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Abstract: The sensitivity to both calibration errors and mutual coupling effects of the power pattern

radiated by a linear array is addressed. Starting from the knowledge of the nominal excitations of

the array elements and the maximum uncertainty on their amplitudes, the bounds of the pattern

deviations from the ideal one are analytically derived by exploiting the Circular Interval Analysis

(CIA). A set of representative numerical results is reported and discussed to assess the effectiveness

and the reliability of the proposed approach also in comparison with state-of-the-art methods and

full-wave simulations.
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1. Introduction

Phased arrays [1] are complex antenna systems whose implementation is a multi-step process

starting from a preliminary design aimed at setting the main antenna characteristics (e.g., the size

and the ideal current distribution) complying the project requirements, then followed by a detailed

synthesis of the architecture, the feeding network, and the control logic before proceeding towards the

prototype fabrication and its experimental characterization. The need to shorten the time-to-market

and the ever increasing request of high-performance in current applications today (e.g., radars and

communications) are pushing the development of reliable and robust analysis and synthesis tools

able to predict (for defining suitable countermeasures or choosing alternative architectural solutions)

the impacts on the actual radiated pattern of uncertainties and/or fabrication errors caused by the

non-correspondence of the antenna model with its real implementation, thus minimizing expensive

tuning procedures or re-design steps.

Originally, phased array synthesis methods [2,3] considered error-free isotropic elements to

determine the values of the element excitations (i.e., amplitudes and phases) generating the desired

beam pattern. However, fabrication and calibration errors, uncertainties, and mutual coupling (MC)

effects are present in real systems, and they unavoidably cause non-negligible deviations from the

ideal antenna behavior. In order to predict these, several methodologies a priori modeling the effects

of mechanical or manufacturing errors [4–7] as well as the MC effects [8–10] have been proposed.

A common strategy is that of computing the configuration of the actual excitation weights as the

product between the ideal ones and the coupling matrix [11], the main issue to be addressed being

the accurate definition of the coupling model. Towards this aim, very accurate numerical techniques

based on the method of moments have been presented [12,13], but unfortunately they generally
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turn out to be computationally expensive and usually they require customization to each type of

array element. To define more general and efficient tools, even though less reliable, approximated

methods have been also introduced in [14,15] where the currents induced on the array elements by

the coupling effects are computed through analytic relationships. Recently, an alternative strategy

has been described in [16] aimed at predicting the worst-case bounds of the radiated beam pattern by

exploiting the Cauchy–Schwartz (CS) inequality and starting from the knowledge of the calibration

errors (i.e., the tolerances on the excitations due to the manufacturing imperfections of the devices

composing the feeding network) and the coupling coefficients modeling the effects of the energy

interchange among neighboring array elements.

Dealing with calibration errors, it is also worth mentioning a method based on Interval Analysis

(IA) [17] devoted to determining the bounds of the deviations from the ideal/nominal power

pattern in the case of both discrete (i.e., antenna arrays [18–22]) and continuous (i.e., reflector

antennas [23,24]) apertures. The IA is a mathematical framework based on a set of arithmetic

rules and properties, which allows operation and function evaluations when the arguments are

intervals instead of crisp values, just involving the endpoints of the interval arguments and thus

minimizing the computational costs to yield reliable and robust interval bounds as guaranteed

by the Inclusion Theorem of IA [17,25]. Therefore, IA proved to be very suitable in all problems

where physical quantities (e.g., uncertainties, errors, and irregularities) are modeled as intervals of

unknown/random deviations from a nominal value.

In this work, an innovative IA-based approach to the sensitivity analysis of transmit antenna

arrays in the presence of calibration errors and MC effects, as in [16], is presented. The circular version

of the IA (CIA) [26] is exploited here for the first time to the best of the authors’ knowledge, since it is

more adaptable for dealing with the effects on the pattern bounds of both amplitude and phase errors

in the array excitations than the Cartesian IA (hereinafter called rectangular IA-RIA) used in previous

works [18–21,23,24].

