
sensors

Article

Systematic Calibration for Ultra-High Accuracy
Inertial Measurement Units
Qingzhong Cai 1,*, Gongliu Yang 1, Ningfang Song 1 and Yiliang Liu 2

1 School of Instrument Science and Opto-Electronics Engineering, Beihang University, Beijing 100191, China;
bhu17-yang@139.com (G.Y.); songnf@263.net (N.S.)

2 Space Star Technology Co., Ltd., Beijing 100101, China; yiliang_liu91@163.com
* Correspondence: qingzhong_cai@buaa.edu.cn; Tel.: +86-185-0003-0891

Academic Editor: Jörg F. Wagner
Received: 7 April 2016; Accepted: 15 June 2016; Published: 22 June 2016

Abstract: An inertial navigation system (INS) has been widely used in challenging GPS environments.
With the rapid development of modern physics, an atomic gyroscope will come into use in the
near future with a predicted accuracy of 5 ˆ 10´6˝/h or better. However, existing calibration
methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial
sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity
errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is
proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed
calibration method can realize the estimation of all the parameters using a common dual-axis turntable.
Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can
be improved about 8% by the proposed calibration method. The accuracy can be improved at least
20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d.
Compared with the existing calibration methods, the proposed method, with more error sources
and high order small error parameters calibrated for ultra-high accuracy inertial measurement units
(IMUs) using common turntables, has a great application potential in future atomic gyro INSs.

Keywords: systematic calibration; ultrahigh-accuracy inertial measurement unit; error modelling;
Kalman filter

1. Introduction

An inertial navigation system (INS) is widely used in military and civilian application domains
because it is entirely self-contained and can provide high-rate position, velocity and attitude
information. In the past few years, the kinds of new type of inertial sensors are invented based
on various principles (optic, micro-electro-mechanical, and so on). Consequently, the inertial
navigation technology for using different types of new inertial sensors are discussed and improved
continuously. The INS using ultra-high accuracy inertial measurement units (IMUs) is a hot issue with
the development of an atomic gyro.

With the rapid development of modern physics, atomic gyroscopes have been demonstrated in
recent years [1]. More and more countries and organizations carried out the research on atomic gyros
and achieved many milestones [2–5]. It is predicted that the accuracy of an atomic gyro will be better
than 5 ˆ 10´6˝/h [6].

In the future, the atomic gyro will bring a revolutionary change to inertial navigation technology.
Most of the techniques in traditional inertial navigation need to be improved or replaced in atomic
gyro navigation. The calibration of IMUs is one of the key techniques, which affects the INS accuracy
directly. If the traditional calibration methods are used in ultra-high accuracy IMUs, the calibration
error will be much bigger than the errors caused by the inertial sensors themselves and thereby became
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the main error. The advantage of the high accuracy of atomic inertial sensors cannot be played by
traditional calculation methods. Thus, high accuracy calibration is a key technique for the development
of an ultra-high accuracy INS using atomic inertial sensors.

The accuracy of IMU calibration is restricted by two factors. One is the accuracy of the calibration
model. For traditional systems, the linear simplified model is used in most calibration methods.
For improving the calibration accuracy of an optic gyro IMU, Cai et al. [7] and Pan et al. [8] proposed
different calibration methods while considering the accelerometer second order nonlinear scale factor.
However, it cannot satisfy the requirement of ultra-high accuracy atomic gyro IMUs. For example, the
effect of gravity on atoms in an atom interferometer is much bigger than that on photons in an optic
interferometer, the g-sensitivity errors, which is also discussed by Chen et al. [9] and Zheng et al. [10],
cannot be ignored in an atomic gyro IMU. Thus, it is necessary to introduce more error sources and
high order small errors into the calibration model according to the characteristics of the future atomic
gyro IMU. In this paper, an improved calibration model is established by introducing gyro g-sensitivity
errors, accelerometer cross-coupling errors, and lever arm errors.

Another restriction factor is the accuracy of the calibration equipment and methods. In traditional
IMU calibration methods, the IMU outputs are compared with known reference information obtained
by specialized high-precision equipment, whose performance restricts the calibration accuracy. Even if
the best three-axis turntable is used, the orientation control accuracy cannot be better than 1”,
which cannot satisfy the accuracy requirements of ultra-high accuracy atomic gyro IMUs. Given
the advantage of not requiring precise orientation controls, multi-position calibration methods and
systematic calibration methods have been widely discussed for both low and high accuracy IMUs in
recent years [7,11,12]. However, because more error terms are considered in the ultra-high accuracy
calibration model, it cannot decouple all the parameters only by the norm information of gravity
and the Earth’s rotation. The systematic calibration method proposed by Pan et al. [8] can solve all
parameters relative to the gradient of velocity errors when the INS navigates in a given rotation
sequence. However, in the ultra-high accuracy calibration model, the coupling relation between
the parameters and the navigation errors are too complex to deduce the analytical solution of all
parameters. In this paper, an optimal estimation smoother based on the complex calibration model
is designed, and an improved rotation sequence is given for decoupling all of the parameters in
the model.

