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Abstract: Human motion tracking is a powerful tool used in a large range of applications that require
human movement analysis. Although it is a well-established technique, its main limitation is the
lack of estimation of real-time kinetics information such as forces and torques during the motion
capture. In this paper, we present a novel approach for a human soft wearable force tracking for
the simultaneous estimation of whole-body forces along with the motion. The early stage of our
framework encompasses traditional passive marker based methods, inertial and contact force sensor
modalities and harnesses a probabilistic computational technique for estimating dynamic quantities,
originally proposed in the domain of humanoid robot control. We present experimental analysis
on subjects performing a two degrees-of-freedom bowing task, and we estimate the motion and
kinetics quantities. The results demonstrate the validity of the proposed method. We discuss the
possible use of this technique in the design of a novel soft wearable force tracking device and its
potential applications.
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1. Introduction

Human whole-body motion tracking is nowadays a well-established tool in the analysis of human
movements. This tool has found a wide variety of real-world applications ranging from entertainment
(movies and games) to sport and rehabilitation frameworks. Several commercial solutions for
whole-body motion tracking are available. Well known examples include: a wearable marker-less
technology suitable for outdoor motion capturing produced by Xsens [1] (Xsens Technologies B.V.,
Enschede, Netherlands), a state-of-the-art marker-based technology for in-lab applications produced by
Vicon (Vicon Motion Systems Ltd, Oxford, UK) and Microsoft Kinect depth camera system (Microsoft
Corporation, Redmond, Washington), which allows marker-less low-cost whole-body motion tracking
for indoor applications [2]. In biomechanics, soft wearable and stretchable systems have been proposed
for measuring human body motion [3,4], as well as in health activity monitoring [5]. Combinations of
different technologies have also been used for detecting human motion: in [6], a video-based motion
technique was adopted for capturing realistic human motion from video sequences. Although existing
technologies provide a high level of accuracy in computing motion quantities, they have several
limitations in their ability to measure kinetic quantities in real-time (kinetics considers forces that
cause movements). A key problem lies in the fact that motion capture methods typically employ
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only kinematic measurement modalities (position, velocities and accelerations) [7] and do not include
information on the kinetics of human movements.

The importance of including and exploiting all dynamic information is a crucial point in
several research areas such as ergonomics for industrial scenarios, developing prosthetic devices
and exoskeleton systems in rehabilitation fields, or in human-robot interaction. For these reasons,
whole-body force tracking is not a new challenge for the scientific community, but the topic has
been seldom explored in situ due to the computational difficulties of the analysis and even more
rarely analyzed in real-time modality. Although several recent studies are going in this direction, it is
limited to prototypical and non-wearable technologies. Typical non-wearable technologies involve
the combination of a motion capture system (e.g., a Vicon camera system ), with commercial force
plates and Newtonian physics to perform inverse dynamics computations . Some recent prototypes [8]
have been proposed for kinematics and dynamics motion capture. The suggested approach involves
a Kinect-like sensing and pressure-sensing shoes to reconstruct the whole-body dynamics.

To obtain forces and torques acting on a body, accurate data on the mass, center of mass and
inertias of each body segment are needed. Different methods for the determination of body segment
parameters can be described in [9], but the real difficulty is that a universal acknowledged procedure
for estimating inertial parameters with accuracy does not exist yet. In this framework, it is fundamental
to specify exactly what the kinematics and external boundaries are.

Towards compensating for aforementioned drawbacks, one approach is to supplement or even
replace standard marker-based technologies in several applications with a system design embedding
a combination of Inertial Measurement Unit (IMU) sensors and force sensing for evaluating contact
forces. However, in order to properly model and understand the role of dynamic quantities,
an appropriate understanding of the dynamic interaction between the elements of the models (such as
reaction and contact forces, accelerations of links and forces exchanged between them) is needed.

Inspired by a recent research study on sensor fusion for whole-body estimation on the
humanoid iCub robot [10] (Istituto Italiano di Tecnologia, Genova, Italy), in this paper, we
propose a novel framework for wearable dynamics (WearDY) aiming to bridge the gap in
dynamics analysis by fusing motion and force capture. The novelty of the approach consists
of framing computations in a probabilistic Gaussian framework in the presence of redundant
(and noisy) measurements. In this way, sensors play an active role in the computation since the
classical boundary condition in recursive Newton–Euler algorithms (i.e., linear-angular velocities
and acceleration at the base link and forces–torques at the end-effector) are replaced with
measurements coming from sensors. WearDY is an attempt at combining dynamic computations
with stochastic estimation of dynamics variables. The early stage of WearDY tool encompass different
modules: (1) a motion capture system computing human joint model configuration and kinematics;
(2) an additional inertial sensor; (3) force platform sensing; and (4) a probabilistic algorithm framework.
The final prototype will replace the motion capture system with a soft wearable suit embedding
sensing structure.