The outline of the paper is as follows. The problem is mathematically formulated in

Section 2 where the analytic expressions of the dependence of the pattern bounds on the calibration

uncertainties and mutual coupling effects are determined by means of the CIA-based approach, as

well. A set of representative numerical results is reported in Section 3 to illustrate the behavior and

the performance of the proposed sensitivity tool also in comparison with state-of-the-art methods

(Section 3.1) and the results from a full-wave commercial solver (Section 3.2). Eventually, some

conclusions are drawn (Section 4).

2. Mathematical Formulation

Let us consider a linear antenna array of N isotropic elements uniformly-spaced (d being the

inter-element distance) along the x-axis. In an ideal case (i.e., isotropic radiators without errors on

the excitation weights), the nominal array factor is mathematically expressed as a function of the

observation angle θ ∈
[

−π
2 ; π

2

]

as [1,3]:

AFNom (θ) =
1

χ

N

∑
n=1

wnejk(n−1)dsinθ (1)

where wn, n = 1, ..., N is the set of the nominal (amplitude and phase) weights, k = 2π
λ is the

free space wavenumber, λ being the wavelength, and χ = maxθ {|AFNom (θ)|} = ∑
N
n=1 |wn| is the

normalization coefficient.

Dealing with real antennas, the arising calibration errors and mutual coupling effects can be

modeled as amplitude and phase uncertainties on the excitations whose values turn out to be

w̃ = wT
(

C + I
)

(2)
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where w = {wn : n = 1, ..., N}, I is the identity matrix, T denotes the transpose operation, and C is

a complex-valued matrix of dimensions N × N, function of the scan angle [1,3], whose entries along

the principal diagonal, cn,n , γn, n = 1, ..., N, are the calibration error coefficients, while the others

are the mutual coupling terms, ci,j , ξi,j, i, j = 1, ..., N, i 6= j [16]. Then, the actual expression of the

array factor is given by

AFAct (θ) =
1

χ

N

∑
n=1

w̃nejk(n−1)dsinθ (3)

By considering the amplitude and the phase deviations from the nominal excitations

(wn, n = 1, ..., N) due to the calibration errors and mutual coupling effects both quantified by complex

coefficients (i.e., ci,j, i, j = 1, ..., N), let us model the mathematical uncertainty on the knowledge of the

n-th array element excitation as a circle in the complex plane centered at wn with radius ρn (Figure 1).

Such a circle encloses all possible values that the n-th (n = 1, ..., N) actual weight w̃n can assume

regardless of the exact knowledge of the phase and the amplitude errors, while assuming a maximum

amplitude uncertainty ρn equal to [16]

ρn = |γn|+
N

∑
j=1,j 6=n

∣

∣ξn,j

∣

∣ , n = 1, . . . , N (4)

wn

w̃n

Re(wn)

Im(wn)

Re(w)

Im(w)

ρn

wn

Figure 1. Interval Analysis (IA)-based approach—complex circular interval.

In an effective and compact representation, the whole set of admissible actual excitations can be

represented as circular intervals (Appendix A) [26],

wn = 〈wn; ρn〉 , n = 1, . . . , N (5)

univocally described by their barycenters, wn, n = 1, ..., N (i.e., the nominal coefficients), and radii,

ρn, n = 1, ..., N (i.e., the maximum amplitude errors). By substituting Equation (5) into Equation (3),

the interval array factor for a given θ turns out to be:

AF (θ) =
1

χ

N

∑
n=1

wnejk(n−1)dsinθ (6)

the sum of N circular intervals, each one given by

AFn (θ) = wnejk(n−1)dsinθ (7)
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Since Equation (7) is the product of a circular interval wn to a complex value (i.e., the exponential

term), its explicit expression is determined according to Appendix B1

AFn (θ) =
〈

wnejk(n−1)dsinθ;
∣

∣

∣
ejk(n−1)dsinθ

∣

∣

∣
ρn

〉

=
〈

wnejk(n−1)dsinθ; ρn

〉

(8)

and the interval array factor in Equation (6) results in (Appendix B2 )

AF (θ) =
1

χ

N

∑
n=1

AFn (θ)

=
1

χ

N

∑
n=1

〈

wnejk(n−1)dsinθ; ρn

〉

(9)

=

〈

1

χ

N

∑
n=1

wnejk(n−1)dsinθ;
1

χ

N

∑
n=1

ρn

〉

whose expression through Equation (1) is

AF (θ) =

〈

AFNom(θ);
1

χ

N

∑
n=1

ρn

〉

(10)

As it can be noticed from Equation (10), the interval function AF (θ), θ ∈
[

−π
2 ; π

2

]

is a

complex-valued circular interval of center AFNom (θ) and radius equal to the maximum amplitude

uncertainty, ∑
N
n=1 ρn.

