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Abstract: According to the operating specifications of existing electric field measuring instruments,
measuring technicians must be located far from the instruments to eliminate the influence of the
human body occupancy on a spatial electric field. Nevertheless, in order to develop a portable
safety protection instrument with an effective electric field warning function for working staff in a
high-voltage environment, it is necessary to study the influence of an approaching human body on
the measurement of an electric field and to correct the measurement results. A single-shaft electric
field measuring instrument called the Type LP-2000, which was developed by our research team, is
used as the research object in this study. First, we explain the principle of electric field measurement
and describe the capacitance effect produced by the human body. Through a theoretical analysis, we
show that the measured electric field value decreases as a human body approaches. Their relationship
is linearly proportional. Then, the ratio is identified as a correction coefficient to correct for the
influence of human body proximity. The conclusion drawn from the theoretical analysis is proved
via simulation. The correction coefficient kb = 1.8010 is obtained on the basis of the linear fitting of
simulated data. Finally, a physical experiment is performed. When no human is present, we compare
the results from the Type LP-2000 measured with Narda EFA-300 and the simulated value to verify the
accuracy of the Type LP-2000. For the case of an approaching human body, the correction coefficient
kb* = 1.9094 is obtained by comparing the data measured with the Type LP-2000 to the simulated
value. The correction coefficient obtained from the experiment (i.e., kb*) is highly consistent with that
obtained from the simulation (i.e., kb). Two experimental programs are set; under these programs, the
excitation voltages and distance measuring points are regulated to produce different electric field
intensities. Using kb = 1.9094, the corrected measurement of electric field intensity can accurately
reflect the original environmental electric field intensity, and the maximal error is less than 6% in all
the data comparisons. These results verify the effectiveness of our proposed method.

Keywords: power-frequency electric field; portable measurement; human body influence; correction
coefficient; linear fitting

1. Introduction

Strong electric fields exist around high-voltage electrical equipment. Existing research shows that
strong power-frequency electric fields have potential harmful effects on human health and safety [1].
Therefore, relevant institutions and international organizations have developed standards or have
recommended limitations regarding power-frequency electric fields for the general public and power
system practitioners, as shown in Table 1 [2–6]. Here, the spatial electric field in the absence of any
object is considered.
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Table 1. Exposure limits regarding power-frequency electric fields developed by relevant institutions
and international organizations.

Name Publish Time Frequency (Hz) E (kV/m)

Occupational Exposure Public Exposure

ICNIRP 1 2010
50 10 5
60 8.3 4.2

IEEE 2 2002 50 20 5

NRPB 3 2004
50 10 5
60 8.3 4.2

EU 4
2004

50 10 —
60 8.3

1999
50 — 5
60 4.2

1. ICNIRP——International Commission on Non-Ionizing Radiation Protection. 2. IEEE——Institute
of Electrical and Electronics Engineers. 3. NRPB——National Resources Planning Board. 4. EU——European Union.

However, power system practitioners are likely to be exposed to strong electric fields in a short
amount of time because of their handling of high-voltage electrical equipment. Excessively strong
electric field intensities result in discomfort and panic for practitioners, and such effects are harmful to
personal safety and can lead to disoperation [7–9]. If practitioners can be equipped with a portable
safety protection instrument that can measure the electric field intensity of a working area in real
time and issue a safety precaution, then the safety and health of practitioners in the workplace can be
ensured. Our group has been working toward this objective.

Several power-frequency electric field measuring instruments are available for commercial
purposes [10]; they include the Narda EF series of Germany, the PMM of Italy, and the CA of France.
In addition, many research teams have studied and developed electric field measuring instruments
for special purposes [11–13]. Most current electric field measuring instruments require bracing the
probe with an insulated bracket; they also require measuring technicians to be far away from the
probe to avoid the influence of human body proximity on measurements [14]. However, the electric
field warning devices developed by our team need to be carried by working practitioners, who thus
become inevitably involved and exert a potential effect on measurements. Electric field intensities
measured in real time are used as the main index of safety precaution. Meanwhile, the original
environmental electric field intensity subjected to exposure limits and the influence of the human body
during measurement are interesting topics that are worth exploring.

The influence of the human body on electric field measurement has attracted increasing attention
in recent decades. In [15], the existence of a human body was proposed to make the spatial electric
field change in a certain range. In [16], the changes in the electric field distribution on the different
parts of the human body when the body was isolated from the ground were demonstrated. In [17], the
proportional relation between undistorted electric field and distorted electric field at certain points on
the surface of a human body model was presented. However, these studies only showed that human
body occupancy leads to the distortion of spatial electric fields; they did not focus on the influence of
human body proximity on electric field measurement and the ways to correct measured results.