In this paper, we focus mainly on describing the fourth module and its integration into the
physical tool. We test the WearDY prototype on human subjects performing a two Degrees-of-Freedom
(DOF) bowing task. The subjects are equipped with the basic elements of the proposed suit in the form
of a chest-mounted IMU, a conventional motion capture system along with a force plate. The Gaussian
algorithm is then applied to compute joint torques as well as other dynamic quantities such as link
accelerations and transmission forces throughout the motion. The results demonstrate the applicability
of the proposed method for the simultaneous force and motion tracking in dynamic motion.

The paper is structured as follows. Section 2 presents an overview of some important definitions
of the algebraic notation used for computations along with the assumptions on the dynamic model.
Section 3 provides an analytic statement of dynamic analysis wherein the probabilistic computation
is framed. In Section 4, the probabilistic estimation theory is shown. The experimental analysis on
human subjects is presented in Section 4 followed by concluding remarks in Section 4.
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2. Notation

2.1. Spatial Algebra Description

The notation adopted in WearDY architecture mirrors that in [11] (readers already familiar with
the notation can jump to Section III): all variables are spatial vectors (six dimensional vectors including
angular quantities in the first three components and the rest as linear quantities). Within this notation,
an articulated rigid body is a system modeled as an oriented kinematic tree (Figure 1) with NB moving
links numbering from 1 to NB (0 is the fixed base). Each link in the model is associated with a unique
node in the tree. Node numbers can be always selected in a topological order so that each node i has
a higher number than its unique parent λ(i) and a smaller number than all the nodes in the set of its
children µ(i). Links i and its parent λ(i) are coupled with joint i according to Denavit–Hartenberg
convention for joint numbering [12]. Joint i motion freedom subspace is modeled with Si ∈ R6×ni ,
being ni the number of DOF of the joint i and n = n1 + ... + nNB the total number of DOFs of the
system excluding the fixed base. For each link i and joint i, the following spatial quantities are defined:

vi velocity of link i;
ai acceleration of link i;
fi force transmitted from λ(i) to body i;
f B
i net force on link i;

f x
i external force acting on link i;

qi joint i position;
q̇i joint i velocity;
q̈i joint i acceleration;
τi joint i torque;
vJi velocity across joint i.


body
i

joint
i

body
j

body
k

body
λ(i)
j,
k
∈ μ(i)


fi fj

fk
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Figure 1. Graphical representation of an articulated rigid body as an oriented kinematic tree.

All variables are expressed in body i coordinates, except for f x
i which is convenient to express in

absolute (i.e., body 0) coordinates. To each link i, a spatial inertia tensor is also associated:

Ii =

[
IC,i + mici × c>i mici×

mici×> mi I3×3

]
,

where IC,i is the spatial inertia tensor with respect to (w.r.t.) the link center of mass, mi is the total
mass, ci is the relative displacement between the center of mass and the origin of the reference frame
associated to the link. Within this spatial framework, in the paper, the following operations are adopted:
× is the motion cross product operator such as, if

r =

rx

ry

rz

 ⇒ r× =

rx

ry

rz

× =

 0 −rz ry

rz 0 −rx

−ry rx 0

 .
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Its dual operator ×∗ is the force cross product operator. The motion vector transformation BXA
from A to B coordinates and its analogous transformation for a force vector BX∗A are, respectively:

BXA =

[
BRA 03×3

−BRA(
Ar×) BRA

]
, BX∗A =

[
BRA −BRA(

Ar×)
03×3

BRA

]
.

A homogeneous transformation matrix from A to B is also described as follows:

BTA =

[
BRA −BRA(

Ar)
0 1

]
.

Throughout the paper, we denoted with A ẋ the temporal first order derivative and with A ẍ the
temporal second order derivative of a generic vector x in A coordinates.

