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Abstract: Offshore design and construction is much more difficult than land-based design and
construction, particularly due to hoisting operations. Real-time monitoring of the orientation and
movement of a hoisted structure is thus required for operators’ safety. In recent years, rapid
development of the smart-phone commercial market has offered the possibility that everyone
can carry a mini personal computer that is integrated with sensors, an operating system and
communication system that can act as an effective aid for cyber-physical systems (CPS) research.
In this paper, a CPS for hoisting monitoring using smartphones was proposed, including a phone
collector, a controller and a server. This system uses smartphones equipped with internal sensors to
obtain girder movement information, which will be uploaded to a server, then returned to controller
users. An alarming system will be provided on the controller phone once the returned data exceeds
a threshold. The proposed monitoring system is used to monitor the movement and orientation of
a girder during hoisting on a cross-sea bridge in real time. The results show the convenience and
feasibility of the proposed system.

Keywords: cyber-physical systems; offshore hoisting monitoring; smartphone sensors;
accelerometer; gyroscope

1. Introduction

Cyber-physical systems (CPS) have recently become an important research field these years [1,2].
It’s a multidisciplinary field involving physics, communication, computation, control, and so on.
CPS tries to connect the physical world and information world. It not only serves as the ears and
eyes of the information with sensors, but also serves as the hand to change the mode of the physical
activity and provide convenient lives for people [3,4]. There have been many CPS applications [5,6],
such as medical devices and systems, assisted living, traffic control and safety, advanced automotive
systems, process control, distributed sensing command and control, smart structures, autonomous
electric vehicle [7] and so on.

In recent years, smartphones have become popular on an unprecedented scale and can now be
used as effective scientific tools. With an operating system, communication system and built-in sensors,
they have already been applied to cyber-physical systems [8], including human health monitoring [9],
vehicle maintenance services [10] and accident detection [11], motivation recognition [12–15], and
structural health monitoring (SHM) [16–24]. Authors have also applied smartphones in the SHM
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field [25], in uses such as cable force monitoring [26–28], displacement monitoring [29], and earthquake
rescue [30,31], etc. These applications allow the people to participate in the structural health perception
process through the mobile phone and help people take corresponding measures to be safer.

During the construction of cross-sea bridges, each operation faces challenges due to the complexity
of the environment, particularly in terms of hoisting [32]. The girders that require hoisting into place
are typically bulky and heavy, and the crane performing the hoisting operation is floating on the sea
and is thus significantly affected by waves and winds. Therefore, offshore construction is considerably
more difficult than construction on land. The hoisting of a heavy structural element is critical to the
entire project construction plan; any accident during a hoisting operation could result in considerable
property loss or casualties and affect the construction schedule of the entire project. To ensure that
a hoisting operation can be completed safely, the orientation and movement of a girder should be
monitored in real time, and corresponding measures should be taken based on monitoring results.
For monitoring the girder hoisting process, the total station is employed in the traditional method.
However, it’s always influenced by landform; some parts can’t be measured because of the block and
it’s difficult to place it on the site construction at sea. Thus, a new sensing and monitoring method,
which calls for fewer restrictions for landform and more convenient operations, is of great value.
As previously mentioned, smartphones represent a mobile technology of the cyber-physical social
system, with advantages of lower cost, convenience, easy operation, that may be useful for girder
hoisting monitoring. We highlight the features and contributions of our paper as follows:

1. An iPhone-based monitoring system is developed; this system uses smartphones equipped with
internal sensors to obtain girder movement information, which will be uploaded to a server, and
then return to controller users.

2. The system consists of a controller and collectors. The controller can send instruments to the
collector to control the state of collector, it can also receive monitoring and warning information
from the collector in real-time.

3. An alarming function is designed, and once the returned data exceeds a threshold, an alarm will
appear on the controller iPhone.

4. The proposed system is used to monitor the movement and orientation of a girder during hoisting
on a cross-sea bridge. The site monitoring results validate the data acquisition, data transmission,
commands control and alarming functions. This CPS using smartphones and wireless networks
in hoisting monitoring can provide more field conditions for operators and help them take
corresponding measures to ensure safety.

