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Abstract: This article presents a new approach to calculating the inverse of radial distortions. The
method presented here provides a model of reverse radial distortion, currently modeled by a
polynomial expression, that proposes another polynomial expression where the new coefficients are a
function of the original ones. After describing the state of the art, the proposed method is developed.
It is based on a formal calculus involving a power series used to deduce a recursive formula for the
new coefficients. We present several implementations of this method and describe the experiments
conducted to assess the validity of the new approach. Such an approach, non-iterative, using another
polynomial expression, able to be deduced from the first one, can actually be interesting in terms of
performance, reuse of existing software, or bridging between different existing software tools that do
not consider distortion from the same point of view.
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1. Introduction

Distortion is a physical phenomenon that in certain situations may greatly impact an image’s
geometry without impairing quality nor reducing the information present in the image. Applying the
projective pinhole camera model is often not possible without taking into account the distortion caused
by the camera lens. This phenomenon can be modelled by a radial distortion, the most prominent
component, and a second, with a lesser effect, a decentering distortion which has both a radial and
a tangential components. Radial distortion is caused by the spherical shape of the lens, whereas
tangential distortion is caused by the decentering and non-orthogonality of the lens components with
respect to the optical axis ([1,2]). It is important to note that radial distortion is highly correlated
with focal length [3] even if in literature it is not modelled within the intrinsic parameters of the
camera [4]. This is due to the fact that the radial distortion model is not linear, in contrary to other
intrinsic parameters. We can see in Figure 1 the displacement applied to a point caused by both radial
and tangential distortion.

Decentering distortion was modelled by Conrady in 1919 [5] then remodelled by Brown in
1971 [6] and a radial distortion model was proposed by Brown in 1966 [7]. These distortion models have
been adopted by the Photogrammetry as well as the Computer Vision communities for several decades.
Most photogrammetric software such as PhotoModeler (EOS) uses these models (see Equations (1)
and (2)) to correct observations visible on the images and provide ideal observations.

Roughly, radial distortion can be classified in two families, barrel distortion and pincushion radial
distortion. Regarding the k1 coefficient in Formula (1), barrel distortion corresponds to a negative value
of k1 and pincushion distortion to a positive value of k1, for an application of the distortion and not a
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compensation. As shown in Figure 2, barrel and pincushion distortions have an inverse effect and an
image affected by a pincushion distortion can be corrected by a barrel distortion (and vice-versa) [8–11].

Barrel distortion can be physically present in small focal length systems, while larger focal
lengths can result in pincushion distortion [8,10]. These radial distortion effects can be very important,
especially in inexpensive wide-angle lenses which are often used today.

Figure 1. Point shifted by distortion.

Figure 2. In the center, a painting from Piet Mondrian [12] (which is now in the public domain since
1 January 2016); on the left, the painting with a barrel effect; and on the right, the same image with
pincushion distortion.

Using these models to compensate the observations is now well known and many software
dealing with images or panoramas propose plugins dedicated to distortion correction (mainly only
radial distortion) [13] . However, although we have the equations to compensate the distortion, how
to compute the inverse function in order to apply such a distortion is not obvious. For example, when
an image of a known 3D point is computed using a calibrated camera, the 2D projected point can be
easily computed, but we need then to apply the distortion to the image point in order to obtain an
accurate projection of the original 3D point. This first application justifies the present work. How to
determine the inverse of a closed form solution for distortion model equations? The second reason
is the merging the work of the two communities involved, photogrammetry and computer vision.
While having worked separately for years, the situation between the two communities has drastically
changed for almost a decade [14]. This is also visible in the form of new commercial or open-source
software dealing with photogrammetry or computer vision. For example, PhotoScan (from Agisoft) or
MATLAB that comes with the camera calibration toolbox or, for the open-source side, OpenCV toolbox
which provides a solution for multiview adjustment. These three software use the same Equations (1)
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and (2) to manage distortion, but the mathematical model here is used to apply distortion and not to
compensate it. Determining an exact formula to calculate inverse lens distortion, which allows using
the same software to apply and compensate distortion with two set of kn parameters can be very useful
and, in fact, is the purpose of this work.