2.2. Stochastic Notation

Given a stochastic variable x, we denote with p(x) its probability density and with p(x|y) the
conditional probability density of x given the assumption that another stochastic variable y has
occurred. Since y is associated to a deterministic function f (x), with Ex[ f (x)] we denote the expected
value of f (x) w.r.t. the probability distribution p(x). With µx, Σx, we denote the mean and covariance
of x, i.e., µx = E[x] and Σx = E[xx>]. The probability density function of a multivariate Gaussian
distribution x ∈ Rn is p(x) ∼ N (µx, Σx):

p(x)=(2π)−
n
2 |Σx|−

1
2 exp

{
− 1

2 (x−µx)
> Σ−1

x (x−µx)
}

,

where |Σx| denotes the determinant of the matrix Σx ∈ Rn×n. It is worth to notice that when in
a multivariate normal distribution the covariance Σ is not a full-rank matrix, then the distribution is
degenerate and does not have a density. In order to avoid the problem, it can be useful restrict the
problem on a subset of Σ such that the covariance matrix for this subset is positive definite.

3. Problem Statement and Formulation

The dynamic estimation algorithm has been originally developed in [10] as a framework for the
probabilistic estimation of whole-body robot dynamics with redundant measurements. The methodology
was here adapted to fit the needs of the human motion. The present section discusses the estimation
problem in details. After discussing the recursive Newton–Euler algorithm for inverse dynamics
computation in Section 3.1, we arrange the resulting equations in a matrix formulation (Section 3.2).
Section 3.3 introduces the estimation problem by discussing the case in which the boundary conditions
of the Newton–Euler algorithm are replaced with a set of redundant measurements expressed in a new
equation form.

3.1. Recursive Newton–Euler Algorithm

In [11], the inverse dynamics problem is formulated as the problem of finding the forces required
to produce a given acceleration. It can be summarized by the following function:

τ = InvD(model, q, q̇, q̈, f x)
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In biomechanics literature, different inverse dynamics approach are used [13]. Let us assume
use of a "top-down" approach. We will assume that all quantities depending on q and q̇ have been
precomputed, including the transformation matrices jXi, jX∗i and the velocities vJi, vi which can be
efficiently computed with the following recursive equation:

vJi = Siq̇i (1a)

vi = iXλ(i)vλ(i) + vJi. (1b)

A classical efficient numerical solution of inverse dynamics problem is given by the recursive
Newton–Euler algorithm (RNEA) consisting of the following steps, expressed in body i coordinates:

ai = iXλ(i)aλ(i) + Siq̈i + vi × vJi (2a)

f B
i = Iiai + vi ×∗ Iivi (2b)

fi = f B
i −

iX∗0 f x
i + ∑

j∈µ(i)

iX∗j f j (2c)

τi = S>i fi (2d)

Equations (1a), (1b) and (2a) are propagated from i = 1 to NB with initial conditions v0 = 0 and
a0 = −ag, which corresponds to the gravitational spatial acceleration vector expressed in the body
frame 0 (null in its first three components and equal to the gravitational acceleration in the last three).
Equations (2b)–(2d) are propagated from i = NB to 1.

3.2. RNEA Matrix Formulation and the Measurements Equation

In this section, a matrix arrangement of the RNEA is presented. Equation (2) can be seen as a set
of equations which the below listed dynamic variables have to satisfy. Let us first define a spatial vector
d of dynamic variables as follows:

d =
[
d>1 d>2 . . . d>NB

]>
∈ R24NB+2n (3a)

di =
[

a>i f B
i
> f>i τi f x

i
> q̈i

]>
∈ R24+2ni (3b)

Given Equation (3), Equation (2) can be compactly written in the following matrix equation:

D(q, q̇)d + bD(q, q̇) = 0 (4)

where D is a block matrix ∈ R(18NB+n)×d and bD is a vector ∈ R18NB+n. Let us define how to build D
matrix and bD vector:

D =

 D1,1 . . . D1,NB
...

. . .
...

DNB ,1 . . . DNB ,NB

 , bD =

 b1
...

bNB

 .
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In particular:

Di,i =


−1 0 0 0 0 Si
Ii −1 0 0 0 0
0 1 −1 0 − iX∗0 0
0 0 S>i −1 0 0

 ,

∀j ∈ µ(i) Di,j =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 iX∗j 0 0 0

0 0 0 0 0 0

 , j = λ(i) Di,j =


iXλ(i) 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

if λ(i) = 0 bi =


iX0a0 + vi × Si q̇i

vi ×∗ Iivi
0
0

 , if λ(i) 6= 0 bi =


vi × Si q̇i
vi ×∗ Iivi

0
0

 .

