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Abstract: The Segway, which is a popular vehicle nowadays, is an uncertain nonlinear system
and has an unknown time-varying control coefficient. Thus, we should consider the unknown
time-varying control coefficient and model uncertainties to design the controller. Motivated by this
observation, we propose a robust control for the Segway with unknown control coefficient and model
uncertainties. To deal with the time-varying unknown control coefficient, we employ the Nussbaum
gain technique. We introduce an auxiliary variable to solve the underactuated problem. Due to the
prescribed performance control technique, the proposed controller does not require the adaptive
technique, neural network, and fuzzy logic to compensate the uncertainties. Therefore, it can be
simple. From the Lyapunov stability theory, we prove that all signals in the closed-loop system are
bounded. Finally, we provide the simulation results to demonstrate the effectiveness of the proposed
control scheme.

Keywords: unknown control coefficient; Segway; prescribed performance function; Nussbaum gain
technique; model uncertainty

1. Introduction

The Segway is a vehicle extended from the inverted-pendulum system and balancing robot. It can
go anywhere and is easy to manipulate. Thus, the Segway is becoming more prevalent on urban
sidewalks and the stable controller is essential for human safety. In order to design the controller for the
Segway, the linear controllers such as proportional-integral-derivative (PID) [1] and linear quadratic
regulator (LQR) [2] were firstly proposed. The structure of these linear controllers is simple and it is
easy to analyze the stability. However, they require the linearized model of the Segway to design the
controller. This implies that there is a limit due to the narrow operating range. To solve this problem,
various nonlinear control methods such as sliding mode control [3,4] and adaptive control [5,6] based
on the backstepping technique [7] were proposed. It is well known that the backstepping technique
requires the differentiation of the virtual control and this complicates the controller. Although the
dynamic surface control method [8] can remove the disadvantage of the backstepping technique, it is
still complex because it should use the adaptive technique [9,10], neural network [11–13], and fuzzy
logic [14,15] to deal with the uncertainties.

To reduce the complexity of the nonlinear control methods, a low complexity control method
was recently proposed [16]. By using the prescribed performance function, it can adjust the transient
and steady-state responses. Further, it does not require the adaptive technique, neural network, and
fuzzy logic to compensate the uncertainties. Hence, the controller can be implemented more simply.
In this regard, several controllers for various applications were presented using this method. In [17],
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the adaptive dynamic surface control for nonlinear time-varying system was proposed. The output
feedback controller for interconnected time-delay systems was presented in [18]. The robust formation
controller for nonlinear multi-agent systems was proposed in [19]. However, all these works assume
that the control coefficient is known or constant if it is unknown. This assumption is not applicable to
the Segway because the control coefficient is time-varying and unknown. Therefore, we need to relax
this assumption. Furthermore, the Segway is an underactuated system which has only one control
input. Thus, it is difficult to design the controller because we should control the angle and velocity of
the Segway, simultaneously.

Motivated by these observations, we propose a robust control method for the Segway
in the presence of the unknown control coefficient and model uncertainties. Firstly, we employ the
Nussbaum gain technique [20] to deal with the unknown time-varying control coefficient. Then, the
robust controller using the prescribed performance function and the auxiliary variable is designed
to compensate the uncertainties and solve the underactuated problem. For the stability of the
proposed scheme, we prove that all error signals of the closed-loop control system are bounded
using the Lyapunov stability theory. Finally, the simulation results are provided to demonstrate the
effectiveness of the proposed control method. Compared with previous methods for the Segway,
the main contribution of this paper is as follows: (i) The proposed approach can provide the desired
performance of the tracking error without knowing the time-varying control coefficient; (ii) adaptive
technique, neural network, and fuzzy logic, which make the controller complex, are not required to
compensate the uncertainties and thus, the proposed scheme can be simple; (iii) by introducing an
auxiliary variable, we can solve the underactuated problem.

The rest of this paper is organized as follows. The problem formulation is introduced in Section 2.
In Section 3, the approximation-free control for the Segway is presented. In Section 4, the effectiveness
of the proposed scheme is validated through simulation results. Finally, we conclude the paper
in Section 5.