In order to determine the analytic expression of the interval power pattern, P(θ) , |AF (θ)|2,

the module of Equation (10) has to be firstly defined. By exploiting Appendix B3, the latter is equal to

|AF (θ)| =
[

|AF (θ)|In f ; |AF (θ)|Sup

]

(11)

where

|AF (θ)|In f = max

{

|AFNom (θ)| −
1

χ

N

∑
n=1

ρn; 0

}

(12)

and

|AF (θ)|Sup = |AFNom (θ)|+
1

χ

N

∑
n=1

ρn (13)

Finally, P (θ) =
[

PIn f (θ) ; PSup (θ)
]

is yielded by determining the analytic expressions of

its bounds as a function of the nominal array factor, AFNom (θ), and the uncertainty values ρn,

n = 1, ..., N. More specifically,

PSup (θ) = |AFNom (θ)|2 +

(

1

χ

N

∑
n=1

ρn

)2

+
2

χ
|AFNom (θ)|

N

∑
n=1

ρn (14)

and if |AFNom (θ)| > 1
χ ∑

N
n=1 ρn, then

PIn f (θ) = |AFNom (θ)|2 +

(

1

χ

N

∑
n=1

ρn

)2

−
2

χ
|AFNom (θ)|

N

∑
n=1

ρn (15)

otherwise

PIn f (θ) = 0 (16)
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3. Numerical Results

This section is devoted to the numerical validation of the proposed CIA-based sensitivity

analysis tool. Representative results will illustrate the behavior of the CIA in evaluating the impact

of calibration errors and mutual coupling effects (both modeled as amplitude and phase deviations

of the complex excitation coefficients) on the radiated power pattern. Moreover, the reliability and

the effectiveness of the proposed approach will also be analyzed through a comparative assessment

carried out taking into account competitive state-of-the art approaches, namely the method recently

proposed in [16] and based on the Cauchy-Schwartz inequality, as well as the rectangular version of

the IA. Furthermore, the predictions from the CIA technique will be evaluated with respect to the

full-wave simulation of a real array performed with a commercial software.

3.1. Validation and Comparative Assessment

As a benchmark test case, let us consider a linear antenna array made of N = 8 isotropic elements

equally-spaced by d = λ
2 . The nominal excitations wn, n = 1, ..., N, shown in Figure 2 and reported

in Table 1, have been chosen to afford a Dolph–Chebyshev pattern with a side lobe level equal to

SLLre f = −20 dB [1,3]. The first example considers the array affected by calibration errors (i.e., ci,j = 0,

∀i, j = 1, ..., N, i 6= j) of values given as a percentage, cn,n = γn, of the corresponding nominal

excitation (Table 1—Calibration Error). Figure 3 shows the bounds of the interval power pattern

P (θ) predicted with the CIA-based approach, the CS-based method [16], and the RIA along with the

nominal plot. As a first consistency check, let us notice that whatever the method (CIA, CS, and RIA)

the arising bounds include the nominal pattern. Moreover, the CIA bounds turn out to be tighter

than those from the RIA (Indeed, the RIA excitations intervals, wRIA
n , n = 1, ..., N are by definition

the smallest complex-valued rectangles enclosing the corresponding circular intervals Equation (5),

namely wCIA
n ∈ wRIA

n . Because of the Inclusion property of IA [17,25], the same condition holds true

for the corresponding power patterns, P(θ)CIA ∈ P(θ)RIA), as expected, but also narrower than those

from the CS (P (θ)CIA
Sup ≤ P (θ)CS

Sup ≤ P (θ)RIA
Sup and P (θ)CIA

In f ≥ P (θ)CS
In f ≥ P (θ)RIA

In f , θ ∈
[

−π
2 ; π

2

]

).