This paper is organized as follows. In Section 2, the calibration model of an ultra-high accuracy
IMU is established. In Section 3, the systematic calibration method based on an optimal estimation
filter is designed. In Section 4, the calibration method is verified by simulation, laboratory and sailing
tests. Finally, the conclusion is given in Section 5.

2. Calibration Model of Ultra-High Accuracy IMUs

2.1. Calibration Model of Ultrahigh-Accuracy Gyro Triads

An IMU for inertial navigation consists of three orthogonal gyros and three orthogonal
accelerators. In order to clarify the physical meaning of misalignment, the gyro axes are selected as
a base to establish the IMU frame (denoted by symbol m) to transforming all of the sensor outputs
into an orthogonal coordinate frame [7]. First, the Xm axis of the IMU frame is defined to be coincided
with the Xg gyro input axis, and then the Ym axis is defined by one small angle rotation from Yg in the
XgYg plane, and the Zm axis is defined by one small angle rotation around the Xm axis and another
small rotation around the Ym axis (shown in Figure 1). Therefore, the misalignment of gyro can be
represented by three small angles γyz, γzx and γzy in the IMU frame.
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Taking the x-gyro, for example, the gyro measurement equation, which takes g-sensitivity errors
into account, can be represented as:

Kgx Ngx “ ωx ` bgx ` vgx ` Gxx fx ` Gxy fy ` Gxz fz (1)

where Kgx is the scale factor of the x-gyro; Ngx is the x-gyro output before compensation; ωx is the true
angle velocity in the x-axis direction; bgx and vgx are the bias and measurement noise of the x-gyro;
Gxx, Gxy, Gxz are the g-sensitivity coefficients of the x-gyro in the x-, y- and z-axis directions; and fx, fy,
fz are the true accelerations in x-, y- and z-axis directions. If the z-axis points upwards, then fz equals
the gravitational acceleration g, and Gxz plays the dominant role. Because the strapdown INS does not
have a stable platform to trace the geographic frame, g-sensitivity coefficients in all directions should
be calibrated.

Performing the transposition transform on Equation (1), we can get the calibration model of the
x-gyro as:

rωx “ Kgx Ngx ´ bgx ´ vgx ´ Gxx rfx ´ Gxy rfy ´ Gxz rfz (2)

where rωx is the measurement of angle velocity in the x-gyro direction after calibration and
compensation, rfx, rfy, rfz are the measurements of accelerations in x-, y- and z-axis directions.

The calibration model of gyro triad is defined in the m-frame in Figure 1. Ignoring the high order
terms, the model can be expressed as:

rωm “ Tm
g KgNg ´ bm

g ´ vm
g ´G rf m (3)

where rωm, bm
g and vm

g are the measurements, bias and noise vectors of the gyro triads in

m-frame, rωm “

”

rωm
x rωm

y rωm
z

ıT
, bm

g “

”

bm
gx bm

gy bm
gz

ıT
, vm

g “

”

vm
gx vm

gy vm
gz

ıT
;

Kg “

»

—

–

Kgx 0 0
0 Kgy 0
0 0 Kgz

fi

ffi

fl

is the scale factor matrix of the gyro triad; Ng “
”

Ngx Ngy Ngz

ıT

is the gyro output vector; Tm
g «

»

—

–

1 0 0
´γyz 1 0
γzy ´γzx 1

fi

ffi

fl

is the misalignment matrix;

G “

»

—

–

Gxx Gxy Gxz

Gyx Gyy Gyz

Gzx Gzy Gzz

fi

ffi

fl

is the g-sensitivity coefficient matrix; and rf m “

”

rf m
x

rf m
y

rf m
z

ıT
is

the acceleration vector measured by the accelerator in m-frame.
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2.2. Calibration Model of Ultrahigh-Accuracy Accelerometer Triad

Taking the x-accelerator for example, the measurement equation of the x-accelerator considering
a nonlinear scale factor and cross-coupling errors can be expressed as:

Kax Nax “ fx ` bax ` vax ` Kaxx f 2
x ` Kaxy fx fy ` Kaxz fx fz (4)

where Kax is the scale factor; Nax is the output before compensation; fx is the true accelerations in the
x-axis direction; bax and vax are the bias and measurement noise; Kaxx is the nonlinear scale factor; and
Kaxy and Kaxz are the cross-coupling errors of the x-accelerator in y- and z-axis directions.

Performing the transposition transform on Equation (4), we can get the calibration model of the
x-accelerator as:

rfx “ Kax Nax ´ bax ´ vax ´ Kaxx rf 2
x ´ Kaxy rfx rfy ´ Kaxz rfx rfz (5)

where rfx, rfy, rfz are the measurements of accelerations in x-, y- and z-axis directions after calibration
and compensation.