2. Problem Formulation

Consider the Segway model shown in Figure 1. The dynamics of the Segway is as follows [21].

m11θ̈w + m12θ̈ cos θ = τ + m12θ̇2 sin θ

m12θ̈w cos θ + m22θ̈ = −τ + Gb sin θ
(1)

where

m11 = (m + M)r2 + Iw

m12 = mlr

m22 = ml2 + Ib

Gb = mgl

here, m is the mass of the body that is composed of the Segway base and the passenger, M is the mass
of the wheel, l is the length between the wheel axle and the center of gravity of the body, θw and θ are
wheel’s rotation angle and the inclination angle of the body, respectively, Iw and Ib are the moments of
inertia of the body and the wheel, respectively, r is the radius of the wheel, and τ is the control torque
applied to the wheels of the Segway.
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Figure 1. Segway model [22].

From Equation Equation (1), it follows that

M1θ̇w + M2θ̇ = Gb sin θ + m12θ̇2 sin θ (2)

where

M1 = m11 + m12 cos θ

M2 = m22 + m12 cos θ

To make the state model of the Segway, we define the state variable as x1 = θ and x2 = θ̇. From
Equation (2), we can represent Equation (1) as follows:

ẋ1 = x2

ẋ2 = f (x1, x2)− b(x1)τ
(3)

where

f (x1, x2) = {(m12 − (m12x2)
2 cos x1 sin x1 + m11Gb sin x1}/M̄(x1)

b(x1) = M1(x1)/M̄(x1)

M̄(x1) = m11m22 − (m12 cos x1)
2

In Equation (3), the velocity model of the Segway is omitted. This is because the Segway is
underactuated. However, it is necessary to control the angular velocity of the wheel as well as the
inclination angle. It will be solved by introducing an auxiliary variable.

Assumption 1. The angle x1 satisfies −π/2 < x1 < π/2.

Assumption 2. The state variables x1, x2, and θ̇w are measurable exactly by sensors such as accelerometer and
gyroscope [23,24].

Remark 1. In practice the sensor noise is inevitable. Thus, various techniques such as the Kalman filter [25]
and state estimation [26] are used to reduce the effect of the sensor noise. However, the related technique for noise
is another problem in view of the controller design. Therefore, we design the controller under Assumption 2.

In Equation (3), we assume f (x1, x2) and b(x1) are unknown. Further, b(x1) is time-varying.
Therefore, f (x1, x2) and b(x1) denote model uncertainties and unknown time-varying control
coefficient, respectively. The control objective is to design the controller so that x1 tracks its desired
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value xd = 0◦ while the control errors remain within the prescribed performance bounds even though
there exist the unknown time-varying control coefficient and model uncertainties.

3. Controller Design

In this section, an approximation-free controller is designed step by step for the Segway with
unknown time-varying control coefficient and model uncertainties. Define the errors as

ε1 = ln
1 + z1

1− z1
, ε2 = ln

1 + z2

1− z2
(4)

where

z1 =
x1

ρ1
, z2 =

x2 − α− µ

ρ2

here, α is a virtual control, µ is an auxiliary variable, and ρ1 and ρ2 are performance functions defined by

ρ1(t) = (ρ1(0)− ρ1(∞))e−l1t + ρ1(∞)

ρ2(t) = (ρ2(0)− ρ2(∞))e−l2t + ρ2(∞)
(5)

where ρ1(0) > |x1(0)| and ρ2(0) > |x2(0)− α(0)| are initial values of ρ-functions, l1 and l2 are gains
of ρ-functions, ρ1(∞) and ρ2(∞) are final values of ρ-functions, α(0) is the initial value of the virtual
control input α. In Equation (4), zi = tanh(εi/2) where i = 1, 2. Thus, if εi is bounded, zi satisfies
|zi| < 1. This means that the tracking error is bounded such that −ρ1 < x1 < ρ1.

Remark 2. As stated, it is difficult to control the inclination angle θ of the body and angular velocity θ̇w of the
wheel simultaneously because there is only one control torque. However, we need to control the angular velocity
of the wheel as well as the inclination angle of the body. To solve this problem, we introduce an auxiliary variable
µ satisfying the differential equation

µ̇ = −kµµ + γ1 tanh(θ̇w) (6)

where kµ and γ1 are positive constants. From Equation (6), one can easily show that the auxiliary variable µ

is bounded.