Of course, if the bound width is an index of the effectiveness of the prediction, on the other hand,

it is mandatory that the bounds are inclusive (i.e., Pq (θ) ∈ P (θ) ∀q being Pq (θ) ,

∣

∣

∣
AF

q
Act (θ)

∣

∣

∣

2

the power pattern radiated from the q-th setup of the actual excitations, ∀w̃
q
n ∈ wn, n = 1, ..., N).

In order to give an insight (An exhaustive proof of the inclusion property is unfeasible because of the

need of generating the power patterns radiated by the infinite number of combinations of the actual

excitations) on the reliability and the inclusiveness of CIA predictions, besides the theoretical support

from IA Inclusion Theorem [17,25], Q = 105 power patterns have been generated by randomly choosing

w̃
q
n, n = 1, ..., N within the corresponding circular intervals wn, n = 1, ..., N. Figure 4 confirms that all

Q patterns lay within the CIA bounds.
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Figure 2. Performance Analysis (N = 8, d = λ
2 ; Dolph–Chebyshev pattern:

SLLre f = −20 dB)—Amplitude of the nominal excitations.
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Figure 3. Calibration Error (N = 8, d = λ
2 ; Dolph–Chebyshev pattern: SLLre f = −20 dB)—Nominal

power pattern and interval power pattern bounds predicted by the the circular IA (CIA), the

rectangular IA (RIA), and the Cauchy-Schwartz-based method (CS) [16].
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Figure 4. Calibration Error (N = 8, d = λ
2 ; Dolph–Chebyshev pattern: SLLre f = −20 dB)—Plot

of Q = 105 Monte Carlo power patterns, Pq (θ), q = 1, ..., Q, along with the interval power pattern

bounds as computed by the CIA, the RIA , and the CS [16].
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Table 1. Calibration Errors, Adjacent and Multiple Mutual Coupling (N = 8, d = λ
2 ;

Dolph–Chebyshev pattern: SLLre f = −20 dB)—Nominal excitations (w = {wn : n = 1, ..., N}),

calibration error coefficients (cn,n , γn, n = 1, ..., N), and mutual coupling coefficients (ci,j , ξi,j,

i, j = 1, ..., N, i 6= j) [16].

Nominal Excitations

n 1 2 3 4 5 6 7 8
wn 0.0958 0.1060 0.1394 0.1588 0.1588 0.1394 0.1060 0.0958

Calibration Error

γn[%] 2 3 4 5 5 4 3 2

Adjacent Coupling

(i, j) (1, 2) (2, 3) (3, 4) (4, 5) (5, 6) (6, 7) (7, 8) −
ξi,j = ξ j,i [%] 3 5 7 9 7 5 3 −

Multiple Coupling

(i, j) (1, 2) (2, 3) (3, 4) (4, 5) (5, 6) (6, 7) (7, 8) −
ξi,j = ξ j,i [%] 3 5 7 9 7 5 3 −

(i, j) (1, 3) (2, 4) (3, 5) (4, 6) (5, 7) (6, 8) − −
ξi,j = ξ j,i [%] 0.2 0.3 0.4 0.5 0.4 0.3 − −

As for the pattern features, Figure 5 plots the endpoints (i.e., lower and upper bounds) of

the interval extensions of the sidelobe level (i.e., SLL—Figure 5a) [18], the half-power beamwidth

(i.e., BW—Figure 5b) [18], and the peak power (i.e., Pmax—Figure 5c) [23] along with the

corresponding nominal features as well as those of the Q randomly generated power patterns sorted

in ascending order. As it can be observed (Figure 5) and quantitatively assessed (Table 2—Calibration

Error), both the nominal and the Q samples are within their interval counterparts, while the CIA

bounds are always contained within those of the CS that in turn lie within the RIA ones, namely

ψRIA
In f ≥ ψCS

In f ≥ ψCIA
In f and ψCIA

Sup ≤ ψCS
Sup ≤ ψRIA

Sup with ψ = {SLL, BW, Pmax}. More in detail, the

accuracy on the prediction, namely the interval width ω (ψ) , ψSup − ψIn f , turns out to be improved

by more than 29% (ωCIA (SLL) = 7.10 dB vs. ωCS (SLL) = 10.11 dB and ωRIA (SLL) = 15.38 dB),

28% (ωCIA (BW) = 0.060 [u] vs. ωCS (BW) = 0.084 [u] and ωRIA (BW) = 0.108 [u]), and 26%

(ωCIA (Pmax) = 0.65 dB vs. ωCS (Pmax) = 0.88 dB and ωRIA (Pmax) = 1.03 dB) for the sidelobe

level (Table 2 – Figure 5a), the half-power beamwidth (Table 2 – Figure 5b), and the peak power

(Table 2 – Figure 5c), respectively.

