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Abstract: Existing spectrum-sensing techniques for cognitive radios require an analog-to-digital
converter (ADC) to work at high dynamic range and a high sampling rate, resulting in high cost.
Therefore, in this paper, a spectrum-sensing method based on a unidirectionally coupled, overdamped
nonlinear oscillator ring is proposed. First, the numerical model of such a system is established
based on the circuit of the nonlinear oscillator. Through numerical analysis of the model, the critical
condition of the system’s starting oscillation is determined, and the simulation results of the system’s
response to Gaussian white noise and periodic signal are presented. The results show that once
the radio signal is input into the system, it starts oscillating when in the critical region, and the
oscillating frequency of each element is fo/N, where fo is the frequency of the radio signal and N is
the number of elements in the ring. The oscillation indicates that the spectrum resources at fo are
occupied. At the same time, the sampling rate required for an ADC is reduced to the original value,
1/N. A prototypical circuit to verify the functionality of the system is designed, and the sensing
bandwidth of the system is measured.
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1. Introduction

In the crowded electromagnetic environment, high spectral efficiency, and optimal communication
performance are achieved by a cognitive radio communication system that senses the spectrum
hole, adopting artificial intelligence techniques to adaptively adjust the transmission power, carrier
frequency, and modulation system parameters in real time, allowing the system to adapt to changes
in the external environment [1]. In a cognitive radio communication system, spectrum sensing is
an important component that refers to obtaining radio-spectrum usage information by a cognitive
user through a variety of signal-detection and -processing means. From the point of view of the
function layer of wireless networks, spectrum sensing mainly involves a physical and data-link layer.
The physical layer mainly focuses on a variety of specific local-detection algorithms, and the link layer
mainly on user collaboration and optimization of local sensing, collaboration sensing, and the sensing
mechanism [2].

In recent years, many local-detection methods have been proposed, with energy detection being
the most common. In the energy-detection method, the average energy of the signal sampling is
compared with a threshold to determine whether the spectrum is used [3]. The realization of this
method is simple, and does not require prior information of the primary user, but because of the
uncertainty regarding the noise power, the energy cannot be effectively detected, and the sensing time
is increased when the signal-to-noise ratio (SNR) is lower than a certain threshold [4,5]. The energy
detector cannot distinguish the main user signal from the noise and other interference, which leads to
a high false-alarm rate. In order to improve its performance, the power spectral density separation
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(PSC) method can effectively reduce the false-alarm rate by calculating the ratio of the sub-band
power to the total bandwidth power [6]. On this basis, the bandwidth can be scanned by a tunable
tracking filter, which can be used to extract the spectrum occupancy information of several specific
sub-bands [7]. Another type of spectrum-detection method is based on signal characteristics, including
cyclostationary features [8,9]. In these methods, the cyclic spectrum density is obtained by a fast
Fourier transform (FFT) after sampling the cyclic autocorrelation function, and the peak value occurs
when the spectrum is occupied. Compressed sensing can also be used to obtain a flag bit to detect the
occupancy of a spectrum according to the symbol-bit information [10]. In a multiple-antenna system,
the characteristic value of the array’s signal correlation matrix can be used to detect the frequency
spectrum [11,12]. In the case of unknown noise, power, and location of the main user information, the
blind estimation of the spectrum can be carried out using the moment feature [13].

In view of the problem that the local-detection method is not reliable in the cases of shadow and
deep fading, cooperative spectrum sensing among users in the link layer is needed [14]. This method
is the key to optimizing the merging method to obtain the sensing result because it is needed to
integrate the sensing results among multiple cognitive users. For the weighted combination method,
the frog-leaping algorithm can be used to obtain optimal weights to improve the probability of
correct detection [15,16]. In order to reduce the network load of cooperative spectrum sensing, the
double-threshold cooperative spectrum-sensing algorithm based on trust has better flexibility [17].
In order to overcome the influence of channel fading, the adaptive global optimization algorithm
is proposed to determine the relay node set, which solves the problem of performance degradation
induced by redundant relay interference, the detection threshold of nonoptimal designs, channel
transmission error rate, and other factors [18].

