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Abstract: The goal of realistic image rendition is to recover the acquired image under imperfect
illuminant conditions, where non–uniform illumination may degrade image quality with high
contrast and low SNR. In this paper, the assumption regarding illumination is modified and a
variable exponent functional model for Retinex is proposed to remove non–uniform illumination and
reduce halo artifacts. The theoretical derivation is provided and experimental results are presented to
illustrate the effectiveness of the proposed model.
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1. Introduction

Realistic image rendition aims to represent human perception of natural scenes. The meaning
of “realistic” is to provide machine vision with ideal images according to the human visual system.
A complete visual pathway includes the optic nerve, retina, optic tract, optic chiasm, superior colliculus,
lateral geniculate nucleus, optic radiation, and cortex, as shown diagrammatically in Figure 1 [1].
The main features of realistic image rendition include color constancy, image enhancement, high
dynamic range compression, etc. The physiological basis for color constancy involves specialized
neurons in the primary visual cortex that compute local ratios of cone activity [2], which is the
same calculation as Land’s Retinex algorithm [3,4] used to achieve color constancy. The existence
of these specialized cells, double–opponent cells, has been proven using receptive field mapping.
Receptive field [5,6] is the basic unit of visual information processing, and can be separated into two
types: On–Center and Off–Center ganglion cells. Figure 2 shows the receptive field in the retina.

Algorithms of realistic image rendition based on visual characteristics generally include Retinex
algorithms for color constancy. The word “Retinex” is a combination of “retina” and “cortex”. The aim
of Retinex theory is to tell whether human eyes can determine reflectance when both the illumination
and reflectance are unknown. Land and McCann [6] first proposed the Retinex theory, a path-based
algorithm, as a model of color perception of the human visual system (HSV). Many algorithms [7–9]
are based on this approach, which differ in how the path is selected. However, these methods have
high computation complexity and require numerous parameters. McCann [10–12] replaced the path
calculation by a recursive matrix computation which greatly improved computational efficiency.
However, the terminal criterion is not clear and can strongly influence the result. In PDE based
models [13], the Retinex principles are often translated into a physical form. These algorithms are
developed based on solving a Poisson equation which can yield fast and exact implementation
using only two fast Fourier transforms. The main assumption in this algorithm type is that the
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reflectance performs as the sharp details in the image, while illumination varies smoothly. Based on the
assumptions used in PDE formulations, Kimmel et al. [14] proposed a general variational model for the
Retinex problem that unified previous methods. Ma and Osher [15,16] proposed a total variation and
nonlocal total variation(TV) regularized model using the same assumptions. Ng el at. [17] investigated
the TV model with more constraints. Recently, Liang and Zhang [18] established a new higher order
total variation L1 decomposition model (HoTVL1) which can correct the piecewise linear shadows.
Zosso [19,20] proposed a unifying Retinex model based on non-local differential operators.
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To the best of our knowledge, almost all of the important assumptions about illumination in
existing Retinex models require spatial smoothness. However, many images with non-uniform
illuminations have non smooth illumination, actually. In this paper, we assume:

(a) The reflecting object a Lambertian reflector and reflectance corresponds to sharp details in
the image;

(b) Illumination is smooth in most regions, but may contain non-smooth part(s).

Based on these assumptions, we propose a new Retinex model using a variable exponent
functional. We assume that the illumination function belongs to some Sobolev space with variable
exponents. The proposed model solution existence is proved here. Although the proposed model
is developed for specific cases, it can also be applied to general degraded images and significantly
reduces the halo artifact.

In Section 2, we argue the reasonability of the assumption and present the proposed model.
We also present a proof of solution existence for the proposed model, and introduce an efficient
iterative solution method. In Section 3, we present several numerical examples to demonstrate the
effectiveness of the proposed model. Concluding remarks are presented in Section 4.