This paper is organized as follows: in the next section, a demonstration on computing an exact
formula for inverse radial distortion is presented. This approach gives a set of k1...kn coefficients
computed from the original polynomial distortion model. In Section 3, several applications of this
formula are presented. First of all an experiment on this inversion formula is done using only
the k1...kn coefficient. Then, an application used to compute a formula for an inverse radial lens
distortion is applied to an image coming from a metric camera (Wild P32) with a 3-micron distortion
in the edge of the frame. The next experiment is done on a calibration grid built with black disk.
Finally, a discussion on converting the distortion model between several photogrammetric software,
PhotoModeler (EOS [15]), PhotoScan (Agisoft [16]) and OpenCV [17] is proposed.

2. Previous Work

2.1. Calibration Approach

Radial distortion is mainly considered in the camera calibration process. Since Duane Brown’s
first publication, a large quantity of work was performed in the field of camera calibration, opening
the way for new methods. Several techniques were proposed using orthogonal planes, 2D objects with
plannars patterns up to self-calibration with unknown 3D points. Interesting reviews were published
on both the photogrammetry and computer vision sides by Fraser [18], Zhang [19] and more recently
by Shortis [20].

When Brown [6] proposed a radial distortion model in 1971, he also proposed a way to calibrate
cameras using a set of plumb lines. The idea of using a set of straight wires to compute a distortion
model in a camera calibration process remains in use 45 years later in the fields of photogrammetry and
computer vision; Hartley in 1993 [21,22] then Faugeras and Devernay [23] and recently Nomura [24],
Clauss [25], Tardif [26], and Rosten [27].

2.2. Inverse Radial Distortion

After Conrady and Brown a lot of work was done to deal with removing distortion from images.
As the problem is shared by photogrammetry community as well as computer vision we can refer
to many books and papers on this topic. Including the famous Manual of photogrammetry [28] and
Atkinson gives an overview of these problems for the two communities [29].

Nevertheless, the problem of reverse distortion is somewhat the poor relation of the problems
of distortion. As mentioned by Heikkilä and Silvén [30], “only a few solutions to the back-projection
problem can be found in literature, although the problem is evident in many applications.” And in the
same paper, “we can notice that there is no analytic solution to the inverse mapping”.

In the particular case of high distortion as in wide-angle and fish-eye lenses, some non polynomial
(and invertible) models have been proposed; for example Basu and Licardie introduced the Fish-Eye
Transform (FET) in [31]. Also Faugeras and Devernay [23] propose another invertible model based
on the Field-of-View. A complete description of these models can be found in the review written by
Hugues [32] and also in [33].

Regarding the polynomial model, several solutions have been tested to perform inverse radial
distortion and the solution can be classified in three main classes (even if other approaches can be
found such as the use of a neural network [34]):

• Approximation. Mallon [35], Heikkilä [30,36] and then Wei and Ma [37] proposed inverse
approximations of a Taylor expansion including first order derivatives. According to Mallon and
Welhan, “This is sometimes assumed to be the actual model and indeed suffices for small distortion
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levels.” [35]. A global approach, inverse distortion plus image interpolation, is presented in a
patent held by Adobe Systems Incorporated [38].

• Iterative. Starting from an initial guess, the distorted position is iteratively refined until a
convenient convergence is determined [39–41];

• Look-up table. All the pixels are previously computed and a look-up table is generated to store
the mapping (as for example in OpenCV).

All these methods involve restrictions and constraints on accuracy, time processing or
memory usage.

Nevertheless, some very good results can be obtained. For example, implementing the iterative
approach gives excellent results, however the processing time is drastically increased. Given in Peter
Abeles’ blog [40], the method is easy to implement. Results are shown in Figure 3.

Figure 3. Iterative method applied to a Nikon D700 camera with a 14mm lens. Along the frame
diagonal the points are first compensated by what is a normal process of the radial distortion using
Equation (1) and then the distortion is applied with the iterative process [40] and the result compared to
the original point. On Y-axis, the distance between the original point and the computed reverse point.

The iterative solution works by first estimating the radial distortion magnitude at the distorted
point and then refining the estimate until it converges.

Algorithm 1 shows an implementation of this approach.

Algorithm 1 Iterative algorithm to compute the inverse distortion

Require: point Pn

Pc = Pn

repeat
r = ||Pc||
dr = 1 + k2r2 + k4r4 + ...
Pc = Pn/dr

until Convergence of Pc

return Pc

Only a few iterations are necessary.
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The results presented in Figure 3 are in pixels. The used camera here is a Nikon D700 with a
14 mm lens. The calibration was done with PhotoModeler EOS and the results are k1 = 1.532× 10−4,
k2 = −9.656× 10−8 , k3 = 7.245× 10−11. The coefficients are expressed in millimeters. The center of
autocollimation and the center of distortion are close to the image center. Only a few iterations
are necessary to compute the inverse distortion. In this case, with a calibration made using
PhotoModeler [15], the inverse of distortion represents the application of the distortion to a point
projected from the 3D space onto the image.