Although cooperative spectrum sensing is able to compensate for the lack of local-detection
methods to a certain degree, it is necessary to shorten the detection time and reduce the false-alarm
rate to improve the single-cognitive-user spectrum-sensing ability, taking into account the network
latency and traffic load and the algorithmic complexity. In general, spectrum sensing firstly requires
sampling the RF signals according to Nyquist’s law. With the continuous increase of the frequency of
the carrier signal, an ADC’s sampling rate must also increase. Thus, its resolution and dynamic range
will become worse, which will lead to a decline in spectrum-detection performance, or an increase in
the cost of ADC operation under the same conditions [19].

In this paper, a spectrum-sensing method based on a unidirectionally coupled, overdamped
nonlinear oscillator ring is proposed. First, the weak signal detection by a nonlinear oscillator is a
type of time-domain signal-processing technology with stronger detection ability than the previous
spectral method, high-order statistics, etc. [20–22]. Secondly, the nonlinear oscillator has an active
self-tuning capability that can be synchronized with an external periodic driving signal under specific
conditions. In addition, the circuit of the nonlinear oscillator is relatively simple, which can, in turn,
simplify the structure of the cognitive radio system. In this paper, we discuss the theory of the
structure of a nonlinear oscillator-ring system and the critical conditions of the system operating as a
spectrum detector.

2. Basic Structure of a Coupled, Overdamped Duffing Oscillator Ring

A Duffing oscillator is a type of nonlinear oscillator that can be expressed as a nonlinear, two-order
differential equation,

..
x` δ

.
x´αx`βx3 “ γηptq pδ ě 0q (1)

where δ controls the size of the damping, α controls the size of the stiffness, β controls the nonlinearity
of the restoring force, γ controls the amplitude of the external driving force, and η(t) indicates the
external driving force. Moving the left-hand-side partial items in Equation (1) to the right-hand side,
we obtain ..

x “ ´δ
.
x`αx´βx3 ` γηptq

“ ´δ
.
x´

.
Upxq ` γηptq pδ ě 0q

(2)
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where
..
x is the inertial force, which can be ignored in the overdamped case. Then Equation (2) is

rewritten as
δ

.
x “ ´

.
Upxq ` γηptq

“ αx´βx3 ` γηptq
(3)

which is called the Langevin equation. When α > 1, U(x) = ´αx2/2 + βx4/4 is a bistable state
potential function, which is used to describe the motion of a unit mass particle in a potential well [23].
Assuming that β = 1, α = 1, γ = 1, xs1 “ 1 and xs2 “ ´1 are the two equilibrium points, xun “ 0 is the
nonequilibrium point. As shown in Figure 1, the relationship between the bistable state potential and
x shows that the motion converges quickly to one of the two equilibrium points when the external
force is missing. Or to the general β and α, the equilibrium points are xs “ ˘

a

α{β and the barrier
height at xun “ 0 is ∆U = α2/4β.
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Figure 1. Potential function of a bistable system, showing that the motion can quickly converge to 
one of the two equilibrium points when the external force is missing. 

If the nonlinear oscillator is a unidirectionally coupled ring as shown in Figure 2, and the 
number of oscillators in the ring is N, the coupled bistable oscillator in the ring is expressed as 
follows: 
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coupled oscillator ring should not oscillate until it senses a radio signal from the antenna. The 
oscillation of the ring indicates that the radio-frequency spectrum has been occupied. Thus, the 
critical point at which the system starts oscillating must be defined. Letting the radio signal received 
by the antenna be r(t) = a(t)cos[ωc + θ(t)], where a(t) is the signal amplitude, θ(t) is the signal phase, 
ωc is the signal frequency, the radio signal is input to each element, Equation (4) is rewritten as 
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Figure 1. Potential function of a bistable system, showing that the motion can quickly converge to one
of the two equilibrium points when the external force is missing.