The calibration model of accelerator triad is defined in the m-frame in Figure 1. Ignoring the high
order terms, the model can be expressed as:

rf m “ Tm
a KaNa ´ bm

a ´ vm
a ´Ka2

rf mp2q ´Kcross rf mpcrossq (6)

where rf m, bm
a and vm

a are the measurements, bias and noise vectors in m-frame; Ka and

Na are the scale factor matrix and output vector; Tm
a «

»

—

–

1 αxz ´αxy

´αyz 1 αyx

αzy ´αzx 1

fi

ffi

fl

is the

misalignment matrix; Ka2 “

»

—

–

Kaxx 0 0
0 Kayy 0
0 0 Kazz

fi

ffi

fl

is the nonlinear scale factor matrix;

rf mp2q “ r prf m
x q

2
prf m

y q
2
prf m

z q
2
s; Kcross “

»

—

–

Kaxy Kaxz 0
Kayx 0 Kayz

0 Kazx Kazy

fi

ffi

fl

is the cross-coupling scale factor

matrix; and rf mpcourseq “ r rf m
x
rf m
y

rf m
x
rf m
z

rf m
y
rf m
z s.

In order to reduce the computation complexity for real-time solutions, the iterative method
mentioned in [7] is used in this paper.

First, an initial approximation is calculated by the simplified linear model, which ignores the
nonlinear scale factor and cross-coupling errors terms:

rf m
p0q “ Tm

a KaNa ´ bm
a (7)

Then, the iteration (shown in Equation (8)) is kept to revise the correction of nonlinear scale factor
term until the prospective precision is reached:

rf m
pnq “

rf m
pn´1q ´Ka2

rf m
pn´1q

p2q
´Kcross rf m

pn´1q
pcrossq (8)

2.3. Calibration Model of Lever Arm Errors

In an ideal situation, the accelerator triad of the IMU in stapdown INS needs to be mounted
exactly at the same position. Apparently, the ideal situation can not be achieved because the accelerator
itself has a certain size, and the mounting position could be restricted as well. Due to the physical
offset between the mounting position of the accelerator and the ideal measurement point of the IMU,
the navigation errors will be generated by the tangential and centripetal force, which is caused by the
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vehicle’s angular movement and observed by the accelerator triad; this phenomenon is called the size
effect or the lever arm effect.

The principle of size effect is shown in Figure 2. The accelerator sensitive axes intersect at the
measurement point of IMU (point O). The distance from the mounting position of the x-accelerator
to the origin is rx, which is also called the lever arm error, and its sensitive axis points to the positive
x-axis. If the system rotates around the y- and z-axis with the angle velocity of ωy and ωz, a centrifugal
acceleration will be detected by the x-accelerator:

ax “ ´pω
2
y `ω2

zqrx (9)
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Similarly, the centrifugal accelerations detected by the y- and z-accelerator are:

ay “ ´pω
2
x `ω2

zqry (10)

az “ ´pω
2
x `ω2

yqrz (11)

The calibration model of accelerator triad can be further detailed as:

rf m “ Tm
a KaNa ´ bm

a ´ vm
a ´K2

rf mp2q ´Kcross rf mpcrossq ´ rωmpsizeqr (12)

where rωmpsizeq “

»

—

–

0 pωm
y q

2
pωm

z q
2

pωm
x q

2 0 pωm
z q

2

pωm
x q

2
pωm

y q
2 0

fi

ffi

fl

, and r “
”

rx ry rz

ıT
is the lever arm error vector.

3. Systematic Calibration Method Based on Optimal Estimation Filter

3.1. Principle of Systematic Calibration

The principle of the systematic calibration method proposed in this paper is shown in Figure 3.
A 51-state Kalman filter is established by the INS error equation and the calibration model in Section 2.
The Rauch-Tung-Striebel (RTS) smoothing method is used to improve the estimation accuracy off-line.
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3.2. Kalman Filtering and RTS Smoothing

Considering that the error of the ultra-high accuracy IMU is quite small, the linearized model of
the system is precise enough. Thus, a traditional external Kalman filter can realize a least variance
estimation, while other complicated filters may decrease the estimation accuracy or increase the
computation amount, and that is unnecessary for an already quite complicated state equation of
systematic calibration. Based on the Kalman filter, smoothing the calibration parameters in the whole
calibration process by RTS smoothing can further improve the estimation accuracy. The Kalman filter
calculation steps can be found in [9].

The RTS smoothing is also called fixed-interval smoothing, which can estimate the states in the
whole trajectory using discontinuous observable information. The calculation steps of RTS smoother
are as below.