Table 2. Calibration Errors, Adjacent and Multiple Mutual Coupling (N = 8, d = λ
2 ;

Dolph–Chebyshev pattern: SLLre f = −20 dB)—Pattern features of the nominal power pattern and

bounds of the interval power pattern features predicted by the CIA, the RIA, and the CS [16].

SLL (dB) BW (u = sinθ) Pmax(dB) ∆

Nominal −19.58 0.248 0.00 −
Calibration Error

CIA [−23.70; −16.60] [0.216; 0.276] [−0.33; 0.32] 0.1493
CS [−25.79; −15.68] [0.204; 0.288] [−0.45; 0.43] 0.2050

RIA [−29.00;−13.62] [0.192; 0.300] [−0.47; 0.56] 0.3487
Adjacent Coupling

CIA [−∞; −12.49] [0.148; 0.328] [−0.98; 0.88] 0.4373
CS [−∞; −9.88] [0.052; 0.368] [−1.55; 1.31] 0.6893

RIA [−∞; −7.13] [0.000; 0.428] [−1.42; 1.81] 1.1471
Multiple Coupling

CIA [−∞; −12.20] [0.140; 0.332] [−1.04; 0.93] 0.4619
CS [−∞; −9.54] [0.000; 0.376] [−1.63; 1.37] 0.7277

RIA [−∞; −6.71] [0.000; 0.440] [−1.51; 1.91] 1.2225
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To further highlight the accuracy of the CIA sensitivity analysis, the metric of the pattern tolerance

index △ [18]

△ =

∫
π
2

− π
2

(

P (θ)Sup − P (θ)In f

)

dθ

∫
π
2

− π
2
|AFNom(θ)|

2 dθ
(17)

has been evaluated. It turns out that the improvement in the power pattern prediction of the CIA with

respect to that from the CS and the RIA amounts to 27% and 57% (△CIA = 0.1493 vs. △CS = 0.2050

and △RIA = 0.3487), respectively.
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Figure 5. Calibration Error (N = 8, d = λ
2 ; Dolph–Chebyshev pattern: SLLre f = −20 dB)—Nominal

values of the pattern indexes and bounds of the intervals (a) SLL; (b) BW; and (c) Pmax as computed

by the CIA, the RIA , and the CS [16].

The next two test cases deal with excitations uncertainties due to mutual coupling

effects. More specifically, the second example is concerned with mutual interactions between

physically-adjacent array elements without calibration errors (cn,n = γn = 0, n = 1, ..., N). When the

coupling coefficients are given in Table 1 (Adjacent Coupling), the bounds of the interval power

pattern predicted with the CIA, the RIA, and the CS turn out to be those in Figure 6, while the

corresponding interval pattern indexes are reported in Figure 7 and Table 2. By keeping the analysis

limited to the comparison between the CIA and the CS results, the RIA bounds being over-estimated,

there is a non-negligible improvement with a reduction of more than 2.5 dB in the upper bound of

the secondary lobes (SLLCS
Sup = −9.88 dB vs. SLLCIA

Sup = −12.49 dB—Table 2 and Figure 7a) also with

respect to the previous example when SLLCS
Sup = −15.68 dB vs. SLLCIA

Sup = −16.60 dB. Moreover, the

advantages of using CIA are further highlighted by the reduction of 43% (ωCIA (BW) = 0.180 [u]

vs. ωCS (BW) = 0.316 [u]) and 35% (ωCIA (Pmax) = 1.86 dB vs. ωCS (Pmax) = 2.86 dB)
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of the interval width on the half-power beamwidth (Table 2 – Figure 7b) and the peak power