If the nonlinear oscillator is a unidirectionally coupled ring as shown in Figure 2, and the number
of oscillators in the ring is N, the coupled bistable oscillator in the ring is expressed as follows:

δ
.
xi “ αxi ´βx3

i ` kpxi´1 ´ xiq (4)

where k is the linear coupling coefficient and i “ 1, 2, . . . , N. For spectrum sensing of a cognitive
radio, the coupled oscillator ring should not oscillate until it senses a radio signal from the antenna.
The oscillation of the ring indicates that the radio-frequency spectrum has been occupied. Thus, the
critical point at which the system starts oscillating must be defined. Letting the radio signal received
by the antenna be r(t) = a(t)cos[ωc + θ(t)], where a(t) is the signal amplitude, θ(t) is the signal phase,
ωc is the signal frequency, the radio signal is input to each element, Equation (4) is rewritten as

δ
.
xi “ αxi ´βx3

i ` kpxi´1 ´ xiq ` rptq (5)
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Figure 2. Structure of the unidirectionally coupled, overdamped nonlinear oscillator ring. 
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used to detect weak signals [24]. The circuit can be divided into two parts: one a linear part composed 
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transconductance operational amplifiers. A model for describing the nonlinear phenomena of this 
circuit is defined as 
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Figure 2. Structure of the unidirectionally coupled, overdamped nonlinear oscillator ring.

3. Dynamics and Analysis

3.1. Dynamic Model

The practical circuit of a bistable, overdamped, nonlinear oscillator as shown in Figure 3 has been
used to detect weak signals [24]. The circuit can be divided into two parts: one a linear part composed
of two field-effect transistors (FETs), and the other a nonlinear part comprised of two transconductance
operational amplifiers. A model for describing the nonlinear phenomena of this circuit is defined as

C
.

Vi “ ´gVi ` IstanhrcspVi ´ rptqqs ` IctanhrccpVdc ´Vi´1qs (6)

where C is load capacitance; gVi “ Isc ´ Io, where Io is the sum of the steady-state current in both linear
and nonlinear currents and Isc “ Ip ´ In is a linear part of the effective current in the saturation state of
the transistor; Ip and In are the leakage currents through the N-channel and the P-channel FET; Vi is
the oscillator’s output and Vi´1 is the output of the previous oscillator; cs “

a

η{Is, cc “
a

η{Ic, and
β are the process parameters; Is and Ic are the main operational transconductance amplifier (OTA)
bias current and the coupled OTA bias current, respectively; and rptq is the signal to be detected.
Equation (6) is a variation of Equation (5), which also has the characteristics of an overdamped
bistable state.
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In order to form a ring as shown in Figure 2, the output of the previous element is coupled into
the element by the coupling OTA shown in Figure 3, and the signal itself is coupled to the next element.
The generation of the oscillation is related to N, the number of elements in the ring. When N has an
even value, the system is in a stable state; the system is not stable when N has an odd value [25]. For the
circuit shown in Figure 3, C, Io, Isc, Is, and Ic must be adjusted to the appropriate values to generate the
periodic signal. Via Equation (6), Is is defined as the nonlinear coefficient representing the bistability of
the circuit, and Ic is the coupling coefficient among the nonlinear oscillators. cs and cc are constants
during signal processing. Provided N “ 3, cs “ cc “ 1, C “ 0.1 pF, g “ 1{1000 Ω, rptq “ 0 V, Vdc “ 0 V,
Is “ 120 µA and Ic “ 100 µA, and substituting into the following system dynamics equations:

$

’

&

’

%

C
.

V1 “ ´gV1 ` IstanhpV1q ´ IctanhpV3q

C
.

V2 “ ´gV2 ` IstanhpV2q ´ IctanhpV1q

C
.

V3 “ ´gV3 ` IstanhpV3q ´ IctanhpV2q

(7)

where the numerical-simulation waveform of each oscillator is shown in Figure 4. From Figure 4, it can
be seen that while the frequency of each oscillator is the same, the phase difference between them
is 2π/3. Next, the critical point at which the system starts oscillating, as shown in Figure 4, must be
discussed, including the effect of the coupling and nonlinear coefficients. This will provide enough
information for us to control the ring system for spectrum-sensing applications.
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Figure 4. Numerical-simulation oscillation waveform of the system when N “ 3, cs “ cc “ 1,
C “ 0.1 pF, g “ 1{1000 Ω, rptq “ 0 V, Vdc “ 0 V, Is “ 120 µA, and Ic “ 100 µA.