This iterative approach is very interesting when the processing time is not an issue, as for example
in the generation of a look-up table. Note, however, that a good initial value is needed.

According to these existing methods, we now want to obtain a formula for the inverse radial
distortion when modelled by a polynomial form as described by Brown. The inverse polynomial form
will be an expression of the original k1...k4 coefficients of the original distortion.

3. Exact Formula for Inverse Radial Distortion: An Original Approach

3.1. Lens Distortion Models

We consider the general model of distortion correction or distortion removal that can be written
in the following form by separating radial and tangential/decentering components:

x′ = x + x̄
(
k1r2 + k2r4 + k3r6 + ...

)
+
[

p1
(
r2 + 2x̄2)+ 2p2 x̄ȳ

](
1 + p3r2 + ...

)
(1)

y′ = y + ȳ
(
k1r2 + k2r4 + k3r6 + ...

)︸ ︷︷ ︸
Radial Distorsion

+
[

p2
(
r2 + 2ȳ2)+ 2p1 x̄ȳ

](
1 + p3r2 + ...

)
︸ ︷︷ ︸

Tangential Distorsion

(2)

where x̄ = x− x0, ȳ = y− y0, r =
√

x̄2 + ȳ2.
In the following we will consider only radial distortion.

3.2. General Framework

Given a model of distortion or correction with parameters (k1, k2, k3, ...), our general objective is
to find the inverse transformation. A natural assumption is to express the inverse transformation on
the same form of the direct transformation, i.e., with parameters (k′1, k′2, k′3, ...). Therefore we want to
express each k′i as a function of all the k j .

Radial distortion

Let us assume that there exists two transformations T1 and T2 :

T1 :

(
x
y

)
−→

(
x′

y′

)
= P(r)

(
x
y

)
(3)

T2 :

(
x′

y′

)
−→

(
x
y

)
= Q(r′)

(
x′

y′

)
(4)

where r =
√

x2 + y2, r′ =
√

x′2 + y′2, and P and Q are power series:

P(r) :=
+∞

∑
n=0

anr2n (5)

Q(r′) :=
+∞

∑
n=0

bnr′2n (6)
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with a0 = 1, a1 = k1,..., an = kn (in order to use k as an index in the calculus of the Appendix).
In addition to starting at n = 0 we facilitate those calculi. We can scale r′ as r′ = αr in order to have the
same domain of definition for P and Q. So Q reads:

Q(r′) =
+∞

∑
n=0

b′nr2n (7)

with b′n = bnα2n. In the following bn is used instead of b′n but we keep in mind this change of variable.
Given the definition of r and by using transformation T2 in Equation (4) we obtain:

r = r′|Q(r′)|

and similarly with Equation (3):
r′ = r|P(r)|

P and Q are positive which allows removing the absolute value. Hence by injecting the last equation
in the first we get:

r = rP(r)Q
(
rP(r)

)
and at the end:

1 = P(r)Q
(
rP(r) (8)

It is possible to derive a very general relation between coefficients an and bn but it is not exactly
adapted to real situations where P is a polynomial of finite order. Therefore we can derive a slightly
simpler relationship in the case where only a1, ..., a4 are given. It is summarized in the following result:

Proposition 1. Given the sequence a1, ..., a4 it is possible to obtain the recursive relation:

b0 = 1 and for n ≥ 0 bn = −
4

∑
k=1

akq(n− k)− ∑
j+k=n

0≤k
1≤j≤8k

bk p(j, 2k) (9)

where we use the following intermediate coefficients:

p(j, k) = ∑
n1+...+nk=j

0≤ni≤4

an1 ...ank

q(k) = −
4

∑
j=1

ajq(k− j)

We will derive this expression in Appendix A and show how the coefficients b1, ..., bn can be
computed both with symbolic and numeric algorithms in Appendix B.

Several remarks can be made about this result:

Remark 1

The problem is symmetric in terms of P and Q, so the relations found for an can of course be
applied in the reverse order.

