.
The α were obtained through Monte Carlo simulation. The number of simulation trials is 100,000.

Table 2. α values as a function of Perror, N and p.

(N, p)
Perror

0.5 0.4 0.3 0.2 0.1 0.05 0.01

(24, 16) 3.2 3.9 4.8 6.0 8.2 10.7 16.9

(36, 24) 3.2 3.8 4.7 5.9 8.1 10.4 16.3

We observe that as the the Perror steadily decreases, the α increases. Figure 4 shows the probability
of detection (PD) in a multiple target situation and PFA regulation in a clutter edge environment by
using different values of Perror. The explicit simulation parameters are shown in Section 5.

According to the simulation results, we find that selection of Perror is a compromise between the
detection probability of the multiple target situation and the false alarm regulation of the clutter edge
environment. The result in Figure 4 shows that as Perror decreases, the detection probability of the
multiple target situation decreases and the false alarm regulation of the clutter edge environment
increases. To balance the detection performance, Perror is set to 0.2 in this paper. The simulation results
in different clutter environments are shown in Section 5.
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Figure 4. Probability of detection (PD) and probability of false alarm (PFA) values as a function of
Perror: (a) PD comparison in a multiple target situation (eight interference targets); (b) PFA comparison
in a clutter edge environment (CNR = 10 dB).

4.2. Scaling Factor

Once the upper end N − k cells are censored, the remaining k lowest samples are combined to
form the statistic Zk. Then, it is imperative to calculate the corresponding scaling factor Tk to yield the
FOD-CFAR threshold TkZk. Using both the moment generating function and the contour integral, the
authors [37] have derived the PFA in a homogeneous background when exactly N − k out of N cells
are censored from the upper end.

Pf a =

(
N
j

) k

∏
j=1

(Tk +
N − j + 1
k− j + 1

), k >
N
2

(10)

Therefore, the background multiplier constant Tk can be computed from Equation (10) for
a specific Pf a.

5. Performance Results

We now study the performance of FOD-CFAR detector for a variety of homogeneous, multiple
target and clutter edge environments. In different clutter environments, we first give the censoring
probability of interference targets and then compare the detection performance of FOD-CFAR to those
of the CA-CFAR, OS-CFAR, CMLD and VI-CFAR.

The PFA was set to 10−4. Each individual data point representing CFAR performance performs
1,000,000 simulation trials, which is marked as M. Detection analysis for Swerling II targets and single
pulse processing is presented in this paper.

For the OS-CFAR, the value of kOS parameter was selected equal to 0.75N, which is the optimum
censoring point [34]. For the CMLD, the number of largest cell censored from the reference window was
set equal to four when (N, p) = (24, 16) and was set equal to six when (N, p) = (36, 24). Furthermore, we
use VI threshold KVI = 4.76 and mean ratio threshold KMR = 1.806 for the VI-CFAR [21]. Specifically,
the value α of FOD-CFAR was set equal to six when (N, p) = (24, 16) and was set equal to 5.9 when
(N, p) = (36, 24), both of them yielding a Perror of approximately 0.2.

5.1. Scenario 1: Homogeneous Environment

Figure 5 shows the probability of censoring for FOD-CFAR in a homogeneous environment. The
(N, p) is set to (36, 24). The probability that zero cells have been censored (Nc = 0) equals 0.8 and
corresponds to the case of homogeneous cell. The probability that greater than zero cells have been
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censored (Nc > 0) is 0.2, which also equals Perror. Both of the censoring probabilities are constant in a
homogeneous environment independent of the SNR of the target in the test cell.
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Figure 5. Probability of censoring in a homogeneous environment.

Figure 6 shows the PD in a homogeneous environment for different CFAR processors along with
the result for an optimal detector (exactly known noise power). We observe that all of the CFAR
detectors exhibit some CFAR loss relative to the optimal detector. The FOD-CFAR and CA-CFAR
exhibit the same CFAR loss relative to the optimal detector. The CMLD and VI-CFAR are slightly
worse than FOD-CFAR and CA-CFAR. The OS-CFAR exhibits the worst performance.
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Figure 6. PD comparison of FOD-CFAR, censored mean level detector (CMLD)(6), order statistic
(OS)-CFAR, cell-averaging (CA)-CFAR, variability index (VI)-CFAR in a homogeneous environment.