2. New Assumption and Proposed Model

2.1. New Assumption

To illustrate the proposed assumption, let us consider the images with different illumination
conditions and their corresponding surfaces in Figure 3. The corresponding surfaces illustrate the
shadow shapes. The illumination of the text image varies smoothly, whereas that of the book image has
an apparent non-smooth component. Figure 4 shows a single row from the two images, illustrating the
text image curve changes relatively smooth in the shadow area, while that of the book image changes
dramatically at the edge of the shadow and relatively smooth in the interior of the shadow.
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Figure 4. A single row extracted from: (a) text image; (b) book image. 
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The above examples support the proposed assumption. Indeed, every severe non-uniform
illumination case is likely to have a non-smooth part. Our aim is to extract illumination images and
recover realistic images.

2.2. Proposed Model

First, we introduce the variable exponent functional and some related models. Blomgren et al. [21]
proposed the variable exponent functional for image denoising problems. They tried to minimize:

Epuq “
ż

Ω

|∇u|pp|∇u|qdx (1)

where u is the image function and p is a monotonically decreasing function with limsÑ0 ppsq “ 2,
limsÑ8p(s) = 1. Choosing p = 1 produces the widely used Rudin-Osher-Fatemi (ROF) model [22]
which preserves edge sharpness, but often causes the “staircase” effect; p = 2 produces isotropic
diffusion, which avoids the “staircase” effect but smears edges. Thus, it is natural to combine their
benefits with a variable exponent. However, because p relies on ∇u, it is difficult to establish the lower
semi continuity property of the functional. Chen et al. [23] proposed a variable exponent linear growth
functional model for image denoising, enhancement and restoration, which is extended by Li et al. [24],
using variable exponent functionals in image restoration.

For simplicity, we formulate and discuss our model based on grayscale images. For color images,
we simply map the color into HSV(hue, saturation, value) color space, process only the V channel,
then transform it back to the RGB domain. This method is called HSV Retinex [14,17].

Let I be an image defined in image domain Ω. The primary goal of Retinex theory is to decompose
I into the reflectance image, R, and the illumination image, L, as shown in Figure 5, such that, at each
point in the image domain [25]:

I “ R ¨ L (2)

and following [14,17], we may further assume that:

L ě I ą 0

We first convert Equation (2) into the logarithmic domain:

i “ logpIq, l “ logpLq, r “ logpRq
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so that:
i “ l ` r

Based on our new assumption, the illumination image may contain non-smooth parts. Weuse a
total variation like regularizer near non-smooth parts and a Tikhonov like regularizer for smooth parts.
We minimize the objective function as follows:

Eplq “
ż

Ω

|∇l ´∇i|2dx` λ

ż

Ω

|∇l|ppxqdx (3)

where λ is a positive number, and ppxq “ 1 ` 1
1`w|∇d|2 , where d is the ideal illumination image,

discussed in Section 2.4.2. The first fidelity term on the right side of model (3) measures the similarity
of the gradient between the illumination and the original image, and the second is the regularization
term. Clearly, p Ñ 1 near the edges of d where the gradient is large, and so the regularizer is similar to
a TV regularizer which can preserve edges; p Ñ 2 in the homogeneous regions where the gradient
is small, and here the regularizer is similar to a Tikhonov like regularizer, which is superior to total
variation. In other regions, the penalty is adjusted by p(x).
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The classical Retinex algorithm uses a Gaussian filter, equivalent to a Tikhonov regularizer, to
obtain the illumination image. However, a Gaussian filter smears edges, which is the main cause of
halo artifacts [26]. Using the adaptive TV like regularizer for the high contrast edges in the image, our
model not only prevents halo artifacts but also extracts the edges of non-uniform illumination from
the image.

2.3. Solution Existence

Let us recall some definitions and basic properties of variable exponent Lebesgue and Sobolev
spaces, following [24,27].