Using Equations (3), (4) and (6), the error dynamics of ε1 and ε2 can be written as

ε̇1 = 2ż1
1−z2

1
= 2 cosh2(ε1/2) α+µ+tanh(ε1/2)ρ2−tanh(ε1/2)ρ̇1

ρ1

ε̇2 = 2ż2
1−z2

2
= 2 cosh2(ε2/2) f (x1,x2)−b(x1)τ−α̇+kµµ−γ1 tanh(θ̇w)−tanh(ε2/2)ρ̇2

ρ2

(7)

To deal with the unknown time-varying control coefficient b(x1), we employ the Nussbaum gain
technique [20]. A function N(ζ) is called a Nussbaum function if it has the following properties.

lim
s→∞

sup
∫ s

s0

N(ζ)dζ = +∞

lim
s→∞

inf
∫ s

s0

N(ζ)dζ = −∞

In this paper, the Nussbaum function N(ζ) = cosh(ζ) sin(ζ) is considered and the following
lemma is used to analyze the stability.
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Lemma 1. Let V(·) and ζ(·) be smooth functions defined on [0, t f ) with V(t) ≥ 0, ∀t ∈ [0, t f ). For t ∈ [0, t f ),
if the following inequality holds [27]:

V(t) ≤ c0 + e−c1t
∫ t

0
bN(ζ)ζ̇ec1$d$ + e−c1t

∫ t

0
ζ̇ec1$d$ (8)

where c0 and c1 are bounded constants, and b is unknown time-varying control coefficient, then V(t), ζ and∫ t
0 bN(ζ)ζ̇d$ are bounded on [0, t f ). According to [28], if the solution of the resulting closed-loop is bounded,

then t f = ∞.

Proof of Lemma 1. See Theorem 1 in [27].

Remark 3. Lemma 1 means that if the condition Equation (8) is satisfied, the tracking error of the closed-loop
system is bounded on [0, t). Furthermore, it can be extended for t = ∞. Therefore, we will design the controller
to satisfy the condition Equation (8).

Now the controller is designed step by step using the backstepping technique. Note that the
backstepping technique has the disadvantage that requires the differentiation of the virtual control.
However, the prescribed performance function based controller does not require the differentiation of
the virtual control and thus, we can reduce the complexity of the controller.

Step 1: Consider the following Lyapunov function candidate for ε1

V1 =
1
2

ε2
1 (9)

The time derivative of Equation (9) along with Equation (7) is

V̇1 =
δ1

ρ1
ε1(α + µ + tanh(ε2/2)ρ2 − tanh(ε1/2)ρ̇1) (10)

where δ1 = 2 cosh2(ε1/2) > 0. The virtual control law α is chosen as

α = −k1ε1 − µ (11)

where k1 is a positive constant. Substituting Equation (11) into Equation (10) yields

V̇1 =
δ1

ρ1
ε1(−k1ε1 + tanh(ε2/2)ρ2 − tanh(ε1/2)ρ̇1) (12)

By the definition of Equation (5), ρ2 and ρ̇1 are bounded. This means that there exists a positive
constant Φ1 such that | tanh(ε2/2)ρ2 − tanh(ε1/2)ρ̇1| ≤ Φ1. Thus Equation (12) can be rewritten as

V̇1 ≤
δ1

ρ1
(−k1|ε1|2 + Φ1|ε1|) (13)

If |ε1| > Φ1/k1, then V̇1 ≤ 0. Therefore, we can conclude that |ε1| ≤ ε̄1 where
ε̄1 = max{ε1(0), Φ1/k1}, and z1 satisfies |z1| < 1. Furthermore, the boundedness of ε1 and µ implies
that α is bounded, and thus, ε̇1 and µ̇ are bounded. From Equations (6) and (7), α̇ is also bounded.

Step 2: Consider the following Lyapunov function candidate for ε2.

V2 =
1
2

ε2
2 (14)
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The time derivative of Equation (14) along with Equation (7) is

V̇2 = δ2
ρ2

ε2{ f (x1, x2) + b(x1)τ − α̇ + kµµ− γ1 tanh(θ̇w)− tanh(ε2/2)ρ̇2}
= δ2

ρ2
ε2{ f (tanh(ε1/2)ρ1, tanh(ε2/2)ρ2) + b(x1)τ − α̇ + kµµ− tanh(θ̇w)− tanh(ε2/2)ρ̇2}

(15)

where δ2 = 2 cosh2(ε2/2) > 0. The actual control law τ is chosen as

τ = N(ζ)η

η = k2ε2 + γ2
δ2ε2
2ρ2

+
kµµρ2

δ2

ζ̇ = δ2
ρ2

ηε2

(16)

where k2 and γ2 are positive constants.

Remark 4. In Equation (16), the actual control law does not require any function approximations to compensate
the uncertainties. Further, the differentiation of the virtual control is not required in spite of using the
backstepping technique. Therefore, the controller is simple compared with previous results for the Segway.