In the present work, we build an equivalent circuit that explains the principle of electric field
measurement on the basis of a single-shaft electric field measuring instrument called a Type LP-2000 [8],
which was independently developed by our research team. Then, simulation via Ansoft/Maxwell is
conducted. The influence of the human body on the electric field measuring sensor of a plate capacitor
is discussed theoretically, followed by a proposal of a correction coefficient for the influence of the
human body on electric field measurements. In the laboratory, the electric field generated by different
excitation voltages in the absence of a human body is measured with a Type LP-2000 and Narda
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EFA-300. The numerical comparison and error analysis of the measured data and simulated data
verify the correct measurement of the Type LP-2000. Thereafter, electric fields are measured with a
portable Type LP-2000 that is fixed on an individual’s arm under two sets of experimental programs.
The corrected electric field values obtained by using the real-time measured values multiplied by the
correction coefficient are compared with the original electric field in the simulation environment; the
errors are subsequently analyzed.

2. Equivalent Circuit Analysis of the Influence of the Human Body on Electric
Field Measurement

2.1. In the Absence of a Human Body

The core of Type LP-2000 comprises a couple of metal polar plates that can be seen as a capacitor.
Inductive charges with the same frequency appear on the metal plates when the measuring sensor is
put into the alternating electric field. Then, the induced voltage can be measured. The relation between
the induced voltage and the electric field intensity at the measuring point is linearly proportional when
the physical dimension of the planar plate capacitor is sufficiently small [18].

.
UC “ D

.
E (1)

where D is the distance between two polar plates and
.

UC and
.
E are the induced voltage and electric

field intensity in phasor form respectively.
The equivalent circuit of the measuring system for obtaining the induced voltage is shown

in Figure 1.
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Figure 1. Equivalent circuit of the measuring system. 

In Figure 1, the induced voltage is equivalent to a voltage source CU
•

 with angular frequency ω, 
C is the inherent capacitance of the plate capacitor, CM is the capacitance of the measuring capacitor, 

Ri is the input resistance of the measuring circuit, and iU
•

 is the output voltage. Therefore, 
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Figure 1. Equivalent circuit of the measuring system.

In Figure 1, the induced voltage is equivalent to a voltage source
.

UC with angular frequency ω, C
is the inherent capacitance of the plate capacitor, CM is the capacitance of the measuring capacitor, Ri is
the input resistance of the measuring circuit, and

.
Ui is the output voltage. Therefore,

.
UC “

1` jωRipCM ` Cq
jωRiC

.
Ui (2)

By further processing the circuit, the RMS value Uirms of
.

Ui can be obtained. The RMS value Ucrms

of
.

UC is:

UCrms “

b

1`ω2 Ri
2pC` CMq

2

ωRiC
Uirms (3)



Sensors 2016, 16, 859 4 of 14

By combined Equations (1) and (3), we obtain the RMS value Erms of the electric field, that is,

Erms “

b

1`ω2 Ri
2pC` CMq

2

DωRiC
Uirms (4)

In the measurement circuit, the measuring capacitance is at the nF-level and is much larger than
the inherent capacitance of the sensor, i.e., CM >> C; thus, Equation (4) can be simplified to

Erms “

b

1`ω2 Ri
2CM

2

DωRiC
Uirms

“ KUirms

(5)

where K is a ratio coefficient written as

K “

b

1`ω2 Ri
2CM

2

DωRiC
(6)

In Equation (5), ω, Ri, C, CM, and D are all fixed values; thus, K is a constant. When the parameters
of the measuring circuit are all fixed, the electric field intensity in the location of the parallel-plate
capacitive sensor is proportional to the output voltage of the sensor. The electric field intensity Erms of
the observation point can be obtained by measuring Uirms.

2.2. In the Case of an Approaching Human Body

In practical measurements, when an individual approaches the sensors, the measured electric
field intensity changes because the human body possesses complex tissues. The relative dielectric
constant of living tissue in a power—frequency environment is about 105–106, and the conductivity is
about 0.1 S/m [19]. The human body can be regarded as a conductor; therefore, charges gather on its
surface as it remains in the electric field, and such accumulation affects the spatial distribution of the
original electric field [20].