Definition (variable exponent spaces): Let Ω be a bounded open set with Lipchitz boundary and
ppxq : Ω Ñ r1,`8q be a measurable function, with the family of all measurable functions on Ω being
PpΩq. We define a functional, which is also called modular:

Qppxqpuq “
ż

Ω

|u|ppxqdx

and a norm:
||u||ppxq “ inftλ ą 0 : Qppxqpu{λq ď 1u
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Then the variable exponent Lebesgue and Sobolev spaces are, respectively:

LppxqpΩq “ tu : Ω Ñ R| ||u||ppxq ă 8u

and:
W1,ppxqpΩq “ tu : Ω Ñ R| u P LppxqpΩq,∇u P LppxqpΩqu

With the norm ||u||1,ppxq “ ||u||ppxq ` ||∇u||ppxq, W1,ppxqpΩq becomes a Banach space.

Lemma 1. (relationship between modular and norm [27]): Let Qppxq be a modular on X and u P X, then
||u||ppxq ď Qppxqpuq+1.

Lemma 2. (embedding theorem [24]): Let ppxq, qpxq P PpΩq , and ppxq ď qpxq for a.e. x P Ω.
Then LqpxqpΩq is continuously embedded in LppxqpΩq.

Lemma 3. (convexity [27]): Let Fp∇l, xq “ |∇l|ppxq , with ppxq “ 1 ` 1
1`w|∇d|2 as in model (3).

Then for each x, Fpξ, xq is convex in ξ.

Lemma 4. (weak lower semi continuity [27]) Let Fpξ, xq be bounded from below, and the map ξ Ñ Fpξ, xq is
convex in each x P Ω. Then the energy functional, I “

ş

Ω
Fp∇l, xqdx, is weak lower semi-continuous in W1,ppxq.

Theorem 1. Let Ω Ă R2 be a bounded open set with Lipchitz boundary, i P W1,ppxqpΩq X L2pΩq, then the
minimization problem:

min
lPW1,ppxqpΩqXL2pΩq

tEplq “
ż

Ω

|∇l ´∇i|2dx` λ

ż

Ω

|∇l|ppxqdxu

has a minimizer l P W1,ppxqpΩq X L2pΩq.

Proof of Theorem 1. Let tlku
8
k“1, lk P W1,ppxqpΩq X L2pΩq be the minimizing sequence for Eplq. Then:
ż

Ω

|∇lk ´∇i|2dx ă M and
ż

Ω

|∇lk|ppxqdx ă M

where M denotes a universal positive constant that may differ from line to line. Hence
ş

Ω
|∇lk|2dx ă M.

Thanks to Poincare inequality, we have
ş

Ω
l2
k dx ă M, and from Lemma 2, L2pΩq Ă LppxqpΩq.

Therefore,
ş

Ω
|lk|ppxqdx ă M, and together with the inequality

ş

Ω
|∇lk|ppxqdx ă M, we obtain

Qppxqplkq `Qppxqp∇lkq ă M. This implies that tlku
8
k“1 is a uniformly bounded sequence in W1,ppxqpΩq

due to Lemma 1, and tlku
8
k“1 is also uniformly bounded in L2pΩq. Since W1,ppxqpΩq X L2pΩq is a

reflexive Banach space, up to a subsequence, there exists l˚ P W1,ppxqpΩq X L2pΩq such that
!

lkj

)

converges weakly to l˚ in W1,ppxqpΩq X L2pΩq. From Lemma 4, Eplq is lower semi continuous in
W1,ppxqpΩq X L2pΩq. Thus:

Epl˚q ď lim
kÑ8

Eplkq “ inf
lPW1,ppxqpΩqXL2pΩq

Eplq

Therefore, l˚ is the minimum point of Eplq.
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2.4. Implementation

We formulate the basic procedure for solving problem Equation (3) following the split
Bregman [28–33] technique. We solve the minimization by introducing an auxiliary variable b:

mint
ż

Ω

|∇l ´∇i|2dx` λ

ż

Ω

|b|ppxqdxu subject to b “ ∇l (4)

By adding one quadratic penalty function term, we convert Equation (4) to an unconstrained
splitting formulation:

mint
ż

Ω

|∇l ´∇i|2dx` λ

ż

Ω

|b|ppxqdx` γ

ż

Ω

|b´∇l|
2
dxu (5)

where γ is a positive parameter which controls the weight of the penalty term. Similar to the split
Bregman iteration, we propose the scheme:

$

’

&

’

%

plk`1, bk`1q “ argmin
l,b

ş

Ω
|∇l ´∇i|2dx` λ

ş

Ω
|b|ppxqdx` γ

ş

Ω
|b´∇l ´ tk|2dx

tk`1 “ tk `∇lk`1 ´ bk`1
(6)

Alternatively, this joint minimization problem can be solved by decomposing into
several subproblems.