Remarkably, Equation (4) represents the set of linear constraints in d and, in a sense, inverse
dynamic computation consists of computing d given f x

i and q̈i. Our contribution is in moving away
from this classical approach replacing RNEA boundary conditions with measurements coming from
sensors. For this purpose, let us also define an explicit equation for measurements by indicating with
y ∈ Ry the values vector measured by sensors:

Y(q, q̇)d + bY(q, q̇) = y (5)

The structure of Y matrix depends on the number of sensors NS used for each link i as follows:

Y=
[
Y1 . . . YNB

]>
∈ RNS×d, Yi=

[
Y>i,1 . . . Y>i,NSi

]>
∈ RNSi×di ,

being NS = ∑i NSi the amount of sensors. With the same methodology, the structure of the bias vector
bY is also defined:

bY=
[
bY1 . . . bYNB

]>
∈ RNS , bYi=

[
b>Yi,1

. . . b>Yi,NSi

]>
∈ RNSi .

3.3. Considerations on the Representation

Equation (4) is one of many possible representations of the system dynamics. A common
alternative description is the one obtained with the Euler–Lagrange formalisms [12]:

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + J>(q) f x.

These equations can be obtained from Equation (4) as hereafter described. First, the vector d
and the columns of D should be rearranged so that they respect the following order: a1..aNB , f B

1 .. f B
NB

,
f1.. fNB , q̈1..q̈NB , f x

1 .. f x
NB

and τ1..τNB . The resulting D and b are:

D(2a)−(2c)
a, f , fB

D(2a)−(2c)
q̈ D(2a)−(2c)

f x D(2a)−(2c)
τ

D(2d)
a, f , fB

D(2d)
q̈ D(2d)

f x D(2d)
τ




(2a)–(2c)

(2d)

a, f , fB q̈, f x, τ

b(2a)−(2c)
D

b(2d)
D


(2a)–(2c)

(2d)
.
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With this reorganization, the Euler–Lagrange equation can be obtained as follows:

D(2d)
a, f , fB

{[
D(2a)−(2c)

a, f , fB

]−1 [
−b(2a)−(2c)

D − D(2a)−(2c)
q̈ q̈− D(2a)−(2c)

f x f x − D(2a)−(2c)
τ τ

]}
+ D(2d)

q̈ q̈ + D(2d)
f x f x + D(2d)

τ τ + b(2d)
D = 0.

There are two reasons for preferring Equation (4) to alternative formulations such as the
Euler–Lagrange equation. On the one hand, Equation (4) can be used to represent uncertainties
that capture relevant modeling approximations (see also Section 3.4). In particular, approximations
result from the fact that human bones coupling is neither rigid nor purely rotational and these can
be captured with additive noise Equation (9) on Equation (2). More accurate models would be
possible [14], but Equation (9) would still capture approximations on bone couplings, which are often
relevant and meaningful. On the other hand, there are numerical advantages associated to Equation (4).
In the case of inverse and forward dynamics, the numerical advantages are exactly those obtained by
algorithms like the RNEA and the ABA (Articulated-Body Algorithm) presented in [11] and whose
relations to Equation (4) is discussed in [10].

3.4. Over Constrained RNEA

Combining properly Equations (4) and (5), we obtain:[
Y(q, q̇)
D(q, q̇)

]
d +

[
bY(q, q̇)
bD(q, q̇)

]
=

[
y
0

]
(6)

Since our main purpose is to make WearDY a versatile and flexible tool, we consider the
incorporation of redundant (and noisy) measurements involved in the analysis. Within this new
framework, there might be conditions in which Equation (6) becomes overdetermined and an exact
solution does not exist. If there is a valid reason to assume that all the constraints have equal relevance,
we can use the Moore–Penrose pseudo-inverse to obtain a least square solution. Otherwise, if we
have good reason for weighting differently the constraints, we can use the weighted pseudo-inverse
to obtain a weighted square solution. However, finding proper weights might be not an easy task.
Our solution, proposed in the next section, is framing the estimation of d given y in a Gaussian
framework by means of a minimum-variance estimator.