The relationship between the human body and the measuring sensor of the plate capacitor is
shown in Figure 2.
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where Kb is also a ratio coefficient written as 

Figure 2. Relationship between the human body and the polar plates of the capacitor.

In Figure 2, PolarA and PolarB are the two polar plates of the capacitor, and D is the distance
between the two plates, with the gap filled with epoxy resin. The distance between the human body
and PolarB is d1, with an air medium in the middle. The body with PolarA and body with PolarB form
the equivalent capacitors, C1 and C2, respectively. The equivalent circuit of the measuring system in
the case of an approaching human body is shown in Figure 3.
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Erms “

b

1`ω2 Ri
2pCM`C2q
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C1C
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where Kb is also a ratio coefficient written as

Kb “

b

1`ω2 Ri
2pCM`C2q

2

DωRip
C1C

C1`C q
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Equation (7) shows that when the measuring parameters are fixed, Kb is a constant, and the output
voltage of the sensor remains proportional to the electric field at the measuring point.

By comparing Equations (5) and (7), we observe that CM + C2 > CM and (C1C)/(C1 + C) < C1, Kb > K.
Moreover, we note that Ui*rms < Uirms if Erms is constant. In other words, the measured induced voltage
decreases when a human body approaches the electric field measuring sensor. Without correction, the
measured electric field intensity becomes smaller than the physical truth.

In sum, the correction coefficient kb can be defined as

kb “
Kb
K

(9)

Thus, the spatial electric field intensity in the absence of a human body can be obtained by using
the electric field intensity measured with the portable Type LP-2000 in real time multiplied by the
correction coefficient kb.

3. Simulation Analysis

3.1. Simulation Model Setting

The simulation model is set up with the software Ansoft/Maxwell, and most of the simulation
parameters are set on the basis of the physical experiment condition shown in Section 4.

Different electric field intensities are produced when different levels of sinusoidal voltage with
power-frequency are applied to the power transmission line. In the simulation model, the power
transmission line is a copper conductor with a diameter of 14 mm and a distance of 122 cm from the
ground. Observation point P is at the same level as the conductor and at 53 cm from the conductor in
the horizontal distance.
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The simulation model of the plate capacitor is shown in Figure 4. The two polar plates are made
of copper, and measure 50 mm in length, 36 mm in width, and 1 mm in distance. The filling medium is
epoxy resin. The center of the sensor is coincident with the observation point P.
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In addition, the condition of the bottom boundary is set as grounding, and the boundary
conditions of the other five surfaces are set as the balloon boundary with the electrical potential
set to zero at infinity during the simulating.

3.2. Simulation Results and Analysis in the Absence of a Human Body

Figure 5 shows the simulated results of the electric field spatial distribution surrounding
the observation point P before and after placing the measuring sensor under the same excitation
voltage conditions.
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Figure 5. Electric field spatial distribution surrounding observation point P (no influence of a human
body). (a) Before placing the sensor; (b) after placing the sensor.

Figure 5 shows that the original electric field surrounding the observation point P is evenly
distributed. After the placement of the sensor, the electric field at the four corners of the sensor become
significantly distorted and enhanced, whereas the surface electric field outside of the polar plates is
slightly enhanced [21,22]. The electric field at observation point P is still even, whereas the electric
field intensity decreases relative to the original value because of the shielding effect of the polar plates.

Table 2 shows the simulated results of the original electric field E0 and electric field Erms after
placing the measuring sensor at point P when different levers of excitation voltage are generated.
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Table 2. Comparison of electric field values at point P before and after placing the measuring sensor
(driven by different voltages).

Us (kV) 8 10 12 14 16 18 20 22 24

E0 (kV/m) 2.5491 3.1865 3.8237 4.4610 5.0984 5.7357 6.3732 7.0103 7.6476
Erms (kV/m) 0.7852 0.9816 1.1779 1.3742 1.5705 1.7668 1.9631 2.1594 2.3557

The data in Table 2 are linearly fitted, as shown in Figure 6.
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measuring sensor.

Figure 6 shows that a linear relation exists between Erms and E0. Their relation can be expressed
mathematically as

E0 “ k0Erms (10)

where k0 is the correction coefficient between E0 and Erms. Here, k0 = 3.2464.

3.3. Simulation Result and Analysis in the Case of an Approaching Human Body

We assume that the height of the approaching individual is 176 cm. Given that the individual’s
shoes are isolated, the thickness of the insulating materials is assumed to be 2 mm during the simulation
so that the person does not directly come into contact with the ground. The measuring sensor is fixed
on the person’s arm, and its center is located at point P, similar to that shown in Figure 5.