2.4.1. Subproblem l with Fixed b and t

Given the fixed variable bk and tk , our aim is to find the solution of the problem:

lk`1 “ argmin
l

ż

Ω

|∇l ´∇i|2dx` γ

ż

Ω

|bk ´∇l ´ tk|2dx (7)

which has the optimality condition:

pγ` 1q∆l “ γ∇ ¨ pbk ´ tkq ` ∆i (8)

where b “ pbx, byq and t “ ptx, tyq. Since the discrete system is strictly diagonally dominant with
Neumann boundary condition, the most natural choice is the Gauss-Seidel method. The Gauss-Seidel
solution to this subproblem can be written componentwise as:

lk`1
i,j “

γ
4pγ`1q pb

k
x,i´1,j ` bk

y,i,j´1 ´ bk
x,i,j ´ bk

y,i,j ` tk
x,i´1,j ` tk

y,i,j´1 ´ tk
x,i,j ´ tk

y,i,jq`

1
4pγ`1q p4ik

i,j ´ ik
i`1,j ´ ik

i´1,j ´ ik
i,j´1 ´ ik

i,j`1q `
γ`1

4pγ`1q pl
k
i`1,j ` lk

i´1,j ` lk
i,j`1 ` lk

i,j´1q

Note that this subproblem can also be solved by FFT with periodic boundary condition.

2.4.2. Subproblem b with Fixed l and t

Similarly, we solve:

bk`1 “ argmin
b

λ

ż

Ω

|b|ppxqdx` γ

ż

Ω

|b´∇lk`1 ´ tk|2dx (9)
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which has the optimality condition:

#

λppxq|b|ppxq´2bx ` 2γpbx ´∇xlk`1 ´ tk
xq “ 0

λppxq|b|ppxq´2by ` 2γpby ´∇ylk`1 ´ tk
yq “ 0

(10)

where ∇l “ p∇xl,∇ylq. If bx and by are not zero, then:

bx “
∇xlk`1 ` tk

x
∇ylk`1 ` tk

y
by (11)

Substituting Equation (11) into Equation (10):

sgnpbyqTbppxq´1
y ` 2γpby ´∇ylk`1 ´ tk

yq “ 0 (12)

where T “ λppxqpp∇x lk`1`tk
x

∇y lk`1`tk
y
q

2
` 1q

ppxq´2
2

. Note that:

sgnpbxq “ sgnp∇xlk`1 ` tk
xq (13)

sgnpbyq “ sgnp∇ylk`1 ` tk
yq (14)

So Equation (12) can be expressed as:

sgnp∇ylk`1 ` tk
yqTbppxq´1

y ` 2γpby ´∇ylk`1 ´ tk
yq “ 0 (15)

Unfortunately, we cannot obtain the explicit solution of the Equation (15). We can use the Newton
method to get an approximate solution. If by is solved, bx can be easily determined using Equations (11)
and (13). The process is shown as Algorithm 1.