(Table 2 – Figure 7c), respectively.
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Figure 6. Adjacent Mutual Coupling (N = 8, d = λ
2 ; Dolph–Chebyshev pattern:

SLLre f = −20 dB)—Nominal power pattern and interval power pattern bounds predicted by the

CIA, the RIA, and the CS [16].
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Figure 7. Adjacent Mutual Coupling (N = 8, d = λ
2 ; Dolph–Chebyshev pattern:

SLLre f = −20 dB)—Nominal values of the pattern indexes and bounds of the intervals (a) SLL;

(b) BW; and (c) Pmax as predicted by the CIA, the RIA , and the CS [16].

Similar conclusions can be drawn in the third example when multiple coupling effects between

non-adjacent elements have also been taken into account. With reference to the coupling coefficients

in Table 1 (Multiple Coupling), the estimated power pattern bounds as well as the end-points of the



Sensors 2016, 16, 791 10 of 14

pattern features appear to be close to those yielded in the previous example as indicated by Figure 8

and Table 2, respectively.
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Figure 8. Multiple Mutual Coupling (N = 8, d = λ
2 ; Dolph–Chebyshev pattern:

SLLre f = −20 dB)—Nominal power pattern and interval power pattern bounds predicted by the

CIA, the RIA, and the CS [16].

As far as the computational issues are concerned, the CPU time required by the CIA running on a

standard 2.4 GHz laptop with 2 GB of RAM did not exceed 2× 10−2 s thanks to the analytic definition

of the P (θ) bounds, which does not imply neither numerical integrations but simple arithmetic

operations, nor several repeated computations as in Monte Carlo methods.

3.2. Prediction Accuracy Evaluation

The last example is aimed at giving some indications on the profitable use of the proposed

CIA-based sensitivity analysis tool for the design of realistic antenna arrays. Towards this end,

a linear array of N = 6 equally-spaced (d = 0.8λ) rectangular (L = 0.302λ and W = 0.395λ)

patches working at f = 10.0 GHz and fed with excitations generating a Dolph-Chebyshev pattern

with SLLre f = −30 dB [1,3] has been considered (Figure 9). The array elements were placed over a

dielectric substrate of total length Lsub = 5.5λ and width Wsub = 0.79λ characterized by a permittivity

εsub = 2.2 and thickness h = 0.053λ. Concerning the numerical modelling, the presence of real array

elements has been taken into account by means of the following element factor [15]

EF (θ) =
sin (πhcosθ) cos (πWcosθ)

πhcosθ
(18)

then re-defining the field generated by the array as follows

AFNom (θ) = EF (θ)×
1

χ

N

∑
n=1

wnejk(n−1)dsinθ (19)

Figure 10 shows the nominal (i.e., without mutual coupling, Equation (19)) power pattern, the

actual one as computed by FEKO [27], and the CIA-predicted interval power pattern bounds when

setting the coupling coefficients to the values provided by the full-wave solver and reported in Table 3.

First and foremost, it is worth pointing out that the actual pattern and the nominal one differ in a

non-negligible way with a quite evident deterioration of the secondary lobes as well as an overall

increment of their levels in the whole sidelobe region. Such an event strongly motivates the use

of a suitable sensitivity analysis tool during the array synthesis to a priori take into account (and

counteract) the undesired effects of uncertainties and errors. On the other hand, the actual pattern is

always below the CIA upper bound whatever the observation angle θ, but they turn out to be very
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close in both the mainlobe region and where there are non-negligible radiations (i.e., P (θ) > −30 dB).

For the sake of completeness, the pattern features of the nominal, actual, and interval solutions are

given in Table 4 to further confirm the reliability and potential usefulness of the CIA-based approach.

Figure 9. Array Geometry (N = 6, d = λ
2 )—Sketch of the linear array of rectangular patches.

Table 3. Full-Wave Simulation (N = 6, d = 0.8λ; Dolph–Chebyshev pattern:

SLLre f = −30 dB)—Mutual coupling coefficients.