5.2. Scenario 2: Multiple Target Situations

Figure 7 shows the probabilities of censoring, which are obtained with 2, 4, 8 and 10 interfering
targets of different INR. The interference targets are assumed to have the same radar cross-section
(RCS) as the primary target, namely INR = SNR. Meanwhile, the interference targets are not confined
to a single half of the reference window. The (N, p) is set to (36, 24).
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Figure 7. Probability of censoring in multiple target situations: (a) Two interference targets;
(b) Four interference targets; (c) Eight interference targets; and (d) Ten interference targets.

The Pcensor is defined as the probability of the explicit number of cells censored from the reference
window. The Pcensor of the exact number of interference targets having been censored is summarized in
Table 3. As expected, it is easy to find that Pcensor gets bigger as INR increases. It can also be observed
that Pcensor grows smaller as the number of interferences increases.

Table 3. Probability Pcensor that the exact number of interference targets has been censored.

Interference Cell Censored Cell (Nc)
INR

15 dB 20 dB 25 dB

2 2 61.13% 75.70% 81.22%

4 4 44.73% 70.02% 81.49%

8 8 19.91% 55.78% 79.53%

10 10 11.40% 46.65% 76.54%

In Figure 8, we present a comparison of the proposed FOD-CFAR with other CFAR processor
in multiple target situations. We note that FOD-CFAR is robust in the sense that no substantial
detection degradation occurs even for m = 10. The excessive degradation in performance occurs when
m ≥ 2 for the CA-CFAR. Because interfering targets are not confined to a single half of the reference
window, the excessive degradation in performance occurs when m ≥ 2 for the VI-CFAR. Because
of a mismatch between the preset number of censored cells and the actual number of interference
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targets, the excessive degradation in performance occurs when m ≥ 8 for the CMLD(6). The excessive
degradation in performance occurs when m = 10 (m > N − kos = 9) for the OS-CFAR.
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Figure 8. PD comparison of FOD-CFAR, CMLD(6), OS-CFAR, CA-CFAR and VI-CFAR in multiple
target situations: (a) Two interference targets; (b) Four interference targets; (c) Eight interference targets;
and (d) Ten interference targets.

5.3. Scenario 3: Clutter Edge Environment

In the clutter edge environment, we assume that Nclutter is the number of high clutter cells and
N − Nclutter is the number of low noise/clutter cells in the reference window. The test cell is assumed
to be in the low noise/clutter power region if Nclutter ≤ N

2 , while it is in the high clutter region if
Nclutter >

N
2 . Clutter edges progress from left to right of the reference window.

We first analyze the probabilities of censoring for the FOD-CFAR in the clutter edge environment.
The clutter-to-noise ratio (CNR) is set to 20 dB, and (N, p) is set to (24,16).

As the clutter first enters the reference window, for Nclutter ≤ N
2 = 12, Nclutter ≤ N − p = 8, the

performance of censoring is similar to that of multiple target situations. Figure 9 shows the probabilities
of censoring, which are obtained with 3, 4 and 5 clutter cells in the reference window. In this situation,
the algorithm rejects the exact number of interferences (Nc = 3, 4, 5) for 74.89%, 71.96% and 68.26% of
the time, respectively. FOD-CFAR exhibits good censoring performance in this situation.
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Figure 9. Probability of censoring in the clutter edge environment (3, 4 and 5 clutter cells).

As the high clutter continues to move into the reference window, for Nclutter ≤ N
2 = 12,

Nclutter > N − p = 8, due to the fact that the censoring procedure of FOD-CFAR does not reject
more than N − p high clutter cells, the remaining Nclutter − (N − p) high clutter cells may cause
substantial censoring degradation. Figure 10 shows the probabilities of censoring, which are obtained
with 9, 10 and 11 high clutter cells in the reference window. In this figure, the algorithm rejects
the N − p high clutter cells (Nc = 8) for 35.25%, 17.24% and 7.46% of the time, respectively. In
this case, the poor censoring performance of high clutter will cause relative degradation in the
detection performance.
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Figure 10. Probability of censoring in the clutter edge environment (9, 10 and 11 clutter cells).

Finally, for Nclutter >
N
2 = 12, due to the fact that the test cell is in the high clutter, the number of

high clutter cells to be censored must be as small as possible to prevent an excessive rise in PFA. At
best, none of the high clutter cells will be censored. Figure 11 shows the probabilities of censoring,
which are obtained with 17, 18 and 19 clutter cells in reference window. In this figure, the probabilities
that zero high clutter cells have been censored (Nc = 0) are 67.63%, 71.53% and 74.57% of the time,
respectively. In this case, the high clutter cells are well reserved. However, the remaining low clutters
will cause a relative increase in the PFA.
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Figure 11. Probability of censoring in the clutter edge environment (17, 18 and 19 clutter cells).