4. Maximum a Posteriori (MAP) Estimator

The first assumption for adopting the Maximum a Posteriori (MAP) estimation approach is to
consider d and y as stochastic variables with Gaussian distributions. Let us first define their suitable
joint probability density using the factorization p(d, y) = p(d)p(y|d) being p(·) the probability density
and p(·|·) its conditioned version. Given p(d, y), we can compute an estimation of d using a MAP
estimator (which, in Gaussian distributions, coincides with the mean of the distribution) as follows:

dMAP = arg max
d

p(d|y) ∝ arg max
d

p(d, y),

where we applied Bayes’ rule, i.e., p(d|y) = p(d, y)/p(y), and where we omitted the term p(y) since it
does not depend on d and does not contribute to the optimization.

Let us first give an expression for p(y|d):

p(y|d) ∼ N
(
µy, Σy

)
, µy = Y(q, q̇)d+bY,

which implicitly makes the assumption that the measurements from Equation (5) are affected by a
Gaussian noise with zero mean and covariance Σy. Its probability distribution is:

p(y|d) ∝ exp
{
− 1

2 (y− µy)>Σ−1
y (y− µy)

}
(7)
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The second assumption is to define a probability density for d. Pursuing the same methodology,
we would like to have the following distribution p(d) ∼ N (µD, ΣD) :

p(d) ∝ exp
{
− 1

2 e(d)>Σ−1
D e(d)

}
(8)

taking into account constraints in Equation (4) with e(d)=D(q, q̇)d+bD.
However, this intuitive choice leads to a degenerate normal distribution and a term of

regularization has to be adopted. For example, if we have a Gaussian prior knowledge on d in
the form of p(d) ∼ N (µd, Σd) distribution, we can reformulate Equation (8) as p(d) ∼ N

(
µD, ΣD

)
:

p(d) ∝ exp
{
− 1

2 [e(d)
>Σ−1

D e(d)+(d−µd)
>Σ−1

d (d−µd)]
}

(9)

with

ΣD =
(

D>Σ−1
D D + Σ−1

d

)−1
(10a)

µD = ΣD(Σ
−1
d µd − D>Σ−1

D bD) (10b)

Given Equations (7) and (9), we can build the joint probability as p(d|y) ∼ N
(

µd|y, Σd|y

)
being

Σd|y =
(

Σ−1
D + Y>Σ−1

y Y
)−1

(11a)

µd|y = Σd|y

[
Y>Σ−1

y (y− bY) + Σ−1
D µD

]
(11b)

where Equation (11b) is exactly the estimation dMAP.

On the Benefits of MAP Dynamics

In this section, we discuss the benefits of multi-sensor data fusion for solving the dynamic
estimation problem by characterizing the effects of data fusion on the covariance of associated estimator.
The general idea we would like to pursue is that the more sensors we use in the estimation, the better
the estimation itself will be (see Appendix A for the metric used for the estimation quality). Since
we are interested in the analytic solution of MAP, the estimator must have the following covariance
(combining Equations (11a) and (10a)):

Σd|y =
(

D>Σ−1
D D + Σ−1

d + Y>Σ−1
y Y

)−1
(12)

Assuming multiple measurements y1 = Y1d + bY1 , . . . , ym = Ymd + bYm statistically
independent, this implies a diagonal structure to the matrix Σ−1

y . Thus, we have:

Y>Σ−1
y Y =

[
Y>1 . . . Y>m

] 
Σ−1

y1
. . . 0

...
. . .

...
0 . . . Σ−1

ym




Y1
...

Ym

 ⇒ Y>Σ−1
y Y = Y>1 Σ−1

y1
Y1 + · · ·+ Y>m Σ−1

ym
Ym.

With an abuse of notation, let us denote with d|yi the estimator which exploits all measurements
up to i-th, i.e., y1, . . . , yi. The addition of one measurement induces changes in the associated covariance
matrix according to the following recursive equation:

Σ−1
d|yi

= Σ−1
d|yi−1

+ Y>i Σ−1
yi

Yi (13)

where, for i = 1 , the initial condition is Σ−1
d|y0

= D>Σ−1
D D + Σ−1

d .
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Considering the Weyl inequality for the largest eigenvalue λ1 of Equation (13) (see Appendix B):

λN(Σd|yi−1
)

1 + λN(Σd|yi−1
)λ1(Y>i Σ−1

yi Yi)
≤ λ1

(
Σd|yi

)
≤ 1

L1
, L1 = max

i+j=N+1

[
1

λN−i+1(Σd|yi−1
)
+ λj(Y

>
i Σ−1

yi
Yi)

]
.