Algorithm 1: (Newton’s method)

Input: b0
y “ ∇ylk`1

If ∇ylk`1 ` tk
y “ 0

Output bk`1
y “ 0

Else
while not converged

bj`1
y “ signp∇ylk`1 ` tk

yqmaxtbj
y ´

Tpbj
xq

ppxq´1
` 2γpbj

y ´ |∇ylk`1 ` tk
y|q

pppxq ´ 1qTpbj
xq

ppxq´2
` 2γbj

y

, 0u

End
Output bk`1

y
If ∇xlk`1 ` tk

x “ 0
Output bk`1

x “ 0
Else

bk`1
x “

∇x lk`1`tk
x

∇y lk`1`tk
y

bk`1
y

End
End

Another problem is that in practice we don't know d in p(x). We have tested two ways to
approximate d. One way is to use edge preserving filter (e.g., bilateral filter) to give an approximation
of d and keep the exponent fixed during the iteration; Another way is to replace d with Gplk`1q during
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the iteration and Gp¨q represents the Gauss convolution operator, In most cases, both methods can
generate similar prominent results. However, in some cases, dynamic approximation would give
better results than fixed approximation because dynamic approximation can give a more accurate
approximation of d along with the iteration. To illustrate this, consider the associated heat flow to
problem Equation (3):

lt “ 2p∆l ` ∆iq ` λppxq∇ ¨ p|∇l|ppxq´2∇lq
“

´

2` λppxq|∇l|ppxq´2
¯

lTT ` p2` λppxqpppxq ´ 1q|∇l|ppxq´2
¯

lNN
(16)

where lTT and lNN are the second derivatives of l in the tangent and normal direction to the isophote
lines respectively. From Equation (16), we have two critical conclusions:

1. The illumination image, lk`1, becomes increasingly smooth over time.
2. Diffusion speed in the tangent direction is always faster than that in the normal direction.

The first conclusion conforms to the smooth assumption of the illumination image. If the
illumination image has non smooth parts, then the second conclusion guarantees that the solution
can preserve these parts. Thus, lk`1 continuously gets closer to d with calculation. However, the
convergence proof of the algorithm is difficult since the exponent is changing during the iterations.
If the exponent is fixed, the convergence proof can be directly obtained because the objective function
is fixed and the iteration of split Bregman is monotone decreasing in the function values. The strict
proof can be found in references [34,35]. If the exponent changes during the iterations, then the
objective function changes as well. The convergence proof in references [34,35] cannot be applied here.
However, we have tested numerous experiments and our algorithm did converges in all the tests.
We leave it for further work.

2.4.3. Update:

tk`1 “ tk `∇lk`1 ´ bk`1 (17)

2.4.4. Update lk`1:

lk`1 “ max
!

lk`1, i
)

which corresponds to the constraint L ě I ą 0.
The process is shown as Algorithm 2.

Algorithm 2: (Variable Exponent Functional Retinex)

Input: Image I
Transform into log domain i “ logpI ` 1q;
Initialization: l0 “ i, b0 “ 0, t0 “ 0 and k “ 0

While ||l
k´lk´1||

||lk||
ď ε

(1) Given bk and tk, update lk`1 by solving Equation (8).
(2)Given lk`1 and tk, update bk`1 by using algorithm 1.
(3)Update tk`1 “ tk `∇lk`1 ´ bk`1.

(4) lk`1 “ max
!

lk`1, i
)

;

(5)k “ k` 1;
End
Output: Image R “ exppiq

expplq
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2.5. Relation to Previous Methods

Let us revisit the model in Section 2.2. If we set ppxq “ 2 and remove the constraint l ě i, our
model is equivalent to homomorphic filtering [36]. Retaining the constraint l ě i and fixing p(x) = 2, it
is similar to a random walk, Ng’s model [17] and McCann algorithm [12]. Thus, our proposed model
generalizes previous models.

3. Numerical Results

We present numerical results to demonstrate the efficiency of the proposed model and algorithm.
For color images examples, we use HSV Retinex. We compare our proposed model with three state of
the art methods, HoTVL1 [18], Ng’s method [17] and multiscale Retinex [37].