Substituting Equation (16) into Equation (15) yields

V̇2 = δ2
ρ2

ε2{b(x1)N(ζ)η + f (tanh(ε1/2)ρ1, tanh(ε2/2)ρ2)− α̇ + kµµ− γ1 tanh(θ̇w)− tanh(ε2/2)ρ̇2} (17)

In Step 1, the boundedness of ε1 and α̇ is proved. Since f (·) is composed of tanh(ε1/2)ρ1

and tanh(ε2/2)ρ2, it is bounded. Then, there exists a positive constant Φ2 satisfying
| f − α̇− γ1 tanh(θ̇w)− tanh(ε2/2)ρ̇2| ≤ Φ2. Thus Equation (17) can be expressed as

V̇2 ≤
δ2

ρ2
(b(x1)N(ζ)ηε2 + kµµ + Φ2|ε2|) = b(x1)N(ζ)ζ̇ +

δ2

ρ2
(kµµ + Φ2|ε2|) (18)

Note that ζ̇ = δ2
ρ2

ηε2 = δ2
ρ2

ε2(k2ε2 +
γ2δ2ε2

2ρ2
+

kµµρ2
δ2

). Adding and subtracting ζ̇ in the right side of
Equation (18), we have

V̇2 ≤ b(x1)N(ζ)ζ̇ + ζ̇ − δ2

ρ2
k2ε2

2 −
γ2δ2

2ε2
2

2ρ2
2

+
δ2

ρ2
Φ2|ε2| (19)

By the inequality,

−
γ2δ2

2ε2
2

2ρ2
2

+
δ2

ρ2
Φ2|ε2| ≤

Φ2
2

2γ2

Then, Equation (19) can be rewritten as

V̇2 ≤ −c0V2 + b(x1)N(ζ)ζ̇ + ζ̇ + c1 (20)

where c0 = 2k2
ρ2(0)

and c1 =
Φ2

2
2γ2

. Multiplying ec
0t on both sides of Equation (20) yields,

d
dt
(V2ec0t) ≤ (bN(ζ)ζ̇ + ζ̇ + c1)ec0t (21)

Integrating Equation (21) on [0, t], we have

V2(t) ≤ V2(0)e−c0t +
∫ t

0 {bN(ζ) + 1}ζ̇e−c0(t−$)d$ +
∫ t

0 c1e−c0(t−$)d$

≤ c2 + e−c0t ∫ t
0 bN(ζ)ζ̇ec0$d$ + e−c0t ∫ t

0 ζ̇ec0$d$
(22)
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where c2 = V2(0) +
c1
c0

. Note that c1 and c2 are positive. By Lemma 1, we can conclude that V2(t),
ζ and ε2 are bounded on [0, t f ). The boundedness of ε2 implies that z2 satisfies |z2| < 1. According
to [28], the boundedness of these signals ensures t f = ∞.

Theorem 1. For the Segway Equation (3) with completely unknown time-varying control coefficient and
model uncertainties, if we apply the controller Equation (16), then the solution of the closed-loop system is
bounded. Furthermore, the errors remain within their prescribed performance functions such that |x1| < ρ1 and
|x2 − α− µ| < ρ2.

Proof of Theorem 1. By the previous design procedures from Step 1 to Step 2, it is proved that ε1 and
ε2 are bounded. Thus, |z1| < 1 and z2 < 1. This means that |x1| < ρ1 and |x2 − α− µ| < ρ2.

It is necessary to prove the convergence of θ̇w. For the simplicity, assume that ε1 and ε2 converge
to zero. Since the bounds of ε1 and ε2 are depend on k1 and k2, the bounds of them can converge to
nearby zero if we increase k1 and k2. The convergence of ε1 and ε2 leads to the convergence of z1 and
z2. From Equations (4) and (11), x1 and x2 also converge to zero. This implies that ẋ1 and ẋ2 are zero,
and thus, control torque τ is zero from Equation (3). Then, from Equation (16), η is zero because ζ

is bounded due to ζ̇ = 0. Since η is composed of ε2 and µ in Equation (16), µ converge to zero. If µ

is bounded and converges to zero as t → ∞, the angular velocity θw of the wheel converges to zero
by Equation (6) and Lemma 2 presented in [7].

Remark 5. The design procedure is as follows: (i) select ρ1(0) to satisfy the condition such that ρ1(0) > |x1(0)|;
(ii) select l1 and ρ1(∞) to satisfy the convergence rate and robustness for the external disturbance after it is
stabilized, respectively; (iii) calculate z1(0) using Equation (4); (iv) select k1 properly. The error ε1 will be
decreased as k1 is increased. Calculate the virtual control α using Equation (11); (v) select ρ2(0) to satisfy the
condition such that ρ2(0) > |x2(0)− α(0)− µ(0)|; (vi) select l2 and ρ2(∞) to satisfy the convergence rate and
robustness for the external disturbance, respectively; (vii) calculate z2(0) using Equation (4); (viii) select k2

properly. Increasing k2 leads to the smaller error ε2. Calculate the actual control τ using Equation (16).