Figure 12 shows the PFA of different CFAR processors in the clutter edge environment where the
CNR is 10 dB. Note that the PFA regulation of the FOD-CFAR is slightly worse than the traditional
OS-CFAR and CA-CFAR and is slightly better than CMLD(4).
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Figure 12. PFA comparison of FOD-CFAR, OS-CFAR, CA-CFAR and CMLD(4) in the clutter
edge environment.

5.4. Time Complexity Analysis

Because the uniqueness of FOD-CFAR with respect to other CFAR detectors lies in how the
background power estimation is performed, we only give the time complexity of background power
estimation. As an order statistics-based CFAR detector, the reference cells are first ranked to form
the ordered samples in FOD-CFAR. We use the quick sort algorithm in this paper, whose time
complexity is:

Crank = O(N log2 N) (11)

After the time complexity of the followed automatic censoring process is added to Equation (11),
the total time complexity of FOD-CFAR is:

CFOD−CFAR = Crank + 3N + 4p− 2n + 1 = O(N log2 N) (12)
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where n is the number of censored cells, 0 ≤ n ≤ N − p. From Equation (12), we can see that the
time complexity of FOD-CFAR mainly comes from Crank, and the time complexity of the followed
automatic censoring process is only O(N). On the basis of sorting the reference cells, FOD-CFAR only
suffers a small loss of time complexity to obtain a better detection performance in nonhomogeneous
clutter environments.

5.5. Experimental Results

This section is devoted to the performance assessment of the new algorithms in the presence of
real data. We performed a flight testing in Luodai Town, Chengdu, to collect the radar measured data
used for developing and testing our detection algorithm. The flight test was held in December 2015.
Figure 13a shows a sketch of our test platform. The helicopter used to test is Bell-407. Figure 13b shows
an overview of onboard radar system. The system is a Ka-band pulse radar and mainly consists of an
antenna, turntable, transmitter, receiver and signal acquisition system.

  
Ka-band Pulse Radar System 

Data Acquisition System 

(a) (b)

Figure 13. Experimental test platform: (a) Overview of the helicopter; (b) Onboard radar system.

Figure 14 shows the flight pattern of this experiment. The flight altitude is set to 200 m; the
pitch angle is set to 20◦, and the scan coverage is set to ±15◦. The radar scans the coverage in 0.5 s in
a continuous azimuth scan mode. According to the designed flight pattern, the theoretical azimuth
coverage is 306 m and is 136 m in the range direction. The flight pattern is designed to better simulate
the target environment of the low-flying helicopter, while guaranteeing the flight safety by a pilot
without special low-flying training.

 

(a) side view 

200m 

±15°

306m 
20° 

(b) top view 

136m  

Figure 14. Experimental flight pattern. (a) Side view; (b) Top view.

The signal parameters are listed in Table 4.
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Table 4. Experimental parameters.

General Parameters Value

Frequency 35 GHz
Flight Speed 30 m/s

Flight Altitude 200 m
Pitch Angle 20 ◦

Scan Coverage ±15◦

Horizontal Beam Width 4◦

Vertical Beam Width 4.5◦

Antenna Scan Rate 60◦/s
Signal Bandwidth 200 MHz

Pulse width 1 µs
PRF 4000 Hz

Figure 15 shows a single frame of the target scene and its corresponding radar echo matrix in this
experiment. First, we use latitude and longitude information recorded in the inertial navigation system
(INS) and time synchronization information recorded in the receiver to find the corresponding optical
image and radar echo matrix. The latitude and longitude information of the low-flying helicopter
corresponding to the chosen target scene are marked on the Google Maps, which is shown in Figure 15a.
The corresponding optical image and echo matrix are shown in Figure 15b,c, respectively. From the
Figure 15b, we can see that there are many artificial targets, such as power towers on the flight path
of the low-flying helicopter. These obstacles will pose a significant challenge to the helicopter if the
flight altitude is further decreased. In Figure 15c, the radar echo matrix consists of 1400 range cells
and 2240 azimuth samples and is displayed in a B-scope plot. The samples in the data matrix are the
output of a squared-law detector. Data in the same row of the echo matrix represent samples in the
azimuth direction, whereas data in the same column represent samples in the range direction.

3 

2 

1 

1 
2 

3 
Road 

Road 

Mountains Radar Scan Coverage 

Mountains 

Mountains 

Buildings Buildings Buildings 

Road 

Helicopter Position 

(a) (b) (c)

Figure 15. Data collection scene: (a) Latitude and longitude information of the low-flying helicopter
corresponding to the chosen target scene marked on Google Maps; (b) Optical image corresponding to
the radar scan coverage; (c) Corresponding radar data matrix.