For all the tests, the recovered reflectance of our model is:

R “
I
L

(18)

where L = exp(l) is the illumination function obtained from Section 2.4, and I = exp(i) is the original
image. Note that the reflectance image is sometimes over enhanced, and we add the Gamma correction
illumination to the reflectance image after decomposition. The Gamma correction of L with parameter
s is:

L1 “ Wp
L
W
q

1
s

(19)

where W is the value of the white pixel. Parameter s was set to Section 2.2 in the tests. Thus:

I1 “ L1 ¨ R (20)

and the global framework of our proposed method is illustrated in Figure 6.
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3.1. Synthetic Images

In this subsection, we set λ = 80, γ = 103 and w = 109. Simulated illumination is added to
the original texture images, as shown in Figure 7, with the numerical results shown in Figure 8.
The recovered image following our proposed method is visually superior. We use signal to noise
ratio (SNR) to measure the similarities between the original and recovered images, as shown in
Figure 9. SNR from our proposed method is significantly superior to the other methods. We further use
structural similarity index (SSIM) and CIEDE2000 color difference to measure the texture similarities
and perceptual difference between the original and recovered images respectively, as shown in Tables 1
and 2. We can see from tables that our proposed method is superior to the other methods. We note that
HoTVL1 failed in these tests. The main reason is that the assumption in HoTVL1 is piecewise constant
and piecewise linear, which means that the shadow should be piecewise linear. However, this is not
the case of these tests. The shadow part is almost a constant and also has sharp edges. Hence the result
of HoTVL1 is not satisfactory.
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Table 1. SSIM of the four methods.

Image Ng HoTVL1 Proposed Method Multiscale Retinex

Figure 7a 0.9076 0.6342 0.9289 0.8764
Figure 7d 0.7603 0.6633 0.8291 0.7238

Table 2. CIEDE2000colordifference of the four methods.

Image Ng HoTVL1 Proposed Method Multiscale Retinex

Figure 7a 26.8927 29.6729 26.6182 27.9038
Figure 7d 24.5474 26.0115 21.9972 25.4528

3.2. Natural Images

For all tests, we set λ = 80, γ = 103 and w = 103. We begin with Andelson’s checkerboard shadow
image, as shown in Figure 10a. Region A looks darker than region B, although they have the same
values. Figure 11 shows the reconstructed illumination and reflection images using Ng’s, HoTVL1,
multiscale Retinex and our proposed model. HoTVL1 and the proposed method produce superior
results to Ng’s method and multiscale Retinex. The recovered illumination using our proposed method
contains less reflectance information than HoTVL1, e.g., the outline of the cylinder. Our proposed
method also contains less shadow information in the reflectance image than other methods. Table 3
compares the recovered intensity values of the two regions for the four methods. The contrast of the
marked areas using our proposed method is superior to the other three methods.
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Table 3. Recovered intensity values for regions A and B of Figure 10a.

Image Original Ng HoTVL1 Proposed Method Multiscale Retinex

Checkerboard
A 120 140 85 135 109
B 120 180 174 230 149

Consider the degraded image shown in Figure 10b. Figure 12 shows the reconstruction for the
four methods. Note that in this example, we adopted a Gamma correction step, as discussed above.
Our proposed method has superior visual outcome. Ng’s method suffers halo artifacts, e.g., near the
edges of the tower and the roof of the building, which rarely appear in HoTVL1, multiscale Retinex
and our proposed method. However, many fine structures lost in the HoTVL1 and multiscale Retinex
reproduced image, which are retained in our proposed method.

The next illustrative example is recovery of non-uniform degraded images. The two images in
Figures 10c and 3b suffer from the strong shadow areas. Figure 13 shows the comparison for the
considered methods. The shadow is almost entirely removed by our proposed method, whereas the
other methods retain partly shadowed regions.

In the end, we test the effect of different approximations of d. We use bilateral filter to approximate
d and keep the exponent fixed during the iterations. Figure 14 shows the numerical results. We see in
Figure 14 that the illumination and the reflectance of the results are not as good as those in Figure 11.
This experiment supports our discussion in Section 2.4.2.Sensors 2016, 16, 832 13 of 15 
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4. Conclusions

We proposed a variable exponent functional model for Retinex, proved the existence of the
solution for the model and provided the theoretical derivation. The proposed method can be applied
to general degraded cases as well. Experimental results validatethat our proposed method can remove
non-uniform illumination and significantly reduce halo artifacts.
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