The remainder of the paper is organized as follows: Section 2 describes the offshore bridge which
girder hoisting need to be monitored. Section 3 gives the architecture of the hoisting monitoring
system, and calibrates the angle measured by the iPhone. Sections 4 and 5 show the monitoring test on
the side-span and middle-span respectively. Section 6 concludes this paper.

2. Engineering Description

The primary bridge is a three-span, earth-anchored suspension bridge with a double tower.
Its total span is 820 m with a primary span length of 460 m and side span lengths of 180 m each.
The stiffening girder is a steel truss with a height of 10 m. There are 43 girders that must be hoisted.
All girders are heavy and bulky steel truss structures with weights from 264.18 to 527.19 t. Girders in the
side spans must be hoisted using a floating crane, and the girders in the middle span were lifted using
two cranes stretched across the two primary cables. The hoisting procedures must be implemented
in good weather and calm seas, and hoisting safety is an important factor that must be considered.
The monitoring for hoisting is essential to make sure the safety, and can be realized in real-time and
more convenient with the developed system. The elevation of the bridge is shown as Figure 1, and
the girder numbers are labeled in red. In the following parts, the girders monitored were No. 3 in
side-span and No. 22 in mid-span.
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Figure 1. Elevation of the cross-sea bridge investigated in this study. 

3. Hoisting Monitoring System 

3.1. Monitoring System Design 

The monitoring system consists of a collector program that is installed on an iPhone (i.e., the 
collector) and a controller program that is installed in another iPhone (i.e., the controller). 
Additionally, a web server is used to gather the data collected by the collector iPhones and then 
return data to the controller. 

The controller sends instructions to a collector and observes the collected data. The collector 
collects monitoring data through its built-in sensors after receiving instructions from the controller 
and returns the data to the controller every 20 s. Once the current returned data exceeds a given 
threshold (e.g., the threshold of acceleration is 10 m/s2, and the threshold of angle is 10°), an alarm 
will be triggered on the controller iPhone, which then continues collecting and monitoring. The 
threshold can be set on the controller at any time according to operator experience and the 
requirements of the on-site conditions. The flowchart of this system is presented in Figure 2. 
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3.2. Sensor Subsystem 

3.2.1. Sensor Parameters  

Three parameters are primarily considered during a hoisting process: the vertical acceleration 
and the angles of the x- and y-axes, which will be introduced in Section 3.5. The vertical acceleration 
is monitored to avoid the occurrence of a sudden drop; the angles noted are examined to monitor the 
locations of four corners of the structure during hoisting. Acceleration is collected by the built-in 
BMA220-type accelerometer (Bosch, Stuttgart, Germany), which allows measurement of acceleration 
in three perpendicular axes. This sensor is based on micro electro mechanical systems (MEMS). 
Additionally, the digital resolution is 6 bit. The acceleration sensor can be programmed to optimize 
functionality, performance and power consumption in customer-specific applications. The angle is 
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3. Hoisting Monitoring System

3.1. Monitoring System Design

The monitoring system consists of a collector program that is installed on an iPhone (i.e.,
the collector) and a controller program that is installed in another iPhone (i.e., the controller).
Additionally, a web server is used to gather the data collected by the collector iPhones and then
return data to the controller.

The controller sends instructions to a collector and observes the collected data. The collector
collects monitoring data through its built-in sensors after receiving instructions from the controller and
returns the data to the controller every 20 s. Once the current returned data exceeds a given threshold
(e.g., the threshold of acceleration is 10 m/s2, and the threshold of angle is 10˝), an alarm will be
triggered on the controller iPhone, which then continues collecting and monitoring. The threshold
can be set on the controller at any time according to operator experience and the requirements of the
on-site conditions. The flowchart of this system is presented in Figure 2.
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3.2. Sensor Subsystem