Remark 2

For any n the coefficient bn can be computed recursively. In Equation (9), the first summation is
obtained thanks to a0, ..., a4 and q(n− 1), ..., q(n− 4) that only depends on the sequence an. Similarly
the second summation involves b0, ..., bn−1 and values p(j, 2k) which both depend only the given
sequence an.
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Therefore the recursive formula for bn can be implemented at any order n. We provide the
4 first terms:

b1 = −a1 (10)

b2 = 3a2
1 − a2 (11)

b3 = 8a1a2 − 12a3
1 − a3 (12)

b4 = 55a4
1 + 10a1a3 − 55a2

1a2 + 5a2
2 − a4 (13)

All formula till b9 are summarized in Appendix C.

4. Results and Experimental Section

In this section we propose three experiments to test this inverse formula for radial distortion in
order to evaluate the relevance of such approach.

• First, we begin by testing the accuracy of the inverse formula by applying the forward/inverse
formula recursively within a loop. Hence, the inverse of the inverse radial distortion is computed
10,000 times and compared to the original distortion coefficients.

• Then, for a given calibrated camera, we compute the residual after applying and compensating
the distortion along the camera frame. A residual curve shows the results of the inverse camera in
all the frame.

• The last experiment is the use of inverse distortion model on a image made with a metric camera
built with a large eccentricity (a film-based Wild P32 camera), without distortion. We apply a
strong distortion and then compensate it and finally compare it to the original image.

4.1. Inverse Distortion Loop

In this experiment, as the formula gives an inverse formula for radial distortion we do it twice
and compare the final result with the original one. In a second step, we iterate this process 10,000 times
and compare the final result with the original distortion.

The Table 1 shows the original radial distortion and the computed inverse parameters. The original
distortion is obtained by using PhotoModeler to calibrate a Nikon D700 camera with a 14 mm lens
from Sigma.

Table 1. Radial distortion calibration in Column two. Column three, inverse of radial distortion with
coefficient from k1...k9.

Radial Distortion Coefficients Original Value Computed Inverse Value

k1 1.532× 10−4 1.532× 10−4

k2 −9.656× 10−8 1.6697072× 10−7

k3 7.245× 10−11 −2.33941625216× 10−10

k4 0.0 3.1255518770316804× 10−13

k5 0.0 −4.774156462972984× 10−16

k6 0.0 7.680785197322419× 10−19

k7 0.0 −1.1582853960835112× 10−21

k8 0.0 2.1694555835054252× 10−24

k9 0.0 −3.779164309884112× 10−27

The results for this step are presented in Table 2. In the columns ‘Delta Loop 1’ and ‘Delta Loop
10000’ we can see that k1 and k2 did not change and the delta on k3 and k4 are small with respect to the
corresponding coefficients: the error is close to 1E-10 smaller than the corresponding coefficient. Note
that k4 was not present in the original distortion and as the inverse formula is in function of only k1...k4,
the loop is computed without the coefficients k5...k9 which influences the results, visible from k4.
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Table 2. Radial distortion inverse loop and residual between coefficients of the orignal distortion and
after n inversions (n = 2 and n = 10,000).

Coefficient Original Inverse 1 Delta Loop 1 Delta Loop 10,000

k1 1.532× 10−4 −1.532× 10−4 0.0 0.0
k2 −9.656× 10−8 1.6697072× 10−7 0.0 0.0
k3 7.245× 10−11 −2.33941625216× 10−10 1.292469707114× 10−26 1.292469707× 10−26

k4 0.0 3.1255518770316804× 10−13 1.009741958682× 10−28 1.009842932× 10−24

This first experiments shows the inverse property of the formula and of course not the relevance
of an inverse distortion model. But this experiment shows also the high stability of the inversion
process. However, even if coefficients k1...k4 are sufficient in order to compensate distortion, the use of
coefficients k1...k9 are important for the inversion stability.

The next two experiments show the relevance of this formula for the inverse radial
distortion model.

4.2. Inverse Distortion Computation onto a Frame

This second experiment uses a Nikon D700 equipped with a 14 mm lens from Sigma. This
camera is a full frame format, i.e., a 24 mm × 36 mm frame size. The camera was calibrated using
PhotoModeler and the inverse distortion coefficients are presented in Table 1, where Column 1 gives
the calibration result on the radial distortion, and Column 2 the computed inverse radial distortion.

Note that the distortion model provided by the calibration using PhotoModeler gives as a result a
compensation of the radial distortion, in millimeters, limited to the frame.