4. Simulation Results

In this section, the simulation results are provided to illustrate the effectiveness of the proposed
scheme. For the real application, we use the model parameters presented in [29]. These are only
for the simulation. That is, the proposed control scheme does not require the exact information
of model parameters for the application and the simulation results show the robustness against
these model uncertainties. The control parameters are chosen as l1 = l2 = 1, ρ1(0) = ρ2(0) = 10,
ρ1(∞) = ρ2(∞) = 2.5, k1 = 10, k2 = 500, kµ = 15, γ1 = 35, and γ2 = 1.

Simulation results are shown in Figures 2–5. Figures 2 and 3 show the simulation results for
θ(0) = 20◦ and θ(0) = −20◦, respectively. Figure 2a,b show that the angle of the inclination and
control torque converge to zero as times go on. This means that the proposed control scheme is well
working for the Segway model. Figure 2b,c show the position and velocity of the Segway, respectively.
As one can see, the velocity of the Segway converges to zero because the angle of the inclination is zero.
Thus, we can know that the Segway does not move if the control objective, which should return to the
vertical after the initial disturbance, is achieved. Figure 3 also show that the angle of the inclination
converges to zero in the case of the opposite direction. Figure 4 depicts the control coefficient b(x1) for
both two cases. The control coefficients are time-varying while the angle of the inclination is not zero.
On the other hand, these become constants because θ is time-invariant after the convergence. To show
the effectiveness of the proposed control scheme even though a rider is changed, we simulate other
model parameters such as m = 40 kg and l = 0.75 m. Figure 5 shows the simulation result. Compared
with Figure 2a, there is no different in the performance between them.
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Figure 2. Simulation result for θ(0) = 20◦: (a) angle θ; (b) linear velocity v; (c) position x; (d) torque τ.
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Figure 3. Simulation result for θ(0) = −20◦: (a) angle θ; (b) linear velocity v; (c) position x; (d) torque τ.
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Figure 4. Control coefficient b(x1): (a) θ(0) = 20◦; (b) θ(0) = −20◦.

0 5 10 15 20 25 30 35 40

t(sec)

-10

-5

0

5

10

15

20

25

A
ng

le
(d

eg
)

Figure 5. Angle of segway, m = 40 kg, l = 0.75 m.

To compared with previous results, we simulate using LQR method presented in [22] under the
same model parameters. The simulation results are shown in Figures 6 and 7. Figure 6 shows the angle
of the Segway without disturbance for θ(0) = 10◦ and θ(0) = 45◦. In [22], they use the linearized
model, i.e., the Segway model is linearized at θ(0) = 0◦. Thus, there is no difference in the performance
at θ(0) = 10◦. However, if the initial error is large enough, we can see that there is a performance
difference between our method and [22]. Figure 6b shows this result. Figure 7 shows the angle of
the Segway with disturbance. To show the robustness of the proposed scheme after it is stabilized,
we apply the external disturbance to the Segway from time 15 to 16 s. As one can see, the proposed
scheme is effective even though the external disturbance is applied to the Segway after it is stabilized.
Therefore, we can conclude that the proposed scheme has the good performance even though there are
unknown control coefficient and model uncertainties.
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Figure 6. Angle of Segway without disturbance (solid : proposed method, dotted : LQR method):
(a) θ(0) = 10◦; (b) θ(0) = 45◦.
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Figure 7. Angle of Segway with disturbance (solid : proposed method, dotted : LQR method):
(a) θ(0) = 10◦; (b) θ(0) = 45◦.

5. Conclusions

In this paper, a robust controller has been proposed for the Segway with unknown time-varying
control coefficient and model uncertainties. To deal with unknown time-varying control coefficient
and model uncertainties, we design the controller using the Nussbaum technique and prescribed
performance function. Since the proposed control scheme does not require the adaptive technique,
neural network, and fuzzy logic to compensate the uncertainties, the structure of the controller is
simple. Furthermore, to solve the underactuated problem, we introduce the auxiliary variable that is
used to control the velocity of the Segway. From the Lyapunov stability theory, we prove that all error
signals of the closed-loop control system are bounded. Finally, the simulation results show that the
proposed scheme has better performance compared with previous results.
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