3.2.1. Sensor Parameters

Three parameters are primarily considered during a hoisting process: the vertical acceleration
and the angles of the x- and y-axes, which will be introduced in Section 3.5. The vertical acceleration is
monitored to avoid the occurrence of a sudden drop; the angles noted are examined to monitor
the locations of four corners of the structure during hoisting. Acceleration is collected by the
built-in BMA220-type accelerometer (Bosch, Stuttgart, Germany), which allows measurement of
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acceleration in three perpendicular axes. This sensor is based on micro electro mechanical systems
(MEMS). Additionally, the digital resolution is 6 bit. The acceleration sensor can be programmed
to optimize functionality, performance and power consumption in customer-specific applications.
The angle is determined by invoking the convert function in the iPhone to read the angular rate of
rotation collected by the built-in L3G4200D-type gyroscope (ST, Geneva, Switzerland), which is also
a MEMS-based sensor. The gyroscope integrates low- and high-pass filters with a user-selectable
bandwidth and incorporates power-down and sleep modes, a temperature sensor, and first-in first-out
memory. The basic features of the accelerometer and gyroscope in the iPhone are provided in Table 1.
The mechanical characteristics of the accelerometer and gyroscope in the iPhone 5S are presented in
Tables 2 and 3, respectively.

Table 1. Basic features of the accelerometer and gyroscope in the iPhone.

Accelerometer (BMA220) Gyroscope (L3G4200D)

Supply voltage 1.62–1.98V 2.4–3.6 V
Low voltage-compatible IOS 1.8 V 1.8 V

Data output 16 bit 16 bit
Selectable full scales ˘2 g/˘4 g/˘8 g, ˘16 g 250 dps/500 dps/2000 dps

Output interface I2C/SPI I2C/SPI
High shock survivability Yes Yes

Table 2. Mechanical characteristics of the accelerometer in the iPhone 5S.

Parameter Conditions Typical

Measurement range (MR) ˘2, ˘4, ˘8 g, ˘16 g

Sensitivity

˘2.0 g 16 LSB/g
˘4.0 g 8 LSB/g
˘8.0 g 4 LSB/g

˘16.0 g 2 LSB/g

Sensitivity change vs. temperature ˘2.0 g ˘0.01%/˝C

Typical zero-g offset accuracy ˘2.0 g ˘95 mg

Operating temperature range ´40 to +85 ˝C

Zero-g offset temperature drift ´40 to +85 ˝C ˘2 mg/K

Bandwidths 32, 64, 125, 250, 500, 1000 Hz

Table 3. Mechanical characteristics of the gyroscope in the iPhone 5S.

Parameter Test Conditions Type Unit

MR ˘250, ˘500, ˘2000 dps

Sensitivity
MR is ˘250 dps 8.75

mdps/digitMR is ˘500 dps 17.50
MR is ˘2000 dps 70

Sensitivity change vs. temperature ´40 ˝C to +85 ˝C ˘2 %

Digital zero-rate level
MR is ˘250 dps ˘10

dpsMR is ˘500 dps ˘15
MR is ˘2000 dps ˘75

Zero-rate level change vs.
temperature

MR is ˘250 dps ˘0.03 dps/˝C
MR is ˘2000 dps ˘0.04

Digital output data rate 100, 200, 400, 800 Hz
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Based on the preceding characteristics, the basic performances of the accelerometer and
gyroscope are stable, and these devices can thus satisfy engineering requirements in certain situations.
The acceleration direction is specified as follows: regardless of the position of the phone, when the
screen faces the user, the horizontal direction (i.e., left to right) is the positive direction of the x-axis,
while the vertical direction (i.e., bottom to top) is the positive direction of the y-axis. The direction
that faces the user is the positive direction of the z-axis, which is perpendicular to the phone’s screen.
The acceleration directions are shown in Figure 3. To determine the angle, the data obtained by the
gyroscope is categorized into three groups (i.e., pitch, roll, and yaw), which represent the rotation
angles around the x-, y-, and z-axes, respectively. The angle-of-rotation directions are shown in Figure 4.
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3.2.2. Calibration of Angle

In order to validate the accuracy of the angle, an angle instrument was applied to test the angle
variation. The experiment photo is shown as Figure 5.
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The smartphone is fixed on the instrument, and moved with the instrument. Because of the dynamic
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angle data acquisition, slow manual angle loading, and low reading precise, step-by-step loading
method is adopted in the experiment. Five loading steps are included in each test, one degree added
every step by the angle instrument, and then keep static for several seconds, then goes to the next
step. Take two experiments as examples, the angle around x-axis is shown in Figure 6a, and the angle
around y-axis is shown in Figure 6b.Sensors 2016, 16, 1048 6 of 17 
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Several experiments were conducted, and angle steps on smart phone of three experiments are
presented in Figure 7.
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From Figure 7, it can be seen that the angle step coincides better with the instrument loading
step. The error is inevitable because the angle on the instrument is loaded manually, and the reading
is not so exact. Moreover, the loading in each experiment may be different to some extent, so the
dynamic experiment was also conducted in [28]. The angle collected by the smartphone is compared
to wired acquisition system and wireless sensing system, and the result proved the accuracy of angle
acquisition using smartphone.