From Figure 15b,c, we can see that there is a corresponding relationship between the road-like
artificial targets and the mountainous areas with rapid elevation variation. Furthermore, because
the power tower mainly consists of angle iron, the radar cross-section (RCS) of the power tower is
often bigger than the background, which mainly consists of trees and concrete. For these reasons, we
recognize that the three parts of the strong scatterers in the radar data matrix are due to the power
tower. Meanwhile, because the radar scan coverage in the range direction (also shown in Figure 14b) is
limited by the vertical beam width, the buildings behind Target 1 and Target 2 in Figure 15b do not
exist in the radar echo matrix in this frame.

Figure 16 offers two styles of zoom-in views of the radar data matrix. From Figure 16, we can
see that Target 1 and Target 2 are close to each other in the range direction. Therefore, the two targets
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can simulate the multiple target situation of a nonhomogeneous clutter environment. Meanwhile,
due to the fluctuation of their background terrain, there is also a clutter edges situation in the radar
echo matrix.
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Figure 16. Two styles of zoom-in views of the radar data matrix: (a) B-scope image display of the data
matrix; (b) Zoom-in view of Target 1 and Target 2.

The FOD-CFAR detector is performed at each resolution cell using a sliding window along each
column of the data matrix. The (N, p) is set to (128, 85). The guard cell is set to 16. The PFA was set
to 10−1, and Perror is set to 0.97. Figure 17 illustrates the target detection performance of FOD-CFAR
on a single resolution cell. The chosen resolution cell and its reference window are also marked on
Figure 16b. Figure 17a shows the reference window of the chosen resolution cell. Corresponding
to the algorithm flow in Section 3, Figure 17b gives the ordered samples X̄N of the reference cells.
Figure 17c illustrates the first-order difference results ȲN−1 and its threshold βα. In Figure 17c, we find
that ȲN−1(118) is greater than βα. We decide that the ordered subset [x(1) ≤ x(2) ≤ · · · ≤ x(118)]
corresponds to homogeneous returns. After censoring the 128− 118 highest ranked cells, the remaining
118 samples are combined to form an estimate Zk of the background power level. Afterwards, the
corresponding scaling factor Tk is selected based on the 118 and the desired PFA. Figure 17d gives the
FOD-CFAR detection results on the chosen resolution cell. We can see that the test cell exceeds the
adaptive threshold TkZk. Meanwhile, the detection thresholds of other resolution cells are also plotted
in Figure 17d, which is denoted with the dotted line.

In order to better illustrate the detection performance, we present a comparison of the proposed
FOD-CFAR with SO-CFAR and CMLD on the chosen resolution cell. For the CMLD, the number of
largest cells censored from the reference window was set equal to 30. Figure 17e gives the SO-CFAR
detection results on the chosen resolution cell. We can see that the test cell exceeds the adaptive
threshold. However, the plot shows that around Range Cell 365, there is a great concentration of
false alarms. Figure 17f shows the CMLD detection results on the chosen resolution cell. We can
see that the test cell is below the adaptive threshold and is undetected. The above results show that
FOD-CFAR exhibits robust detection performance on the chosen resolution cell, which is better than
classic SO-CFAR and CMLD.

Furthermore, we present a comparison of the proposed FOD-CFAR with SO-CFAR and CMLD
on the chosen target scene shown in Figure 16b. The original target scene is also given in Figure 18a.
The data matrix in Figure 18a consists of 163 range cells and 471 azimuth samples. From Figure 18b,
it can be seen that both Target 1 and Target 2 are well detected based on FOD-CFAR detector in the
real nonhomogeneous clutter environment. Figure 18c shows the SO-CFAR detection result on the
chosen target scene. We can see that both Target 1 and Target 2 are well detected. However, the same
as the detection result shown in Figure 17e, the main drawback of SO-CFAR is the excessive number of
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false alarms. Figure 18d gives the CMLD detection results on the chosen target scene. The same as the
detection result shown in Figure 17f, we can see that the main drawback of the CMLD is the excessive
number of misdetections. The results show that FOD-CFAR exhibits robust detection performance on
the chosen target scene, which is better than classic SO-CFAR and CMLD.
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Figure 17. Performance comparison of FOD-CFAR, SO-CFAR and CMLD on a single resolution
cell: (a) Reference window of the chosen resolution cell; (b) Ordered samples X̄N of the reference
window; (c) First-order difference results ȲN−1 and the threshold βα; (d) FOD-CFAR detection results;
(e) SO-CFAR detection results; (f) CMLD detection results.
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Figure 18. Performance comparison of FOD-CFAR, SO-CFAR and CMLD on the chosen scene:
(a) Zoom-in view of Target 1 and Target 2; (b) FOD-CFAR detection result; (c) SO-CFAR detection
result; (b) CMLD detection result.