3.2. Relationship between Oscillation Frequency and Currents (Ic,Is)

For spectrum-sensing applications, it is a prerequisite for the unidirectionally coupled oscillator
to generate periodic oscillation; Therefore, its state-transition condition is critical. For this purpose,
the fixed points of the system are analyzed according to Equation (6), and the bifurcation points are
determined with the change of the coupling and nonlinear coefficients. Letting N “ 3, rptq “ 0 V,
Vdc “ 0 V, g “ ´g{C, Is “ Is{C and Ic “ Ic{C, the system can be represented as

$

’

&

’

%

.
V1 “ ´gV1 ` IstanhpV1q ´ IctanhpV3q.
V2 “ ´gV2 ` IstanhpV2q ´ IctanhpV1q.
V3 “ ´gV3 ` IstanhpV3q ´ IctanhpV2q

(8)

By linearization or the Hartman-Grobman theory, the stability of the fixed point of the dynamical
system can be determined by the Jacobian eigenvalues and eigenvectors of the fixed point. If the
eigenvalues have positive real parts, the fixed points along the feature vectors are unstable; if the
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eigenvalues have negative real parts, the fixed points along the feature vectors are stable [26].
The coupled system is rewritten in a more compact form as: dxi{dt “ f pxi, xi´1, g, Ic, Isq, i “ 1, . . . , N.
For the coupled system in which N = 3, the Jacobian at the origin, px1, x2, x3q “ p0, 0, 0q, is

J “ pd f q “

¨

˚

˝

´g` Is 0 ´Ic

´Ic ´g` Is 0
0 ´Ic ´g` Is

˛

‹

‚

(9)

Letting ´g` Is “ Igs, the Jacobian eigenvalues are λ1 “ Igs ` Ic, λ2,3 “ Igs ´ Ic{2˘ i
`?

3{2
˘

Ic.
From the eigenvalues, we find that there are two local bifurcation points apart from the origin: one
is the bifurcation of the steady state at Ic “ ´Igs, and the other is the Hopf bifurcation at Ic “ 2Igs.
The bifurcation diagram of the system is shown in Figure 5, which shows the steady-state bifurcation
point at Ic “ ´1; note that a pitch bifurcation occurs at Ic “ 2, becoming the two branches of the
unstable nontrivial equilibrium points. Once the unstable bifurcation point I˚c is reached, the system
begins to oscillate. When g “ 2 and Is “ 1, I˚c “ 2.
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The critical coupling coefficient and the frequency of the system oscillation can be determined
according to Equation (8). Although the oscillation frequency of the system can be roughly estimated
from Figure 4, an accurate computation of the oscillation period can be obtained based on the
decoupling method. As shown in Figure 1, the main time of a particle moving from the left (negative)
to the right (positive) is the period from the negative state across the potential barrier, while the time
“rolled” to positive-state time over the potential barrier is negligible. Figure 4 shows that the rest
of the elements are approximately in a steady state when an element climbs over a potential barrier.
Therefore, the system can be decoupled in the calculation of the cycle of a single element, and the
coupled term is regarded as a constant. The calculation of the oscillation period is divided into two
parts; that is, the transition from the positive state to the negative state and vice versa. Assuming that
the element 1 locates at the positive minimum at t = 0, the time evolution from the positive state to the
negative state can be obtained from the following integral:

t1 “

ż 0

V1`

dV1

f1pV1q
(10)
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where f1pV1q “ ´gV1 ` IstanhpV1
˘

´ IctanhpV3`q, and V1+ and V3` are the positive minima of
elements 1 and 3, respectively. Letting h1pV1q “ ´ f1pV1q, Equation (10) is rewritten as

t1 “

ż V1`

0

dV1

h1pV1q
(11)

Because h1pV1q has a sharp peak at the inflection point, V1m “ asech(1{
b

Is{gq, and h1pV1q is
expanded at V1m as

h1pV1q » h1pV1mq `
pV1´V1mq

2

2 h21 pV1mq

» A1V2
1 ` B1V1 ` C1

(12)

where A1 “ h21 pV1mq{2, B1 “ ´V1mh21 pV1mq, and C1 “ h1pV1mq `V2
1mh21 pV1mq{2. Then,

t1 »

ż V1`

0

dV1

A1V2
1 ` B1V1 ` C1

(13)