During the Kalman filter is working, the predicted states x̂k{k´1 and covariance Pk{k´1, the updated
states x̂k and covariance Pk are all stored in memory for smoothing later, on the assumption that there
are M times in the whole trajectory, and each time can be denoted as j (0 ă j ă M). After the calculation
of Kalman filter, the RTS smoother begins at time M. With j “ M, M´ 1, ¨ ¨ ¨ , 1, the iterative equation
of the state vector in the RTS smoother can be written as:

x̂j´1{M “ x̂j´1 `Aj´1

´

x̂j{M ´ x̂j{j´1

¯

(13)

Aj´1 “ Pj´1ΦT
j,j´1P´1

j{j´1 (14)

The iterative equation of the covariance matrix in the RTS smoother can be presented as:

Pj´1{M “ Pj´1 `Aj´1

´

Pj{M ´ Pj{j´1

¯

AT
j´1 (15)

where the updated states and covariance at time M of the Kalman filter is the initial value of the
RTS smoother:

x̂M{M “ x̂M (16)

3.3. State Equation of Systematic Calibration Filter

In the navigation frame (E-N-U frame is chosen in this paper), the error equation of the INS can
be written as:

.
ϕ “ ϕˆωn

in ` δωn
in ´Cn

b δωb
ib

δ
.

V
n
“ fn ˆϕ´ p2ωn

ie `ω
n
enq ˆ δvn `Vn ˆ p2δωn

ie ` δωn
enq `Cn

b δfb ´ δg
δ

.
L “ δVN

RM`h ´
VN δh

pRM`hq2

δ
.
λ “ δVE

pRN`hqcosL `
VEsinLδL

pRN`hqcos2L ´
VEδh

pRN`hq2cosL

δ
.
h “ δvU

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

(17)
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where ϕ “ r ϕE ϕN ϕU s is the attitude error angles, which are considered as small angles; ωn
in is

the rotation angle velocity of the navigation frame relative to the inertial frame, which is caused by the
earth rotation and the vehicle movement; δωn

in is the estimation error of ωn
in in the navigation solution;

f n is the specific force in the navigation frame, ωn
ie and ωn

en are the angle velocity of the earth rotation
and the angle velocity when the vehicle rotates around the earth, respectively; δg is the gravity vector

error; Vn “
”

VE VN VU

ıT
is the velocity relative to the earth; L, λ and h are the local latitude,

longitude and height; RM and RN are the radii of the local earth meridian and prime vertical; δωb
ib and

δ f b are the measurement errors of the gyro and the accelerator.
In the systematic calibration, we defined the body frame (b-frame) as the IMU frame (m-frame) in

Section 2.1, and the superscript b can be replaced by m. According to the simplified linear calibration
model, the measurement errors of the gyro and the accelerator can be written as:

δ!m “ δKG rωm ´ δbm
g ´ δG rf m (18)

δfm “ δKA
rf m ´ δbm

a ´ δKa2
rf mp2q ´ δKcross rf mpcrossq ´ rωmpsizeqδr (19)

where δbm
g and δbm

a are the vectors of gyro and accelerometer bias errors; δG is the error vector of gyro
g-sensitivity scale factor. δKa2 and δKcross are the error vectors of the accelerometer nonlinear scale
factor and the cross-coupling scale factor. δr is the error vector of lever arm error. δKG and δKAare the
scale factor and misalignment matrix of the gyro and the accelerator. Because the m-frame is defined
by the gyro sensitive axes, δKG and δKA can be written as:

δKA “ δTm
a δKa “

»

—

–

δKax δαxz ´δαxy

´δαyz δKay δαyx

δαzy ´δαzx δKaz

fi

ffi

fl

(20)

Assuming that all the error terms to be calibrated are constants, then:

δ
.

KG “ 03ˆ3, δ
.

KA “ 03ˆ3, δ
.
b

m
a “ 01ˆ3, δ

.
b

m
g “ 01ˆ3

δ
.

G “ 03ˆ3, δ
.

Ka2 “ 03ˆ3, δ
.

Kcross “ 03ˆ3, δ
.
r “ 01ˆ3

(21)

According to the above error equation and calibration model of the INS, a 51-state Kalman filter
is designed as:

X51 “
”

ϕT δVT δPT XT
KG pδbm

g q
T XT

KA pδbm
a q

T XT
G XT

Ka2 XT
Kcross δrT

ıT
(22)

where ’, δV and δP are the attitude error, velocity error and position error, respectively; XT
KG, XT

KA, XT
G,

XT
Ka2 and XT

Kcross are the vector forms of δKG, δKA, δG, δKa2 and δKcross.
By the above Equations (17)–(19), the filter state equation can be expressed as:

.
X “ FX`Gu (23)

where

F “

»

—

—

—

—

—

–

F11 F12 F13 F14 03ˆ12 F16 03ˆ3 03ˆ6 03ˆ3

F21 F22 F23 03ˆ9 F25 03ˆ9 F27 F28 F29

03ˆ3 F32 F33 03ˆ9 03ˆ12 03ˆ9 03ˆ3 03ˆ6 03ˆ3

09ˆ3 09ˆ3 09ˆ3 09ˆ9 09ˆ12 09ˆ9 09ˆ3 09ˆ6 09ˆ3

033ˆ3 033ˆ3 033ˆ3 033ˆ9 033ˆ12 033ˆ9 033ˆ3 033ˆ6 033ˆ3

fi

ffi

ffi

ffi

ffi

ffi

fl
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In the matrix F:

F11 “

»