(i,j) (1,2) (2,3) (3,4) (4,5) (5,6)

ξi,j [%] 3.23 3.76 4.37 3.87 3.46

ξi,j [%] 3.61 3.75 4.34 3.84 3.52

Table 4. Full-Wave Simulation (N = 6, d = 0.8λ; Dolph–Chebyshev pattern:

SLLre f = −30 dB)—Pattern features of the nominal power pattern and FEKO-computed

along with bounds of the interval power pattern features predicted with the CIA.

SLL (dB) BW (u = sinθ) Pmax (dB)

Nominal −26.20 0.236 0.00

Full − Wave −22.84 0.244 0.00

CIA [−∞; −19.38] [0.192; 0.276] [−0.47; 0.45]
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Figure 10. Full-Wave Simulation (N = 6, d = 0.8λ; Dolph–Chebyshev pattern:

SLLre f = −30 dB)—Nominal Equation (19) power pattern, FEKO [27]—computed power pattern,

and CIA-predicted power pattern bounds.
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4. Conclusions

An innovative method based on the CIA has been proposed for the sensitivity analysis of the

power pattern of linear antenna arrays in the case of calibration errors and mutual coupling effects.

The main contributions of this paper are:

• to the best of the authors’ knowledge, the first time exploitation of the CIA for the

sensitivity analysis in antenna arrays when uncertainties and mutual coupling arise in complex

(i.e., amplitude and phase) excitations coefficients;
• a compact and efficient definition of complex intervals in terms of their barycenters

(i.e., nominal/uncertainty-free values) and radii (i.e., maximum amplitude deviations);
• the definition of analytic power pattern bounds requiring neither the knowledge nor an

estimation of the phase deviations or uncertainties, but only based on the value of the nominal

array factor and the maximum amplitude error.

From the numerical analysis, it appears that:

• the CIA bounds are accurate and reliable as well as inclusive;
• the CIA-based tool provides a more accurate worst-case prediction of the power pattern

tolerances since the CIA bounds turn out to be narrower than those from [16] and the RIA;
• the CIA approach allows one a faithful a priori estimation of the behavior of actual power pattern

in the high-energy angular regions.
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CIA: Circular Interval Analysis

CS: Cauchy–Schwartz

IA: Interval Analysis

MC: Mutual Coupling

RIA: Rectangular Interval Analysis

Appendix A. Circular Interval Definition

A complex circular interval c = 〈b; ρ〉 is defined by the set

c = {a ∈ C : |a − b| ≤ ρ} (A1)

where C is the set of complex numbers, b is the interval barycenter, and ρ is the interval radius.

Appendix B. Circular Interval Arithmetics

The basic operations on circular interval numbers useful for the definition of the circular interval

functions of the array factor and power pattern are reported in the following [26]:

Appendix B.1. Product between Circular Intervals and Complex Numbers

The product between a complex circular interval c = 〈b; ρ〉, of center b and radius ρ, and a

complex number z is defined as

z c = 〈z b; |z| ρ〉 (B1)

and the result is still a circular interval centered at z b with radius |z| ρ.
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Appendix B.2. Sum of Circular Intervals

The sum of two complex circular intervals c1 = 〈b1; ρ1〉 and c2 = 〈b2; ρ2〉 is equal to (Figure B1):

c1 + c2 = 〈b1; ρ1〉+ 〈b2; ρ2〉

= 〈b1 + b2; ρ1 + ρ2〉 (B2)

and the result is a circular interval with center the sum of the interval centers, b1 + b2, and radius the

sum of the interval radii, ρ1 + ρ2.

Im

c1

ρ1

ρ2
c2

ρ

c

Re

ρ = ρ1 + ρ2

Im(b1)

Im(b)

Im(b2)

Re(b)

Re(b1)

Re(b2)

c = c1 + c2

Re(b) = Re(b1) +Re(b2)

Im(b) = Im(b1) + Im(b2)

Figure B1. IA-based Approach—Sum of circular intervals.

Appendix B.3. Module of a Circular Interval

The module of a circular interval c = 〈b; ρ〉, of center b and radius ρ, is a real-valued interval

defined as in [18]

|c| =
[

cin f ; csup

]

(B3)

cin f and csup being the lower and the upper bounds of the interval, equal to

cin f = max {|b| − ρ; 0} (B4)

and

csup = |b|+ ρ (B5)

respectively.
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