The way to use this coefficient is to first express a 2D point on the image in the camera reference
system, in millimeters, with the origin on the CoD (Center of Distortion), close to the center of the
image. Then the polynomial model is applied from this point.

The inverse of this distortion is the application of such a radial distortion to a point theoretically
projected onto the frame.

In all following experiments, the residuals are computed as follows:
A 2D point p, is chosen inside the frame, its coordinate are previously computed in millimeters in

the camera reference system with the origin on the CoD. Then p1 is p compensated by the inverse of
distortion. Finally p2 is p1 compensated by the original distortion.

The residual is the value dist(p, p2) .
The following results show the 2D distortion residual curve. For a set of points on the segment

[O, max X/2] the residuals are computed and presented in Figure 4 as Y-axis. The X-axis represents
the distance from the CoD. These data comes from the calibration process and are presented in Table 1.

The results shown in Figures 4 and 5 are given in pixels.
In Figure 4a, below, we present the residuals using only coefficients k1..k4 of the inverse distortion.

The maximum residual is close to 4 pixels, but residuals are less than one pixel until close to the frame
border. This can be used when using non configurable software where it is not possible to use more
than 4 coefficients for radial distortion modeling.

In Figure 4, below, we present the residual computed from 0 to max X frame using coeficients
k1...k9 for inverse distortion.

The results are very good, less than 0.07 pixel on the frame border along 0X axis and the
performance is quite the same as for compensating the original distortion.

We can see that in almost all the images the residuals are close to the ones presented in Figure 5.
Nevertheless, we can observe in Figure 4 higher residual in the corners, where the distance to the CoD
is the greatest.
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(a)

(b)

Figure 4. Inverse residual distortion with k1..k9 Coefficient Computed for the entire frame. (a) Inverse
residual distortion with k1...k4 Coefficient Computed from 0 to max X frame; (b) Inverse residual
distortion with k1..k9 Coefficient Computed from 0 to max X frame.



Sensors 2016, 16, 807 10 of 18

(a) (b)

Figure 5. Inverse residual distortion with k1...k9 coef. Computed on the entire frame. (a) Axonometric
view; (b) Top view.

Here follows a brief analysis of the residuals:
These two experiments show that the results are totally acceptable even if the residuals are higher

in zone furthest from the CoD, i.e., in the diagonal of the frame. As shown in Table 3, only 2.7 % of the
frames have residuals > 1 pixel.

Table 3. Residuals on the full frame format.

Pixel by Residual Nb Concerned Pixel

Pixels 10,000.0
Pixels with residual < 0.2 9344.0 (93.44 %)
Pixels with residual < 1.0 9732.0 (97.32 %)
Pixels with residual > 1.0 268.0 (2.68 %)

4.3. Inverse Distortion Computation on an Image Done with a Metric Camera

This short experiment used an image taken with a Wild P32 metric camera in order to work
on an image without distortion. The Wild P32 terrestrial camera is a photogrammetric camera
designed for close-range photogrammetry, topography, architectural and other special photography
and survey applications.

This camera was used as film based, the film is pressed onto a glass plate fixed to the camera
body on which 5 fiducial marks are incised. The glass plate prevents any film deformation.

The film format is 65 mm× 80 mm and the focal length, fixed, is 64 mm. Designed for architectural
survey the camera has a high eccentricity and the 5 fiducial marks were used in this paper to compute
the CoD. In Figure 6a four fiducial marks are visible (the fifth is overexposed in the sky). The fiducial
marks are organized as follows: one at the principal point (PP), three at 37.5 mm from the PP
(left,right,top) and one at 17.5 mm (bottom).

This image was taken in 2000 in the remains of the Romanesque Aleyrac Priory, in northern
Provence (France) [42]. Its semi-ruinous state gives a clear insight into the constructional
details of its fine ashlar masonry as witnessed by this image taken using a Wild P32 during a
photogrammetric survey.

As this image did not have any distortion, we used a polynomial distortion coming from another
calibration and adapted it to the P32 file format (see Table 4). The initial values of the coefficients
have been conserved and the distortion polynom expressed in millimeters is the compensation due at
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any point of the file format. The important eccentricity of the CoD is used in the image rectification:
the COD is positioned on the central fiducial marks visible on the images in Figure 6a,b.