Figure 7a shows the electric field distribution surrounding the human body and conductor.
Figure 7b shows the partially enlarged detail surrounding the measuring sensor.
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Table 3. Comparison of measured electric field values at point P before and after the approach of a
human body (driven by different voltages).

Us (kV) 8 10 12 14 16 18 20 22 24

Erms (kV/m) 0.7852 0.9816 1.1779 1.3742 1.5705 1.7668 1.9631 2.1594 2.3557
E*rms (kV/m) 0.4360 0.5450 0.6540 0.7630 0.8720 0.9810 1.0900 1.1990 1.3081

As shown in Figure 7, the electric field spatial distribution outside the sensor is distorted further
in the case of an approaching human body, whereas the electric field between the polar pates is
evenly distributed.

Table 3 shows the simulation results of the electric field before and after the approach of a
human body (i.e., Erms and E*rms respectively) at point P when different levels of excitation voltage
are generated.

The data in Table 3 are linearly fitted, as shown in Figure 8.
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Figure 8 shows that after the approach of the human body, the electric field intensity at the
observation point decreases but is proportional to that before the approach of the human body. This
situation is explained in the aspect of the principle in Section 2. The linear relation between Erms and
E*rms can be expressed as

Erms “ kbE˚rms (11)

where kb is the correction coefficient regarding the influence of the human body on measurement; it is
the same as that in Equation (9). Here, kb = 1.8010.

Considering the dual influence of the measuring sensor and human body, we can correct the
electric field intensity measured with the portable Type LP-2000 twice on the basis of Equations (10)
and (11) to reflect accurately the original environmental electric field.

4. Experimental Verification

4.1. Experimental Result and Analysis in the Absence of a Human Body

The experimental platform composed of a voltage regulator, step-up transformer, conductor
and insulator is shown in Figure 9. Narda EFA-300 and a portable Type LP-2000 are used as the
measurement devices. The technical characteristics of the equipment are shown in Table 4.
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Narda EFA-300; (b) measuring worksite of Type LP-2000.

Table 4. Technical characteristics of the experimental equipment.

Name Technical Characteristics

voltage regulator
input: 220 V with power frequency

adjustable range: 0–250 V
rated capacity: 10 kVA

transformer rated capacity: 10 kVA
ratio: 200

EFA-300 measurable frequency range: 5 Hz–32 kHz
measurable electric field range: 0.1 V/m–200 kV/m

LP-2000 measurable frequency range: 5 Hz–1 kHz
measurable electric field range: 20 V/m–200 kV/m

In the absence of a human body, the comparisons are conducted among the measured result
ELP-2000 of Type LP-2000, the measured result EEFA-300 of Narda EFA-300, and the original electric field
E0 obtained via stimulation. The measuring errors are defined as

e1 “
|ELP-2000 ´ E0|

E0
ˆ 100% (12a)

e2 “
|EEFA-300 ´ E0|

E0
ˆ 100% (12b)

The statistical data and error analyses are shown in Table 5.

Table 5. Measurement data statistics of stimulation and experiment and error analysis (in the absence
of a human body).

Us (kV) 8 10 12 14 16 18 20 22 24

E0 (kV/m) 2.5491 3.1865 3.8237 4.4610 5.0984 5.7357 6.3732 7.0103 7.6476
ELP-2000 (kV/m) 2.3921 3.1431 3.8580 4.4237 5.0997 5.7912 6.5125 6.9905 7.6198
EEFA-300 (kV/m) 2.6234 3.3840 3.8467 4.3699 5.1124 5.7983 6.4842 7.4047 7.8630

e1 (%) 6.16 1.36 0.89 0.84 0.02 0.97 2.19 0.28 0.36
e2 (%) 8.82 7.12 0.29 1.22 0.25 0.12 0.44 5.59 3.19

Figure 10 shows the fitting curve based on the data in Table 5.
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(a) Curves of electric field intensity; (b) curves of error.

Given the interference produced by other electric equipment in the laboratory, certain errors
emerge between the measured electric field intensity and the stimulation results. However, the value
measured by Type LP-2000, in general, is relatively close to the stimulation value and the value
measured by Narda EFA-300. Therefore, the accuracy of Type LP-2000 is verified.