3.3. Controller Program

The controller program works with the web server to control and observe the data transmitted by
the online collectors. The controller program can send instructions via the web server and make the
collectors run based on these instructions. Three instructions are typically available: “start”, “stop”,
and “upload data”. The “start” instruction automatically prepares the default settings and initiates the
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collection operation of online data collectors. The “stop” instruction controls online collectors, which
are currently collecting data. The “upload data” instruction prompts online collectors to upload the
data to the web server for further analysis.

Acting as the primary component of the system, the controller observes the online collectors,
while the collectors collect data and returns six types of data (i.e., acceleration data of three directions
and angle data of three directions) to the controller with their ID approximately every 20 s, it’s worth
mentioning that the data will be returned to controller immediately once the collected data exceeds
a given threshold. When the returned collected data exceeds a given threshold, the color of the
corresponding monitoring parameter in the interface of the controller will change.

The web server provides data storage and push functions, which facilitate information exchange
(e.g., instructions) between the controller and the collectors. The interface of the controller is shown in
Figure 8, and the interface of the real-time monitoring system is shown in Figure 9.
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3.4. Collector Program

The collector program uses the built-in sensors of the iPhone to collect angle and acceleration data.
Prior to data collection, several variables can be set on a collector, including the collection frequency,
duration, threshold, and data filename. During data collection, a collector continuously accesses its
sensors to obtain data and writes their data to a file. A collector can work independently or under the
control of the controller when “network control” is available. Additionally, a map position interface
can be used to record the monitoring location. The interface of collector program is shown in Figure 10.Sensors 2016, 16, 1048 8 of 17 
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3.5. Application of the Proposed System for Monitoring a Hoisting Operation

The developed system was applied to determine the orientation of a girder during hoisting.
A schematic of the hoisting process is shown in Figure 11. The collector was fixed on the girder to be
hoisted, and the controller was positioned in a safe zone (i.e., a boat, on land, a catwalk, or another
safe place), where operators can operate the system easily and safely. Instructions were sent from
the controller to the collector via the 2G, 3G or 4G network. The collector then began to gather data
upon receiving commands with a sampling frequency of 100 Hz and then returns six data at one time
point (i.e., the acceleration data of three directions and the angle of three directions) to the controller
every 20 s. The operator can determine the status of the hoisting procedure based on the returned data
shown on the controller.
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4. Monitoring of Side-Span Hoisting Procedure

4.1. Monitoring Process

The girder hoisting on one of the side spans was performed in this section. The hoisting tool used
was a floating crane, and the girder, which is No. 3 in Figure 1, weighed 511.76 t. The location of the 3#
girder is shown in Figure 13.
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During hoisting the girder is lifted by slings that are made of a high-strength fiber. The orientation
of the girder when it is suspended requires monitoring to prevent the sudden drop of one end, which
would be indicated by a large angle in the front/back or right/left directions. Therefore, to obtain
this real-time information and then take corresponding measures, the angle and acceleration should
be monitored and relayed to the operator through the controller. During the hoisting process, an
iPhone 5S gathered data as a collector, while an iPhone 4S sent instructions and received data as a
controller. The on-site hoisting procedure is shown in Figure 14. The collector (i.e., the iPhone 5S)
was fixed on the girder, and the controller (i.e., the iPhone 4S) was operated by a worker on a safe
place. The arrangement of the phone is shown in Figure 15. The directions X1 and Y1 denote the
positive directions of the x- and y-axes of the girder, and the directions X2 and Y2 represent the positive
directions of the x- and y-axes of the collector. Thus, the returned data on the angle about the axis of
the girder should be considered during hoisting.
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4.2. Related Algorithm