—

—

–

0 ωiesinL` VE
RN`h tanL ´

´

ωiecosL` VE
RN`h

¯

´

´

ωiesinL` VE
RN`h tanL

¯

0 ´
VN

RM`h

ωiecosL` VE
RN`h

VN
RM`h 0

fi

ffi

ffi

fl

F12 “

»

—

–

0 ´ 1
RM`h 0

1
RN`h 0 0
tanL

RN`h 0 0

fi

ffi

fl

F13 “

»

—

—

—

–

0 0 VN
pRM`hq2

ωiesinL 0 ´
VE

pRN`hq2

ωiecosL` VEsec2L
RN`h 0 ´

VEtanL
pRN`hq2

fi

ffi

ffi

ffi

fl

F14 “ ´Cn
m

«

rωm
imxI3

«

01ˆ2
rωm

imyI2

ff «

02ˆ1
rωm

imz

ff

I3

ff

F21 “

»

—

–

0 ´rf n
U

rf n
N

rf n
U 0 ´rf n

E
´rf n

N
rf n
E 0

fi

ffi

fl

F16 “ Cn
m

»

—

—

—

—

–

´

rf m
¯T

03ˆ1 03ˆ1

03ˆ1

´

rf m
¯T

03ˆ1

03ˆ1 03ˆ1

´

rf m
¯T

fi

ffi

ffi

ffi

ffi

fl

F22 “

»

—

—

—

–

VN tanL´VU
RN`h

´

2ωiesinL` VE
RN`h tanL

¯

´

´

2ωiecosL` VE
RN`h

¯

´

´

2ωiesinL` VE
RN`h tanL

¯

´
VU

RM`h ´
VN

RM`h

2
´

ωiecosL` VE
RN`h

¯

2VN
RM`h 0

fi

ffi

ffi

ffi

fl

F23 “

»

—

—

—

—

–

2ωie pVUsinL`VNcosLq ` VEVN
RN`h sec2L 0 VEVU´VEVN tanL

pRN`hq2

´

ˆ

2VEωiecosL` V2
E

RN`h sec2L
˙

0 VNVU
pRM`hq2

`
V2

E tanL
pRN`hq2

´2VEωiesinL 0 ´
V2

N
pRM`hq2

`
V2

E
pRN`hq2

fi

ffi

ffi

ffi

ffi

fl

F25 “ Cn
m

”

rf m
x I3

rf m
y I3

rf m
z I3 I3

ı

F27 “ Cn
m

»

—

—

—

—

–

´

rf m
x

¯2
0 0

0
´

rf m
y

¯2
0

0 0
´

rf m
z

¯2

fi

ffi

ffi

ffi

ffi

fl

F28 “ Cn
m

»

—

–

rf m
x
rf m
y

rf m
x
rf m
z 0 0 0 0

0 0 rf m
x
rf m
y

rf m
y
rf m
z 0 0

0 0 0 0 rf m
x
rf m
z

rf m
y
rf m
z

fi

ffi

fl
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F29 “ Cn
m

»

—

—

—

–

´

rωm
imy

¯2
`
`

rωm
imz

˘2 0 0

0
`

rωm
imx

˘2
`
`

rωm
imz

˘2 0

0 0
`

rωm
imx

˘2
`

´

rωm
imy

¯2

fi

ffi

ffi

ffi

fl

F32 “

»

—

–

0 1
RM`h 0

secL
RM`h 0 0

0 0 1

fi

ffi

fl

F33 “

»

—

—

–

0 0 ´
VN

pRM`hq2
VEtanLsecL

RN`h 0 ´
VEsecL
pRN`hq2

0 0 0

fi

ffi

ffi

fl

The input of the filter is the measurement noise of the gyro and the accelerator u “
”

uT
g uT

a

ıT
,

the input matrix is:

G “

»

—

–

´Cn
m 03ˆ3

03ˆ3 Cn
m

045ˆ3 045ˆ3

fi

ffi

fl

(24)

The observation equation of the filter is:

Z “
”

rVn ´Vobv

ı

“ HX` v (25)

where rV
n

is the velocity solution result of the INS, and v is the observation noise. The observation
matrix is:

H “

”

03ˆ3 I3 03ˆ45

ı

(26)

The feedback compensation form of the filter estimation result is:

Cn
m “ pI3 ` rϕˆsq rC

n
m

Vn “ rV
n
´ δVn

L “ rL´ δL, λ “ rλ´ δλ, h “ rh´ δh
bm

a “
rbm

a ` δbm
a , bm

g “
rbm

g ` δbm
g

KG “ rKG ` δKG, KA “ rKA ` δKA
Ka2 “ rKa2 ` δKa2, Kcross “ rKcross ` δKcross

G “ rG` δG

,

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

-

(27)