When the integral limitÑ8, then

t1 »
2

D1
r
π

2
´ atanp

B1

D1
qs (14)

where D1 “

b

4A1C1 ´ B2
1. According to the same principle, another part of the oscillation period is

obtained by calculating the transition of element 2 from the negative state to the positive state:

t2 “

ż 0

V2´

dV2

f2pV2q
(15)

where f2pV2q “ ´gV2 ` IstanhpV2
˘

´ IctanhpV1´q, and V2´ and V1´ are the negative minima of
elements 2 and 1, respectively. The evaluation result for the integral is

t2 »
2

D2
r
π

2
´ atan(

B2

D2
qs (16)

where B2 “ ´V2mh22 pV2mq, C2 “ h2pV2mq `V2
2mh22 pV2mq{2, D2 “

b

4A2C2 ´ B2
2, and h2pV2q “ ´ f2pV2q.

In the end, the period of the superposition of the three elements’ oscillation signal is Tř “ t1 ` t2.
The corresponding frequency is

fring “
1

Tř
“

1
t1 ` t2

(17)

In order to solve the critical point of the system oscillation, the potential function of Equation (6)
is expressed as

U “ ´

ż V1

0
f pV1qdV1 (18)

Using Equation (17) to find the critical coupling point, and letting f pV1q “ 0 and f 1pV1q “ 0 at the
point V1m, we obtain

gV1 ´ IstanhpV1mq ` IcctanhpV3`q “ 0 (19)

and
gV1 ´ IstanhpV1mq ` IcctanhpV3`q “ 0 (20)
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Solving Icc, we obtain

Icc “
“

´gV1m ` IstanhpV1mq
‰

cothpV3`q

« ´gV1m ` IstanhpV1mq

« ´gasech
”
b

g
Is

ı

` Istanh
”

asech
”
b

g
Is

ıı

(21)

which describes the relationship between the critical coupling coefficient Icc and the critical nonlinear
coefficient Is. According to Equations (17) and (21), the variation of the oscillation frequency with
currents (Ic, Is) is shown in Figure 6. It shows that the oscillation frequency of the system increases
with the increase of Ic, and decreases with the increase of Is.
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Figure 6. Variation of the oscillation frequency with currents (Ic, Is), which indicates that the oscillation
frequency of the system can be determined by (Ic, Is) (N “ 3, cs “ cc “ 1, C “ 0.1 pF, g “ 1{1000 Ω,
rptq “ 0 V and Vdc “ 0 V).

3.3. Spectrum Sensing

Although we have shown that the unidirectionally coupled, overdamped nonlinear oscillator ring
can generate an oscillation signal once the coupling coefficient (current) exceeds the critical coupling
point, it cannot be said, however, that it can sense the RF spectrum. Only when the output of the
antenna is fed to the system, and the frequency of the system can be locked to the frequency of the
external RF signal, can the occupancy of the spectrum be recognized. In addition, the influence of the
noise in the spectrum-sensing channel creates a factor of uncertainty.

Assuming only the Gaussian white noise
?

2Dξptq, output from the antenna is considered, and the
noise is a random process with a variance of D and a mean of 0. Letting rptq “

?
2Dξptq, Equation (6)

is rewritten as

C
.

Vi “ ´gVi ` IstanhrcspVi ´
?

2Dξptqqs ` IctanhrccpVdc ´Vi´1qs (22)

If the Euler forward integration method is used for the numerical analysis of differential equations,
under the conditions cs “ cc = 1, Vdc “ 0 V, g “ ´g{C, Is “ Is{C and Ic “ Ic{C, Equation (22) is
changed into

Vipt` ∆tq “ Viptq ` ∆t
”

´gViptq ` IstanhrViptq ´
?

2Dξptqs ´ IctanhrVi´1ptqs
ı

(23)

Through numerical simulation in MATLAB, the bifurcation characteristics of the system with
Gaussian white noise are obtained under different noise variances. Table 1 lists the different critical
coupling points for different noise variances and shows that the variation of the critical coupling point
is minor when Gaussian white noise is fed into the system. Figure 7 shows the spectrum of the system
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oscillation waveform when the noise variances are 20, 10, 0, ´10, ´20 and ´30 dBm. Except for the
variance of 20 dBm, the frequency of the oscillation waveform is the same for all of the other cases.
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Figure 7. Normalized frequency spectrum of system oscillation waveform corresponding to different
Gaussian white-noise variances.