The maximum benefit is obtained by lowering the upper bound on λ1

(
Σd|yi

)
. Trivially, this can

be obtained by choosing high values for all the eigenvalues of Y>i Σ−1
yi

Yi. Obviously, this is not always
possible and benefits can be obtained by maximizing L1.

5. Experimental Results

5.1. Experimental Set-up

Experiments have been conducted on 12 adult healthy subjects (nine males and three females).
Subjects provided their written informative consent before becoming involved in the research. Motion
data were collected at Istituto Italiano di Tecnologia (IIT), Genova, Italy, using a motion capture system
(Vicon Motion Systems Ltd, Oxford, UK) with eight infrared cameras, at a sampling rate of 100 Hz.
A total of 14 passive retro-reflective markers were attached to each participant at key anatomical
landmarks. Markers are properly positioned in order to capture the pitch motion on the sagittal plane.
Lower body markers are placed in the following positions: left and right back of the foot (heel), left
and right outside of the ankle, left and right 2nd toe of the foot, left and right hip joint. For the upper
body, they are placed on the bony prominence on top of both shoulders and one in the center of the
upper torso. No arm and head motions are evaluated in this experiment. Kinematics information are
recorded at a sampling rate of 100 Hz using an inertial sensor unit (Xsens Technologies B.V., Enschede,
Netherlands) attached with an elastic strip on the trunk, including an accelerometer and a gyroscope
(Figure 2b). Three markers are placed on the IMU external surface in order to compare data from the
Vicon system and the inertial sensor. The task is performed on a standard force platform AMTI OR6
(Advanced Mechanical Technology Inc., Watertown, USA) synchronized with the Vicon system and
data are recorded at a sampling rate of 1 kHz (Figure 2a). Each subject is asked to perform a bowing
task without bending the knee in order to assume legs as a rigid link. Each participant experiment
session consisted of four trials each composed of three bows. A general scheme of the experimental
set-up is summarized in Figure 3.

(a) (b)

Figure 2. Sensors used in the experiment: a force platform AMTI OR6 (a) and an inertial sensor Xsens
MTx comprising both accelerometer and gyroscope (b).
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MOTION CAPTURE 
SYSTEM

IMU

FORCE PLATE

MULTIPLE SENSORS

HUMAN MODEL

MAP COMPUTATION

Figure 3. General scheme of the experimental set-up including a motion capture system and a block of
sensors. Data coming from the motion system were used as inputs for each Maximum-a-Posteriori
(MAP) computation and, progressively, sensor measurements (q̈, force plate sensing and inertial sensor
IMU) were added to compute a more complete version of MAP. Although only three sensors are used
(the ‘multiple sensors’ block is not present in this version of experiment), in general, the set-up can
embed n sensors and exploit their measurements to enhance the dynamic estimation of d.

5.2. Human Body Modeling

Inspired by state-of-the-art human stance modeling [15], the human body was modeled as a
double-inverted-pendulum (DIP). A two DOF (NB = 2, d ∈ R52) model of the human body for
each subject was developed by using the Universal Robot Description Format (URDF) which is an
XML-based file format for representing kinematics and dynamics of multibody systems. The location
of four imaginary points in the body (P0, P1, P2, P3) are computed by averaging the location of Vicon
markers. The final model consists of three rigid links representing the feet (link 0 or fixed base), legs
(link 1) and torso (link 2) and two revolute joints positioned at ankle (joint 1) and hip (joint 2) and
subjected to gravity. Points P0, P1, P2, P3 represent the origin of the reference frames associated to each
link (with the exception for P3 as link 3 does not exist). In particular, reference frames have the same
orientation of the body to which they are associated. No rigid links for head or arms were considered.
Figure 4 shows human modeling passing from a marker-like Figure 4a to a URDF-like model Figure 4b.