(a) (b)

Figure 6. Distortion-less image taken using a small-format Wild P32 metric camera and application of
an artificial distortion. (a) On the left, original image taken with P32 Wild metric camera; (b) On the
right, pincushion distortion applied on this original image whithout interpolation. As images have
not the same pixel size some vacant pixel are visible as black lines (see Hughues [32]). These lines
surround the distortion center, here located on a fiducial mark, strongly shifted from the image center.

After scanning the image (the film was scanned by Kodak and the result file is a 4860 × 3575 pixel
image), we first measure the five fiducial marks in pixels on the scanned image and then compute
an affine transformation to pass from the scanned image in pixels to the camera reference system
in millimeters where the central cross is located at (0.0, 0.0). This is done according to a camera
calibration provided by the vendor, which gives the coordinates of each fiducial mark in millimeters
in the camera reference system. Table 5 shows the coordinates of the fiducial marks and highlights
the high eccentricity of the camera built for architectural survey. This operation is called internal
orientation in photogrammetry and it is essential when using images coming from film-based camera
that were scanned. The results of these measurements are shown in Table 5.

In Figure 6a we can see the original image taken in Aleyrac while in the Figure 6b we can see
the result of the radial distortion inversion. Figure 7 shows the original image in grey and the image
computed after a double inversion of the radial distortion model in green.

We can observe no visible difference in the image. This is correlated with the previous results in
the second experiment, see Figure 4.

Table 4. Radial distortion comensation and then application of the inverse used with the image taken
with the P32 camera.

Coef. Original Inverse

k1 0.09532 −0.09532
k2 −9.656× 10−8 0.02725780376
k3 7.245× 10−11 −0.010392892306459602
k4 0.0 0.004540497555744342
k5 0.0 −0.0021482705738196948
k6 0.0 0.0010711249019932042
k7 0.0 −5.542464764540273× 10−4

k8 0.0 2.948490225469636× 10−4

k9 0.0 −1.6024842649677896× 10−4
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Table 5. Photograph taken with the Wild P32 camera: data and some results of the Internal Orientation.

Param. X Value Y Value

mm 2 Pixel 58.885 58.885
Frame size in pixel 4860 3575
Frame size in mm 82.54 60.71

CoD, ppx ppy (pixel) 2423.212 2377.528
Fiducial mark-up- (mm) 0.0 37.5

Fiducial mark-right- (mm) 37.5 0.0
Fiducial mark-down- (mm) 0.0 −17.5

Fiducial mark-left- (mm) −37.5 37.5
Fiducial mark-center- (mm) 0.0 0.0

Figure 7. Distortion compensation applied on the pincushion image obtained in Figure 6b. In green
the image corrected by inverse distortion; in black and white the original image.

5. Conclusions and Discussion

The experiments presented in this article show the relevance of the proposed methodology and
the reliability of the result. However, a significant difference exists depending on whether the set of
coefficients k1...k4 or k1...k9. For large distortion the number of parameters should be significant. See
Figures 4 and 5 for the influence of the number of coefficients. We can note that since the formulation
by Brown, the number of coefficients used to characterize the distortion has increased. In 2015 the
Agisoft company added k4 in their radial distortion model while at the same time many software still
use only k1, k2 and in 2016 they add p3 and p4 to the tangential distortion model.

Even when k1...k4 are sufficient for compensating the radial distortion, it is however necessary to
increase the degree of the polynomial to correctly compute the inverse.

5.1. A Bridge between PhotoModeler and Agisoft for Radial Distortion

One of the applications for using such a formula to compute the inverse distortion coefficient in
function of k1...k4 is to convert distortion models between two software programs that use the inverse
distortion model, as for example PhotoModeler and PhotoScan from Agisoft. Indeed PhotoModeler
uses the Brown distortion model to compensate for observations made on images and so to obtain a
theoretical observation without distortion effect. In contrary, PhotoScan from Agisoft uses a similar
model but it adds the distortion to a point projected onto the image. To convert a distortion model
from PhotoModeler to PhotoScan, or vice versa, we need to compute the inverse distortion model.
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We need to take in consideration the unit used to express the 2D point coordinate: in PhotoModeler
the points are measured in millimeters and their range is limited to the camera frame; whereas in
PhotoScan, the points are normalized by the focal length.

To convert a distortion model from PhotoModeler to PhotoScan the following steps are necessary:

1. Given k1...k3 as the coefficients of the polynom modeling the radial distortion in PhotoModeler.
Note that PhotoModeler uses only k1...k3 coefficient.