Table 1. Critical coupling points of different noise variances (N “ 3, cs “ cc “ 1, C “ 0.1 pF,
g “ 1{1000 Ω, Vdc “ 0 V, Is “ 120 µA, Ic “ 100 µA).

D (dBm) 20 10 0 ´10 ´20 ´30

Icc 2.213 2.061 2.043 2.039 2.035 2.032

Next, assuming that only the RF signal output from the antenna is considered, spectrum sensing
requires a radio signal to be fed into the system. We know from Figure 6 that different critical currents
pIsc, Iccq arise that put the system into a critical state on the verge of oscillation. When the RF signal,
rptq “ Aptqcosrωt`φptqs, is fed into the system as in Equation (6), where Aptq is the instantaneous
amplitude, φptq is the instantaneous phase, andω is the carrier frequency, Equation (6) is rewritten as

.
Vi “ ´gVi ` IstanhtVi ´ Aptqcosrωt`φptqsu ´ IctanhpVi´1q (24)

The system represented by Equation (24) is a nonautonomous, or forced oscillation, system.
According to the theory of nonlinear oscillators, when the difference between the frequency of the
external signal and the free oscillation frequency of the nonlinear oscillator is small enough, then the
frequency of the oscillation will be locked to the external signal. Therefore, such a system functions as
a spectrum-sensing device, operating in the critical region of the oscillation when no signal is present.
Figure 8 shows the oscillation and non-oscillation regions related to (IC, IS). There is a boundary
between the two regions that is the critical transition from the non-oscillation state to the oscillation
state. When there is no signal, the system is in a non-oscillation region; when the antenna output
contains the signal, the system will cross the critical point into the oscillation region, according to
Equation (24) and Figure 8. Then, each element in the system will oscillate as shown in Figure 4.
Considering a radio signal to be detected, s(t), with a carrier frequency of 2.421 GHz and a power
of ´50 dBm, at first the currents is set as (IS = 220 µA, IC = 300 µA); thus the system is in the critical
region and there is no oscillation waveform. When the radio signal is fed into the system, the output
waveform of each element is shown in Figure 9, which shows that the frequency of the oscillation
waveform {x1(t), x2(t), x3(t)} is locked to the carrier signal s(t), and its amplitude is far greater than
the signal.
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Figure 8. Oscillation and non-oscillation regions related to (Ic, Is) (N “ 3, cs “ cc “ 1, C “ 0.1 pF,
g “ 1{1000 Ω, Vdc “ 0 V).
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Figure 9. When the external radio signal with frequency fs is fed into the system, the frequency of the
oscillation waveform of each element is locked to fs{3 (N “ 3, cs “ cc “ 1, C “ 0.1 pF, g “ 1{1000 Ω,
Vdc “ 0 V, Is “ 220 µA, Ic “ 300 µA, fs “ 2.421 GHz).

3.4. Circuit Experiments

Based on the circuit and the structure of the unidirectionally coupled, overdamped nonlinear
oscillator shown in Figure 2, we designed an experimental spectrum-sensing circuit composed of three
elements. The circuit, which includes a nonlinear oscillator ring, and an ADC, is shown in Figure 10.

The setup for the spectrum-sensing experiment is shown in Figure 11. First, the critical point
(ISC, ICC) is adjusted to make the circuit system work in the critical region of oscillation. Next, the
signal generator is used to generate the RF signal that is fed to the circuit system. When the frequency
of the signal falls into the spectrum-sensing range, the circuit system starts to oscillate; the frequency
of the oscillation signal is 1/3 of the RF signal. As shown in Figure 12, by changing the intensity
and frequency of the input signal, the relationship between the spectrum-sensing bandwidth and the
amplitude of the input signal, or the conductivity, g, can be obtained by observing whether the circuit
oscillates. In Figure 12, the region labeled “unlocked” is where the system is not synchronized to
the external RF signal, while the region labeled “locked” is where the system is synchronized to the
external RF signal.
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Figure 10. Experimental spectrum-sensing circuit based on a unidirectionally coupled, overdamped
nonlinear oscillator.
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Figure 12. Relationship between the spectrum-sensing range of the system and the amplitude of the
input signal intensity, or the conductivity, g(Isc “ 220 µA, Icc “ 300 µA).