(a)

P0

P1

P2

P3

PG

Pfp

Pimu

q2

q1

(b)

Figure 4. Human body modeling: generic representation of a marker-like model for a subject (a); its
representation with reference frames associated to points (P0, P1, P2, P3) and to sensors (b). Reference
frames are denoted by using the RGB (Red-Green-Blue) convention for x-y-z axis.
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5.3. Proof of Concept

Analysis is performed on MATLAB using a toolbox released by Roy Featherstone [16] and
freely available under an open source licence. The core of the experiment consists in using the MAP
algorithm to estimate for both links in the model the dynamic vectors d1(a1, f B

1 , f1, τ1, f x
1 , q̈1) and

d2(a2, f B
2 , f2, τ2, f x

2 , q̈2). In the proposed experiment, q = [q1 q2]
> was obtained from Vicon marker

analysis with a frequency filtering in order to smooth acquisition noise. Joint velocities q̇ = [q̇1 q̇2]
>

and accelerations q̈ = [q̈1 q̈2]
> have been computed using a weighted sum of windows of elements,

with a third-order polynomial Savitzky–Golay filtering (as shown in Figure 5). Considering that
during the experiment no external force was applied, f x = [ f x

1 f x
2 ]
> was null and was simulated

by associating a null measurement. Above-obtained variables and the dynamic model were used in
building the constraint Equation (4).

Time [s]
2 4 6 8 10 12 14

q
[d

eg
]

0

10

20

30

40

50

Joint quantities

q1

q2

Time [s]
2 4 6 8 10 12 14

_q
[d

eg
/s

]

-50

0

50

_q1

_q2

Time [s]
2 4 6 8 10 12 14

=
[N

m
]

-60

-40

-20 =1
=2

Figure 5. Representation of a trial composed of three repetitive bows (on top). Joint quantities: angles
q1 and q2 have been obtained from motion capture acquisition with a frequency filtering; velocities q̇1

and q̇2 have been computed using a third-order polynomial Savitzky–Golay filtering; torques have
been computed using MAP estimation exploiting all sensors involved in the analysis (on bottom).

Similarly, from the sensor equations :

y1, f p = f pX∗0 (
0X∗1 f1 − I0

0ag),

y2,acc = (imuX2a2)lin + (imuX2v2)ang × (imuX2v2)lin,

y2,gyro = (imuX2v2)ang,
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we built the measurements Equation (5) for three different cases: (1) y = [q̈]; (2) y = [q̈ y1]
>;

(3) y = [q̈ y1 y2]
>. It is worth noticing that the gyroscope measurement has been numerically

differentiated to obtain a measurement for the angular part of ai (i.e., ω̇i). Since the final MAP
estimation µd|y is built as a weighted sum of a priori distribution and sensor measurements, it has
required defining ΣD and Σd (in order to establish how much the dynamic model was reliable) and Σy

to properly weight the contribution of each sensor. In the present analysis, the standard deviations σ

have been chosen from sensors’ datasheets, and their values are reported in Table 1.
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Figure 6. Considering three MAP computation cases with one sensor (y = q̈), two sensors (y = q̈, y1),
and all sensors (y = q̈, y1, y2), we computed standard deviation of (a) Στ1|y and Στ2|y ; (b,c) Σ f1|y and
Σ f2|y for both angular (µ) and linear ( f ) components; (d,e) Σa1|y and Σa2|y for both angular (ω̇) and
linear (a) components. These plots show that when increasing the number of sensors in the analysis,
the standard deviation of each variable estimated in the vector µd|y progressively decrease.
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Table 1. Standard deviation σ from sensors’ datasheets.

Angular Part Linear Part

σq̈ 2.57× 10−3 rad/s2

σy1 1.5 Nm 1.5 Nm 0.7483 Nm 7.68 N 7.68 N 6 N
σy2 7.1× 10−3 rad/s2 (gyro) 3.33× 10−2 m/s2 (acc)

The experiment was conducted to prove exactly what was described in Section 4: passing
progressively from sensor case 1 to case 3, the variance associated to each variable in the estimated
vector µd|y decrease. Figure 6 shows the σ decreasing behavior for three variables (στ|y, σf |y and σa|y)
using MAP computation as sensors have risen. Variance data are reported in Table 2 for link 1 and
Table 3 for link 2. In Figure 7, we focused on the estimated µτ|y for both links in the model. Estimations
are represented with their standard deviations (2σ). It is worth noticing that, while the estimations for
τ2 are very comparable, estimations for τ1 are less similar due to the fact that, in a sense, τ1 is almost a
direct measurement to compensate for the model error in the computation.

Table 2. Standard deviation of estimated variables for link 1.