Finally, we are devoted to a quantitative performance analysis of the FOD-CFAR, SO-CFAR and
CMLD in the presence of real data. The experiment is conduct on the chosen target scene shown
in Figure 18a. In order to complete the performance analysis, three assessment criteria are defined,
namely the number of false alarms (NFA), the number of misdetections (NMD) and the response
time (RT).

First of all, the NFA is determined by counting the number of targets falling into Test Window 1.
Test Window 1 is shown in Figure 18a and consists of 40 range samples and 200 azimuth samples. The
total number of cells available for estimating the NFA is 8000.

Second, the NMD is calculated by counting the number of undetected targets falling into Test
Window 2. Test Window 2 is shown in Figure 18a. Test Window 2 consists of two subwindows.
The fist one consists of three range samples and 100 azimuth samples, and the second one consists of
eight range samples and 65 azimuth samples. The total number of cells available for estimating the
NMD is 820.

Third, the RT is calculated by the elapsed time of the FOD-CFAR, SO-CFAR and CMLD detectors.
The FOD-CFAR, SO-CFAR and CMLD detection results are shown in Figure 18b–d, respectively.
All of the RT experiments are running on the MATLAB software and are accomplished with a hardware
environment of Inter Core 3.2 GHz CPU and 8 GB memory.

The NFA, NMD and RT are summarized in Table 5. The same as the detection result shown in
Figures 17 and 18, we can see that the main drawback of SO-CFAR is the excessive NFA, and the main
drawback of the CMLD is the excessive NMD. The result leads to the conclusion quantitatively that
FOD-CFAR exhibits better detection performance than SO-CFAR and CMLD. Meanwhile, we must
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point out that the RT of FOD-CFAR is bigger than SO-CFAR and CMLD, which is due to the added
automatic censoring process proposed in this paper.

Table 5. Performance analysis of the FOD-CFAR, SO-CFAR and CMLD on the real data.

CFAR Detector Number of False Alarms
(NFA)

Number of Misdetections
(NMD)

Response Time
(RT)

SO-CFAR 197 154 0.81 s
CMLD 0 427 0.98 s

FOD-CFAR 0 246 2.44 s
Total Number 8000 820

However, in the experimental results, we also find that all of the CFAR detectors are not able
to maintain rigorously the theoretical false alarm, and the selection of Perror of FOD-CFAR does not
match with the values used in the simulation. The reason for that is that the independent and identical
Gaussian distributed assumption is not always valid in the real data [26,41]. In order to obtain better
detection performance of real data, possible research tracks might extend the proposed automatic
censoring technique to the non-Gaussian clutter distributed assumption.

6. Conclusions

In this paper, a new automatic censoring CFAR detector named FOD-CFAR has been proposed
and tested in order to improve the radar signal detection performance of a low-flying helicopter in
nonhomogeneous clutter environments. The proposed FOD-CFAR detector does not require any prior
information about the background environment and uses the hypothesis test of the FOD result of
the ordered data to reject the unwanted samples in the reference window. The simulation results
show that the FOD-CFAR offers low-loss CFAR performance relative to the optimal detector in
a homogeneous environment. Meanwhile, FOD-CFAR exhibits robust detection performance in
multiple target situations even when 10 interference targets exist in a 36 length reference window,
which is better than CA-CFAR, OS-CFAR, VI-CFAR and CMLD. In clutter edge environments, the PFA
regulation of the FOD-CFAR is slightly worse than CA-CFAR and OS-CFAR. Furthermore, on the basis
of the sorting of the reference cells, the time complexity of the proposed automatic censoring process
is only O(N). Finally, The measured result leads to the conclusion quantitatively that FOD-CFAR
exhibits better detection performance than SO-CFAR and CMLD.

The FOD-CFAR can help radar get a better detection performance to obstacles in nonhomogeneous
clutter environments, thus further improving the safety and environment adaptability of a low-flying
helicopter. Possible future research tracks might concern the performance improvement of PFA regulation
in a clutter edge environment and extend the proposed automatic censoring technique to a non-Gaussian
clutter distributed assumption [42–45] and Weibull [46] or Swerling-Chi [47] fluctuating targets.
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