In order to compare the on-site feedback and original data collected by collector, the related
algorithm is shown in Figure 16. The data is collected and stored in the collector phone, and named as
Angledata.txt and acceleration.txt. The data files can be exported, and then processed by MATLAB to
obtain the time-history curves. In the data file, the first to the sixth column represents collected time,
they are year, month, day, hour, minute and second respectively. In this test, hour, minute and second
are used. In the accelerationdata.txt file, the seventh to ninth columns represent the acceleration of
three axes, so the vertical acceleration is the ninth columns. In the Angledata.txt file, the seventh to
ninth columns represent the angle around three axes. From Figure 15, it can be seen that, the angle
around x-axis of the girder measured by smartphone is the angle around y-axis. So the eighth and
seventh column is used to calculate the angle around x-axis and y-axis respectively. The original data
in smartphone collected in radians, a transformational relation is used in the data processing. After the
processing, the angle-history curve and acceleration history curve can be obtained to compare with the
on-site feedback.
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4.3. Test Results

The duration of the hoisting process was 3 h. There was no warning information on the controller
during the whole procedure. At the beginning, the four corners of the girder must be hoisted
simultaneously. Therefore, real-time angle information must be obtained to evaluate the position of
the girder and to provide information to operators. The vertical-acceleration time-history curve of the
collector is shown in Figure 17.
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From the vertical-acceleration time-history curves in Figure 17, it is shown that the acceleration
fluctuated to a certain extent when the girder state changed. Additionally, the maximum acceleration
occurred when the girder is hoisted into its final location; the sudden touch of the girder and the
column caused a major acceleration. Figures 18 and 19 show the angle about the x- and y-axes of
the girder.
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Depending on the records of the field operator, the collector started to gather data at 9:48; the
hoisting of the girder began at 10:14; the girder was lifted to a given height by 10:45; and four bolts
(i.e., the connection between the cable and girder, which is shown as Figure 20) were installed
completely by 12:19. The resultant deformation was severe when workers started to remove the
sling. From Figures 17–19, it is shown that the angle changed due to the action of hoisting in every
phase of the hoisting procedure. Before each bolt was secured in its respective hole, the angle was
adjusted to match up each bolt hole. Throughout the hoisting process, the acceleration and angle
changed only marginally, and all disturbances remained within the acceptable ranges. Based on the
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preceding analysis, the girder remained stable during this hoisting operation, which is consistent with
the phone investigation.
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5. Monitoring of a Middle-Span Hoisting Procedure

5.1. Monitoring Process

The girder which is No. 22 in Figure 1 on the middle span weighed 372.22 t and was hoisted
using two cranes. Two cranes were stretched across the two primary cables and worked together to
lift the second girder into place; thus, both cranes had to raise the girder at the same rate to prevent
imbalance. Therefore, the angle of the girder must be determined in real time to ensure a synchronous
hoisting operation.

In this monitoring procedure, an iPhone 5S was used to collect data and return information
to the controller, and an iPhone 4S served as a controller to receive the returned data and provide
information to the operators. The on-site hoisting procedure is shown in Figure 21. The collector (i.e.,
the iPhone 5S) was fixed onto the girder to be hoisted, and the controller was operated by operators on
a catwalk. The arrangement of the collector is shown in Figure 22, and Figure 23 shows the position of
the collector and controller at the beginning of the hoisting operation; at this point during the hoisting
procedure, the controller was on the boat. After the girder was raised from the boat, the controller was
taken to a catwalk for the remainder of the hoisting procedure.

As shown in Figure 22, the collector was pointed toward a direction similar to the specified
direction of the truss girder to allow operators to judge the monitored situation directly based on the
feedback information received by the controller. Figure 23 shows the convenience of this method,
without any other measurement devices; only two smart phones are required to obtain relevant
hoisting information.
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5.2. Related Algorithm

Figure 24 gives the algorithm of the middle-span hoisting monitoring. The detailed accounts are
omitted because of which are similar to the algorithm in Section 4.2 except for two aspects. First is the
same direction of girder and smartphone, so the seventh column is used to calculate the angle about
x-axis, and the eighth column is used to calculate the angle about y-axis. Second is regarding the size
and angle of the girder, the height difference in the front/back and right/left directions can only be
obtained approximately. The height difference in the left/right direction can provide some information
to the hoisting operators about the synchronization of the cranes on the two primary cables. The girder
was 24 m long in the left/right direction and 10 m wide in the front/back direction, so the height
difference can be calculated according to trigonometric function shown as Figure 24.
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5.3. Test Results

The duration of the entire hoisting process was nearly 9 h—from the transmission of the “start”
instruction at 9:00 to the transmission of the “stop” instruction at 17:52. The test period is so long and
the battery in iPhone can function 4 h in working state, while this long field test can be achieved if an
additional battery is available.