3.4. Rotation Sequence

A systematic calibration path with a dual-axis turntable is designed to decouple all calibration
parameters. Taking the U-T type turntable, for example, (the outer-axis is a U type with the rotation axis
in the horizontal direction, the inner-axis is a T type and orthogonal to the outer-axis), the calibration
path is shown in Table 1. This path has 18 times of rotation with a rotation velocity of 5 ˝/s; the whole
rotation path is accomplished in 1 h with a pause of 180 s at each position. The former nine times of
rotation (including twice 180˝ rotation in the single direction of each axis) is designed to stimulate
the gyro scale factor error, the misalignment, and the accelerator lever arm error. The navigation
errors caused by them are attitude errors in the rotation direction, attitude errors and velocity errors
perpendicular to the rotation direction. Then, the attitude errors cause different velocity errors with the
effect of gravity; the latter nine times of rotation (including the positions with each axis pointing to up,
ground and horizon) is designed to stimulate the accelerator scale factor error, the misalignment, the
second-order nonlinear error, the cross-coupling error, and the gyro g-sensitivity error. The navigation
errors caused by them are velocity errors in the vertical direction, velocity errors perpendicular to the
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vertical direction, velocity errors with a square root of proportion of the gravity and attitude errors.
These velocity errors have different forms. By matching the various forms of velocity errors to the
propagation forms of states in the systematic error model, all of the parameters can be estimated,
respectively, after all errors are stimulated by a round of rotation paths. In the actual calibration, the
gyro random noise is very large, which leads to a relatively long time to estimate the gyro bias error
in the Kalman filter. Thus, two or more times calibration rotation can be performed in one actual
calibration to ensure the estimation curves of the calibrated parameters can be convergent.

Table 1. Rotation path of systematic calibration.

Number
Rotation Attitude after Rotation

Rotation Axis Rotation Angle X-Axis Y-Axis Z-Axis

0 - - east north upwards
1 outer +90˝ east upwards south
2 outer +180˝ east downwards north
3 outer +180˝ east upwards south
4 inner +90˝ upwards west south
5 inner +180˝ downwards east south
6 inner +180˝ upwards west south
7 outer +90˝ south west downwards
8 outer +180˝ north west upwards
9 outer +180˝ south west downwards

10 outer +90˝ downwards west north
11 outer +90˝ north west upwards
12 outer +90˝ upwards west south
13 inner +90˝ west downwards south
14 inner +90˝ downwards east south
15 inner +90˝ east upwards south
16 outer +90˝ east south downwards
17 outer +90˝ east downwards north
18 outer +90˝ east north upwards

4. Simulation and Laboratory Tests

4.1. Simulation Test

A group gyro and accelerometer data for calibration is generated according to the rotation path
in Table 1. The calibration error is defined as: the scale factor error of both gyro and accelerator is
300 ppm; the misalignment of both gyro and accelerator is 180”, the gyro bias is 0.05˝/h with a white
noise of 0.00005˝/h, the accelerator bias is 200 µg with a white noise of 1 µg; the g-sensitivity error of
the gyro is 0.001˝/h/g; the nonlinear scale factor error and the cross-coupling error of the accelerator
are 300 µg/g2, the lever arm error of the accelerator is 2 cm; and the attitude error of the turntable
is 11 (1σ).

The calibration was performed using the proposed calibration method with the above data.
The estimation curves of the parameter errors introduced in this paper are shown in Figure 4. All of
the parameters got completely convergent in one group of calibration rotation. The errors of the
parameters before and after filters are shown in Table 2. It can be seen that the self-calibration scheme
proposed in this paper can make an effective estimation of all the parameters in the ultra-high precision
calibration model.
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A high accuracy marine dual-axis rotational INS (shown in Figure 5), whose accuracy is highest 
in existing INSs, is adopted to verify the proposed method. The 90-type ring laser gyros with the 
accuracy better than 0.003 °/h, and the quartz flexible accelerometers with an accuracy better than  
10 μg are used in the IMU of the system. The sample frequency is 100 Hz. 

During the calibration, the system lays stably on a marble terrace in the laboratory as shown in 
Figure 6. The calibration rotation was performed using the dual-axis turntable of the dual-axis INS 
itself. The estimation curves of the parameter errors are shown in Figure 6. It can be seen that the 
convergence curves of the parameters caused by the bias instability and other random errors of the 
inertial sensors are fluctuant. For ultra-high accuracy IMUs, the sensors’ bias instability is small 
enough and is a close approximation to Gaussian white noise. Thus, it can rarely affect the accuracy 
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Figure 4. Estimation curves of the parameter errors in simulation tests (a) Gyro g-sensitivity errors;
(b) Accelerometer level-arm errors; (c) Accelerometer nonlinear scale factor errors; (d) Accelerometer
cross-coupling errors.

Table 2. The simulation result of self-calibration with dual-axis INS.

Calibrated Parameters Errors before Filter Errors after Filter

Gyro g-sensitivity error (˝/h/g) 0.001 0.0002
Accelerometer nonlinear scale error (µg/g2) 300 1.3
Accelerometer cross-coupling error (µg/g2) 300 1.5

Accelerometer lever arm errors (cm) 2 0.01

4.2. Laboratory Test

A high accuracy marine dual-axis rotational INS (shown in Figure 5), whose accuracy is highest
in existing INSs, is adopted to verify the proposed method. The 90-type ring laser gyros with the
accuracy better than 0.003 ˝/h, and the quartz flexible accelerometers with an accuracy better than
10 µg are used in the IMU of the system. The sample frequency is 100 Hz.