4. Discussion

Because the overdamped Duffing oscillator cannot oscillate by itself, the inertial term in the
Duffing equation can be ignored, which simplifies the model analysis in this paper. The simplified
model is a bistable system. When N overdamped bistable systems are unidirectionally coupled into
a ring system, oscillation may occur under specific conditions. The circuit of this bistable system is
shown in Figure 3 and is modeled by Equation (6). Through analysis, the oscillation frequency of the
ring system is mainly determined by the current (IS, IC). The relationship between the free oscillation
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frequency and the current of the system is shown in Figure 6, and the response of the system is divided
into oscillation and the non-oscillation regions, as shown in Figure 8. When the system is used for
spectrum sensing, the system operates in the critical non-oscillation region. Once an RF signal appears
in the channel, the system enters the oscillation region and its oscillation frequency is locked to the RF
signal. The result obtained by numerical simulation is shown in Figure 9, which indicates that this
phenomenon will occur as long as the current (IS, IC) is appropriate. The frequency of each element
is locked to 1/N of the frequency of the external radio signal. This result provides two benefits for
spectrum sensing: (1) weak radio signal detection is converted to a stronger oscillator waveform
detection, which reduces the requirement of the ADC’s dynamic range; (2) the ADC’s sampling rate is
reduced. In addition, regarding the Gaussian white noise in the radio channel, the data reported in
Table 1 and Figure 7 show that it has no real effect on the oscillation of the system.

Through practical circuit experiments, spectrum-sensing functionality is verified. Because the
frequency of the system is determined by the current (IS, IC), it is necessary to determine the critical
current (ISC, ICC) according to its operating frequency band. Afterwards, the frequency of the
system can be locked to external radio signals. From the experiments, the relationship between
the spectrum-sensing range of the system and the amplitude of the input signal intensity, or the
conductivity, g, are obtained. The data show that the spectrum-sensing bandwidth will increase with
the growth in amplitude of the input signal intensity. In addition, the growth of g in Equation (6) will
also expand the spectrum-sensing range. If a cognitive radio system needs to be aware of the band
beyond that provided by a single-ring system, multiple-ring systems operating at different currents
(IS, IC) are combined, with each system covering a specific frequency band. Thus, spectrum sensing
along the entire frequency band can be achieved. Furthermore, a more complicated current control
circuit is worth studying in order to extend the frequency band of a single ring system in the future.

The conventional method needs A/D sampling and complicated digital signal processing, which
is time consuming. While the proposed scheme performs spectrum sensing at time domain, therefore
the detection time until finding the existence of the primary signal is shorter, and the probability of
interfering with the primary user is reduced.

5. Conclusions

In this paper, a spectrum-sensing method based on a unidirectionally coupled, overdamped
nonlinear oscillator ring is discussed in detail. The ring system is composed of N overdamped Duffing
oscillators, which is simplified to a bistable system. An overdamped Duffing oscillator can be realized
by a simple circuit, which is easy to make into an integrated circuit. If it is unidirectionally coupled
to a ring, the system will spontaneously generate oscillations related to the critical currents (ISC, ICC).
The critical currents divide the response of the system into oscillation and non-oscillation regions.
When the system operates in the critical non-oscillation region, it will not oscillate. However, once the
external RF signals are fed into each element of the system, they start to oscillate and the frequency
is locked to the RF signal. Even if the RF signal is weak, the system still exhibits this characteristic.
Regarding the usual Gaussian white noise in radio channels, there is no obvious effect on the oscillation
of the system. These features are not only utilized to achieve spectrum sensing, but they also reduce the
requirements of the ADC’s dynamic range and sampling rate. The circuit experiments show that the
spectrum-sensing bandwidth is related to the amplitude of the detected RF signal and the conductivity
of the element. If multiple spectrum-sensing systems operating with different currents (ISC, ICC) are
combined, so that each system covers a different frequency band, wider-bandwidth spectrum sensing
can be achieved.
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