The vertical acceleration collected by the collector is shown in Figure 25 and shows that there is
no significant change in the vertical acceleration of the girder. The maximum acceleration occurred at
the beginning of the hoisting operation.Sensors 2016, 16, 1048 14 of 17 
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Figure 26 shows the angle about the girder’s x-axis; the angle about the y-axis of the girder is
shown in Figure 27. Data collection began at 9:00, and the hoisting process began at 11:31. A certain
angle about the x- and y-axes was generated at this time. During the initial phase of hoisting, the angle
changed marginally to ensure synchronous hoisting of the two sides. Additionally, the first bolt was
placed in position at 16:30. The angle about the y-axis continued to change to match the installation of
the other three bolts. Based on the figures, it is shown that the acceleration and angles can be reported
in real time. Lack of synchronization was not encountered during this hoisting operation.

Sensors 2016, 16, 1048 14 of 17 

 

 
Figure 25. Vertical-acceleration time-history curve. 

Figure 26 shows the angle about the girder’s x-axis; the angle about the y-axis of the girder is 
shown in Figure 27. Data collection began at 9:00, and the hoisting process began at 11:31. A certain 
angle about the x- and y-axes was generated at this time. During the initial phase of hoisting, the 
angle changed marginally to ensure synchronous hoisting of the two sides. Additionally, the first 
bolt was placed in position at 16:30. The angle about the y-axis continued to change to match the 
installation of the other three bolts. Based on the figures, it is shown that the acceleration and angles 
can be reported in real time. Lack of synchronization was not encountered during this hoisting 
operation. 

 

Figure 26. Angle about the x-axis of the girder. 

 

Figure 27. Angle about the y-axis of the girder. 

The height difference recorded in the left/right direction is shown in Figure 28, and the height 
difference recorded in the front/back direction is shown in Figure 29. It is shown that the height 
difference in the left/right direction was adjusted to ensure the synchronization of the two cranes. At 

Figure 26. Angle about the x-axis of the girder.

The height difference recorded in the left/right direction is shown in Figure 28, and the height
difference recorded in the front/back direction is shown in Figure 29. It is shown that the height
difference in the left/right direction was adjusted to ensure the synchronization of the two cranes.
At the end of hoisting process, the height on the left side was 0.7 m higher than that on the right side.
The height in the front/back direction was approximately stable throughout the hoisting operation.
After the first bolt was installed, the height in the front/back direction continued to increase to allow
the installation of the three other bolts. After the installation of all of the pins, the height in the front of
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the girder was 0.75 m higher than that in the back of the girder. No alarm information appears during
the on-site monitoring. Thus, the hoisting process was successful, and the last state of the girder had
been prepared completely for the construction of the next day, and there is no warning information on
the controller during the whole procedure.
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6. Conclusions

In this study, a CPS iPhone-based system for hoisting monitoring using smartphones was
proposed, including a phone collector, a controller and a server. Field monitoring results of two steel
girder elements of a cross-sea bridge confirmed the convenience and practicability of this system.
The dynamic acceleration and angle data of both hoisting procedures were collected and sent to a
web server. The functions of sending instructions to the collectors and real-time monitoring can
significantly enhance field hoisting monitoring capabilities. The changes in various angles and height
differences obtained during the hoisting procedures were all within normal ranges, and there is no
warning information, which indicates that the girder hoisting process was stable and safe. The real-time
monitoring feedback received by the control system can provide important information to operators
so that adjustments can be made during hoisting if necessary. The use of smartphone has advantages,
including convenience, lower cost, the use of commonly available smartphones, and intuitive operation.
Additionally, the proposed monitoring system is simple enough to be operated by any construction
worker equipped with an iPhone. The rapid popularity of smart phones has provided the opportunity
for researchers and civilians to understand traditional monitoring methods in a new way. For the
aforementioned advantages, the use of smartphones will hopefully represent a promising trend in the
CPS field.
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