During the calibration, the system lays stably on a marble terrace in the laboratory as shown
in Figure 6. The calibration rotation was performed using the dual-axis turntable of the dual-axis
INS itself. The estimation curves of the parameter errors are shown in Figure 6. It can be seen that
the convergence curves of the parameters caused by the bias instability and other random errors of
the inertial sensors are fluctuant. For ultra-high accuracy IMUs, the sensors’ bias instability is small
enough and is a close approximation to Gaussian white noise. Thus, it can rarely affect the accuracy of
systematic calibration, and all parameters in the ultra-high accuracy calibration model can be estimated.
The errors of the parameters are shown in Table 3.
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Figure 6. Estimation curves of the parameter errors in laboratory test (a) Gyro g-sensitivity errors;
(b) Accelerometer level-arm errors; (c) Accelerometer nonlinear scale factor errors; (d) Accelerometer
cross-coupling errors.

Table 3. The calibration result of dual-axis rotational INS.

Parameters Calibration Result

Gyro g-sensitivity error (˝/h/g)
Gxx: 0.09 ˆ 10´5 Gxy: 0.25 ˆ 10´5 Gxz: ´0.22 ˆ 10´5

Gyx: 0.35 ˆ 10´5 Gyy: 0.81 ˆ 10´5 Gyz: ´0.24 ˆ 10´5

Gzx: ´0.07 ˆ 10´5 Gzy: ´0.50 ˆ 10´5 Gzz: ´1.02 ˆ 10´5

Accelerometer nonlinear scale error (µg/g2) Kaxx: 17.1 Kayy: ´20.4 Kazz: 25.2

Accelerometer cross-coupling error (µg/g2)
Kaxy: ´2.0 Kaxz: ´22.6 Kayx: 7.8
Kayz: 16.5 Kazx: ´0.5 Kazy: 1.6

Accelerometer lever arm errors (cm) rx: ´4.1 ry: 2.2 rz: ´2.4
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After the calibration test, the navigation test is carried out. The test consists of two parts: initial
alignment and pure inertial navigation. It took 8 h for initial alignment and 128 h (about five days)
for navigation. During the navigation, the system works in pure inertial navigation modes without
any external information for correction, so that all of the errors were accumulated in position errors in
order to make a comparison with the effect after calibration and compensation. Raw data was collected
during the test and two sets of calibration parameters were used to make an off-line compensation to
the raw data. One set of parameters is calibrated by a 30-state Kalman filter, whose accuracy is highest
in traditional methods for high accuracy IMU. The other is calibrated by the 51-state Kalman smoother
proposed in this paper. The comparison of the position errors of the navigation result before and after
compensation is shown in Figure 7. It can be seen that the maximum error of longitude decreased from
0.32 nautical miles (n miles) to 0.24 n miles after compensation, and the maximum error of latitude
decreased from 0.27 n miles to 0.25 n miles.
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4.3. Sailing Test

In the sailing test, an improved high accuracy marine dual-axis rotational INS with the same
accuracy and higher reliability is used. The INS is mounted in a cabin of an experimental ship and the
Display and Control Device is mounted on the wall (shown in Figure 8).

The sailing test consists 6 h alignment and 108 h (about five days) horizontal-damping navigation
at 10~20 degrees north latitude. The velocity information of damping is provided by the on-board
log. It has to be pointed out that Schuler oscillation error can be restrained in horizontal-damping
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mode, but the calibration errors have the same characteristics as in pure inertial navigation. The sailing
trajectory is shown in Figure 9.
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Position errors of the navigation results before and after compensation are compared in Figure 10.
It can be seen that the maximum error of longitude decreases from 0.53 n miles to 0.46 n miles after
compensation, and the maximum error of latitude decreases from 0.32 n miles to 0.28 n miles.

In the laboratory and sailing tests, the position accuracy of dual-axis rotational INS is improved
about 8% in the five-day navigation. It proves that the proposed compensation method has an effect
on restricting the accumulation error of the system when adopting the existing accuracy level of
inertial sensors. For the future ultra-high accuracy atomic gyro INS, the calibration errors discussed in
this paper will hold a larger proportion compared with the device error. Assuming that the position
accuracy of the atomic gyro INS is much higher than that of the existing INSs, reaching a level of
0.1 n miles/5 d, the accuracy can be improved by at least 20% through calibrating the error parameters
introduced in this paper.
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5. Conclusions

To solve the problem of existing calibration methods and devices not being able to satisfy the
accuracy requirement for future ultra-high accuracy inertial sensors, an improved calibration model
is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever
arm errors. A systematic calibration method is proposed based on a Kalman filter and RTS optimal
smoothing, and a 51-state equation of systematic calibration filter is established. Compared with the
existing calibration methods, a high accuracy calibration model including more error sources and high
order small error parameters is established and calibrated in the proposed method by common two- or
three-axis turntables. Simulation results show that, for the ultra-high accuracy IMU, the proposed
calibration method can realize the calibration of all of the parameters. Laboratory and sailing tests
prove that the accumulation errors of the existing highest accuracy INS can be effectively restrained
when applying this calibration method; the position accuracy in five-day inertial navigation can be
improved by about 8%. Assuming that the position accuracy of the atomic gyro INS can reach a level of
0.1 n miles/5 d, the accuracy can be improved by at least 20% through calibrating the error parameters
introduced in this paper. The proposed calibration method for ultra-high accuracy IMUs in this paper
has great application potential in future atomic gyro INSs.