4.2. Experimental Results and Analysis in the Case of an Approaching Human Body

4.2.1. Regulating the Excitation Voltages of Electric Field

Figure 11 shows that the Type LP-2000 sensor is fixed on the arm of the individual at a horizontal
distance of 53 cm from the conductor. Different electric field intensities can be generated by regulating
the excitation voltages of the conductor. The uncorrected measurement data ELP-2000 of Type LP-2000
and the original electric field E0 in the stimulation are listed in Table 6.

Figure 12 shows that the uncorrected measured electric field intensity in the case of an approaching
human body is less than the original electric field intensity. Furthermore, an approximately linear
relation exists between them. The linear coefficient can be obtained by linear fitting, i.e., kb* = 1.9094,
which is close to kb = 1.8010 as obtained in the stimulation. The error results from the electromagnetic
interference in the experimental environment.
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Table 6. Uncorrected data statistics with different excitation voltages (in the case of an approaching
human body).

Us (kV) 8 10 12 14 16 18 20 22 24

E0 (kV/m) 2.5491 3.1865 3.8237 4.4610 5.0984 5.7357 6.3732 7.0103 7.6476
ELP-2000 (kV/m) 1.4361 1.7331 2.1793 2.3066 2.3745 2.9281 3.2647 3.4245 3.5080

Figure 12 shows the fitting curve based on the data in Table 6.
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The measured result is corrected to obtain the corresponding E*LP-2000 by using the correction
coefficient kb* = 1.9094. The comparison between the corrected measured data E*LP-2000 and the original
electric field E0 is shown in Table 7.

Table 7. Corrected data statistics with different excitation voltages (in the case of an approaching
human body).

Us (kV) 8 10 12 14 16 18 20 22 24

E0 (kV/m) 2.5491 3.1865 3.8237 4.4610 5.0984 5.7357 6.3732 7.0103 7.6476
E*LP-2000 (kV/m) 2.4452 3.3538 3.7979 4.3544 4.8430 5.8499 6.3979 6.8109 7.2634

error (%) 4.08 5.25 0.67 2.39 5.01 1.99 0.34 2.84 5.02

Table 7 shows that the measured result of Type LP-2000 after correction accurately reflects the
actual electric field intensity in the environment and that the maximal error is less than 6%.

4.2.2. Regulating the Distances between the Measuring Point and the Conductor

As most of the experimental conditions are kept identical to those in the previous experiment
and the excitation voltage of the conductor is set to 12 kV, different electric field intensities can be
obtained at different measuring points by regulating the distances between the measuring point and
the conductor, as shown in Figure 13. The corrected measured data E*LP-2000 are obtained by using the
correction coefficient kb* = 1.9094. The original electric field E0 in the simulation and the corresponding
error values are listed in Table 8.
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Table 8. Corrected data statistics with different measurement distances (in the case of an approaching
human body).

dL (cm) 53 63 73 83 93 103

E0 (kV) 3.8237 3.2423 2.7417 2.372 2.0744 1.8264
E*LP-2000 (kV) 3.8582 3.3455 2.7956 2.3144 1.9733 1.7836

error (%) 0.8970 3.1675 1.9441 2.4452 4.8882 2.3763

Table 8 also shows that the corrected electric field intensity measured by Type LP-2000 is consistent
with the original electric field intensity in the environment and that the maximal error is less than 5%.

5. Conclusions

The influence of the human body on electric field measurement was investigated by using
the Type LP-2000 single-shaft electric field measuring sensor developed by our research team. The
results obtained from the principal model, simulation, and physical experiment showed that as an
individual approached the sensor, the measured electric field intensity became less than the original
environmental electric field intensity in the absence of a human body; however, both of them were
proportional. The original environmental electric field intensity was obtained by using the electric
field intensity measured with the portable Type LP-2000 in real time and multiplying its value by the
defined correction coefficient. The correction coefficient kb obtained in the simulation was 1.8010, and
the correction coefficient kb* obtained in the experiment was 1.9094; the two values can be considered
approximately equal. Two experimental programs were established; under these programs, the
excitation voltages and the distance measuring points were regulated to produce different electric field
intensities. Using kb* = 1.9094, the corrected measured electric field intensity accurately reflected the
original environmental electric field intensity, and the maximal error was less than 6% in all the data
comparisons. These results verify the effectiveness of our proposed correction method.

Additionally, the single-shaft sensor proposed in this study may be more suitable for the electric
field generated by transmission lines than for that generated in substation. Therefore, the 3D
measurement sensor will be explored in our future research.
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