2. k1 = k1 ∗ f ocalmm2

k2 = k2 ∗ f ocalmm4

k3 = k3 ∗ f ocalmm6

3. Compute k′1...k′4 (PhotoScan uses k4) according to Appendix C.

And to obtain the k1...k3 for PhotoModeler starting from k1..k4 given by PhotoScan we need:

1. Given k1...k4 as the coefficient of the polynom modeling the radial distortion in PhotoScan.
2. k1 = k1/ f ocalmm2

k2 = k2/ f ocalmm4

k3 = k3/ f ocalmm6

k4 = k4/ f ocalmm8

3. compute k′1...k′3 (PhotoModeler uses k3) according to Appendix C.

The proposed approach in this article allows to compute the new coefficients in function of k1...k4

5.2. Possible Limitations

Our results on inverse residual distortion suggests a decrease with the order of approximation.
In the future it could be interesting to determine some analytical bounds on the maximal residual
distortion. This bound would depend on the distortion coefficients k1, k2, k3, k4, maxX and the order
N. The crucial question would be to know whether this bound converges when N goes to infinity.
This is absolutely not guaranteed since the formula of proposition 1 has been obtained by purely
formal manipulations and the power series Q could be divergent (which implies the divergence of
the residual). In this case, one could however expect good behavior, similarly to formal solutions of
differential equations, whose approximations can be controled for r < R until a bound N depending
on R [43] (It is also explained more briefly in [44], Section 3 page 103). At a given N one could also
expect that this bound will decrease if the distortion given by P is decreased.

We thought such technical questions may be of great interest, both from a mathematical
perspective as well as an applied one. Obtaining theoretical results on the inverse residual distortion
might influence the software community in adding more coefficients in the polynomial models.
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Appendix A

In Equation (8) we replace P and Q by their power series in order to identify coefficients

1 =
+∞

∑
m=0

amr2m
+∞

∑
n=0

bn
(
rP(r)

)2n

For k fixed P(r)k can be rewritten as a product:
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P(r)k =
4

∑
n1=0

an1 r2n1 ...
4

∑
nk=0

ank r2nk

which gives a more compact expression

P(r)k =
4k

∑
m=0

r2m ∑
n1+...+nk=m

0≤ni≤4

an1 ...ank =
4k

∑
m=0

r2m p(m, k)

Note that p(m, k) = 0 as soon as m > 4k. Then we obtain:

Q
(
rP(r)

)
=

+∞

∑
n=0

bnr2n
8n

∑
m=0

r2m p(m, 2k)

Q
(
rP(r)

)
=

+∞

∑
k=0

r2k ∑
m+n=k

0≤n
0≤m≤8n

bn p(m, 2n)

︸ ︷︷ ︸
t(k)

Let us call t(k) the coefficient in the previous sum. Actually t(k) will turn out to be q(k), defined
in Proposition 1. Last we can express the initial equality P(r)Q

(
r(P(r)

)
= 1:

+∞

∑
k=0

akr2k
+∞

∑
j=0

r2jt(j) = 1

+∞

∑
l=0

r2j ∑
k+j=l

akt(j) = 1

To obtain the equality:
l

∑
k=0

akt(l − k) = 0 for l ≥ 1

We decompose this sum:

a0t(l) +
l

∑
k=1

akt(l − k) = 0

and since a0 = 1 we conclude that t(l) satisfy the same recurrence relationship as q in Proposition 1. The
two quantities are therefore equal since they have the same initial value. We have also an alternative
expression for q given by the definition of t depending on bn and p(m, 2n) that gives:

bk p(0, 2k) + ∑
m+n=k

0≤n
1≤m≤8n

bn p(m, 2n) = t(k)

By remarking that p(0, 2k) = 1 we obtain Proposition 1.

Appendix B

There are two ways of implementing the result of Proposition 1. One can be interested in having
a symbolic representation of coefficients bn with respect to a1, a2, a3, a4. But one can also simply obtain
numeric values for bn given numeric values for an.