Author Contributions: Qingzhong Cai contributed the idea of the proposed method, derived the formulas and
designed the test. Gongliu Yang and Ningfang Song provided professional guidance for the implement of the
method. Yiliang Liu assisted in performing the test and made helpful suggestions about the writing.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2016, 16, 940 16 of 16

References

1. Fang, J.; Qin, J. Advances in atomic gyros: A view from inertial navigation applications. Sensors 2012, 12,
6331–6346. [CrossRef] [PubMed]

2. Meyer, D.; Larsen, M. Nuclear magnetic resonance gyro for inertial navigation. Gyroscopy Navig. 2014, 5,
75–82. [CrossRef]

3. Tackmann, G.; Berg, P.; Schubert, C.; Abend, S.; Gilowski, M. Self-alignment of a compact large-area atomic
sagnac interferometer. New J. Phys. 2012, 14, 1–13. [CrossRef]

4. Fang, J.; Wan, S.; Yuan, H. Dynamics of an all-optical atomic spin gyroscope. Appli. Opt. 2013, 52, 7220–7227.
[CrossRef] [PubMed]

5. Gauguet, V.; Canuel, B.; Lévèque, T.; Chaibi, W.; Landragin, A. Characterization and limits of a cold-atom
sagnac interferometer. Phys. Rev. A 2009, 80, 063604. [CrossRef]

6. Jekeli, C. Navigation error analysis of atom interferometer inertial sensor. Navigation 2005, 52, 1–14.
[CrossRef]

7. Cai, Q.; Song, N.; Yang, G.; Liu, Y. Accelerometer calibration with nonlinear scale factor based on
multi-position observation. Meas. Sci. Technol. 2013, 24, 105002. [CrossRef]

8. Pan, J.; Zhang, C.; Cai, Q. An accurate calibration method for accelerometer nonlinear scale factor on a
low-cost three-axis turntable. Meas. Sci. Technol. 2014, 25, 025102. [CrossRef]

9. Chen, F.; Hu, P.; He, X.; Tang, K.; Luo, B. Observability analysis of a MEMS INS/GPS integration system
with gyro g-sensitivity errors. Sensors 2014, 14, 16003–16016.

10. Zheng, Z.; Han, S.; Zheng, K. An eight-position self-calibration method for a dual-axis rotational inertial
navigation system. Sens. Actuators A Phys. 2015, 232, 39–48. [CrossRef]

11. Syed, Z.F.; Aggarwal, P.; Goodall, C.; Niu, X.; El-Sheimy, N. A new multi-position calibration method for
MEMS inertial navigation systems. Meas. Sci. Technol. 2007, 18, 1897–1907. [CrossRef]

12. Zhang, H.; Wu, Y.; Wu, W.; Wu, M.; Hu, X. Improved multi-position calibration for inertial measurement
units. Meas. Sci. Technol. 2011, 21, 015107. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s120506331
http://www.ncbi.nlm.nih.gov/pubmed/22778644
http://dx.doi.org/10.1134/S2075108714020060
http://dx.doi.org/10.1088/1367-2630/14/1/015002
http://dx.doi.org/10.1364/AO.52.007220
http://www.ncbi.nlm.nih.gov/pubmed/24216575
http://dx.doi.org/10.1103/PhysRevA.80.063604
http://dx.doi.org/10.1002/j.2161-4296.2005.tb01726.x
http://dx.doi.org/10.1088/0957-0233/24/10/105002
http://dx.doi.org/10.1088/0957-0233/25/2/025102
http://dx.doi.org/10.1016/j.sna.2015.05.002
http://dx.doi.org/10.1088/0957-0233/18/7/016
http://dx.doi.org/10.1088/0957-0233/21/1/015107
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Calibration Model of Ultra-High Accuracy IMUs 
	Calibration Model of Ultrahigh-Accuracy Gyro Triads 
	Calibration Model of Ultrahigh-Accuracy Accelerometer Triad 
	Calibration Model of Lever Arm Errors 

	Systematic Calibration Method Based on Optimal Estimation Filter 
	Principle of Systematic Calibration 
	Kalman Filtering and RTS Smoothing 
	State Equation of Systematic Calibration Filter 
	Rotation Sequence 

	Simulation and Laboratory Tests 
	Simulation Test 
	Laboratory Test 
	Sailing Test 

	Conclusions 