The main ingredient in both cases is to compute efficiently the coefficients p(j, k). One can start
by the trivial result that if n1 + ... + nk = j then n1 + ... + nk−1 = j− nk. But nk can take only 5 values
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between 0 and 4 (there are no other coefficient an in our case). Therefore one can easily derive the
recursive identity:

p(j, k) = p(j, k− 1) + a1 p(j− 1, k− 1) + a2 p(j− 2, k− 1) + a3 p(j− 3, k− 1) + a4 p(j− 4, k− 1)

To compute bn we need coefficients p(j, 2k) with the constraints j + k = n, 0 ≤ k and 1 ≤ j ≤ 8k.
A table (n− 1)× 2(n− 1) is defined and coefficients are progressively filled by varying the coefficient
k from 1 to 2(n− 1) thanks to dynamic programming. This step is summarized in Algorithm B1.

Algorithm B1 Computation of p(j, k)
Require: coefficients a1, a2, a3, a4, integer N

Define an array p of size N × 2N − 1
for k = 0 : 2(N − 1) do

p(0, k) = 1
end for
for k = 1 : 2(N − 1) do

for j = 1 : 2(N − 1) do
p(j, k) = p(j, k− 1) + a1 p(j− 1, k− 1) + a2 p(j− 2, k− 1) + a3 p(j− 3, k− 1) + a4 p(j− 4, k− 1)

. With p(j, k) = 0 as soon as j < 0 or k ≤ 0
end for

end for
return p

The most tricky aspect is to manipulate formal terms with a1, a2, a3, a4. For that it is good to remark
that coefficients bn are made of terms an1

1 an2
2 an3

3 an4
4 such as n1 + 2n2 + 3n3 + 4n4 = n. We can therefore

have an a priori bound on each exponents, n, n/2, n/3, n/4 respectively. Given that, each multinomial
term can be represented as a coefficient in a 4D array of bounded size. It is also very convenient to use a
sparse representation for it due to many vanishing terms. Addition of terms are simply additions of 4D
arrays of size bounded by n4. Multiplication requires shifting operations on dimensions of the array,
basically multiplying by an1

1 corresponds to a translation by n1 of the first dimension.

Algorithm B2 Computation of coefficients bn

Require: coefficients a1, a2, a3, a4, integer N
Define an array q = [0, 0, 0, 0]
Define an array b of size N
b(0) = 1
Compute p with Algorithm B1
for n = 1 : N do

tmp = 0
for k = 1 : 4 do

tmp = tmp− akq(k− 1)
end for
b(n) = b(n) + tmp
for k = n/9 : (n− 1) do

b(n) = b(n)− b(k)p(n− k, 2k)
end for
q(1 : 3) = q(0 : 2) and q(0) = tmp

end for
return b
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We summarize the computation (Algorithm B2).

Appendix C

Here are the formula for the nine first coefficients bn. Note that there are no more coefficients −kn

for bn, when n ≥ 5, since kn = 0.

b1 = −k1

b2 = 3k2
1 − k2

b3 = −12k3
1 + 8k1k2 − k3

b4 = 55k4
1 − 55k2

1k2 + 5k2
2 + 10k1k3 − k4

b5 = −273k5
1 + 364k3

1k2 − 78k1k2
2 − 78k2

1k3 + 12k2k3 + 12k1k4

b6 = 1428k6
1 − 2380k4

1k2 + 840k2
1k2

2 − 35k3
2 + 560k3

1k3 − 210k1k2k3 + 7k2
3 − 105k2

1k4 + 14k2k4

b7 = −7752k7
1 + 15504k5

1k2 − 7752k3
1k2

2 + 816k1k3
2 − 3876k4

1k3 + 2448k2
1k2k3 − 136k2

2k3 − 136k1k2
3

+ 816k3
1k4 − 272k1k2k4 + 16k3k4

b8 = 43263k8
1 − 100947k6

1k2 + 65835k4
1k2

2 − 11970k2
1k3

2 + 285k4
2 + 26334k5

1k3 − 23940k3
1k2k3

+ 3420k1k2
2k3 + 1710k2

1k2
3 − 171k2k2

3 − 5985k4
1k4 + 3420k2

1k2k4 − 171k2
2k4 − 342k1k3k4 + 9k2

4

b9 = −246675k9
1 + 657800k7

1k2 − 531300k5
1k2

2 + 141680k3
1k3

2 − 8855k1k4
2 − 177100k6

1k3

+ 212520k4
1k2k3 − 53130k2

1k2
2k3 + 1540k3

2k3 − 17710k3
1k2

3 + 4620k1k2k2
3 − 70k3

3 + 42504k5
1k4

− 35420k3
1k2k4 + 4620k1k2

2k4 + 4620k2
1k3k4 − 420k2k3k4 − 210k1k2

4
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