στ1 σµ1(1) σµ1(2) σµ1(3) σ f1(1) σ f1(2) σ f1(3) σω̇1(1) σω̇1(2) σω̇1(3) σa1(1) σa1(2) σa1(3)

q̈ 4.990 2.075 1.153 2.088 2.423 2.279 2.371 0.028 0.027 0.029 0.025 0.027 0.028
q̈, y1 1.340 1.118 0.636 1.145 1.558 2.099 1.600 0.025 0.026 0.025 0.021 0.026 0.024
q̈, y1, y2 0.970 1.020 0.633 0.977 1.364 1.659 1.382 0.019 0.020 0.019 0.019 0.022 0.022

Figure 7. Mean (µ) and standard deviation (2σ) for the estimation of τ increasing the number of sensors.
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Table 3. Standard deviation of estimated variables for link 2.

στ2 σµ2(1) σµ2(2) σµ2(3) σ f2(1) σ f2(2) σ f2(3) σω̇2(1) σω̇2(2) σω̇2(3) σa2(1) σa2(2) σa2(3)

q̈ 0.510 0.848 0.758 0.758 1.817 1.544 1.696 0.040 0.037 0.041 0.043 0.040 0.042
q̈, y1 0.356 0.650 0.669 0.615 1.423 1.238 1.100 0.038 0.036 0.037 0.035 0.033 0.030
q̈, y1, y2 0.305 0.643 0.657 0.568 1.092 1.026 0.918 0.013 0.013 0.013 0.023 0.023 0.022

5.4. Method Robustness Test

This section describes the analysis we performed to test the robustness w.r.t. modeling errors of
the MAP and RNEA. As in the previous experiments, we performed a bowing task. This time,
the subject repeated the experiment in two different configurations, that is with and without an
additional weight of 5 kg roughly positioned in correspondence of the center of mass (COM) of the torso.
By exploiting the linearity property of the system, we started by considering the expression for
the torques:

τ(model+5kg) − τ(model) = τ(5kg) (15)

where we denoted with model+5kg the kinematic and dynamic model of the subject with the additional
5 kg mass on the torso, and with model the model of the subject without the weight. The above
expression exploits the property of linearity of the model w.r.t. a set of dynamic parameters [12], and it
is in general described by the following equation:

τ = Y(q, q̇, q̈)π,

where π is a vector of constant parameters and Y , usually known as regressor, is the matrix function of
joint positions, velocities and accelerations.

To assess the robustness property of the two algorithms w.r.t. modeling errors, we then computed
the inverse dynamics by using, respectively, RNEA and MAP, considering both the measurements
collected while the subject was performing the task with the 5 kg weight (ysubject+5kg) and the
measurements during the task without the weight (ysubject), as follows:

τRNEA(model,ysubject+5kg)
− τRNEA(model,ysubject)

= τ̂RNEA(5kg) (16)

τMAP(model,ysubject+5kg)
− τMAP(model,ysubject)

= τ̂MAP(5kg) (17)

Then, we compare the right-hand side of Equations (16) and (17) with the right-hand one of
Equation (15). Figure 8 show mean and standard deviation for the error, respectively, on τ1 and
τ2 comparing |τ(5kg) − τ̂RNEA(5kg)| (on the left part of each figure) and |τ(5kg) − τ̂MAP(5kg)| (on the
right part). It is worth noticing that the error on the estimation of τ2 is statistically significant different
(p-value < 0.05) because τ2 is more influenced by the additional weight on the torso. It is also worth
remarking that, in order to compare the obtained torques in the different trials, we expressed them
w.r.t. a linear combination of configuration variables instead of expressing them w.r.t. the time. Indeed,
it was not possible to evaluate, in time t, the comparison between torques of different trials because the
same subject performed the trials in different times; thus, the estimation of τ2 has been parameterized
with a linear combination of the joint positions, i.e., (q1 + q2), with the primary assumption that
q̇ and q̈ could be neglected as they induced a small change on the τ estimation. We can observe that
the error on the τ estimation is lower in MAP than in RNEA since our procedure is able to represent
the model uncertainties. From this point of view, RNEA is, in a sense, more sensitive to the modeling
errors. Conversely, MAP takes into account these errors because a variance is also associated to the
model itself.
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Figure 8. Error on torque estimation comparing RNEA and MAP methods on τ1 (a) and τ2 (b),
(* p-value < 0.05).

6. Conclusions

In this paper, we presented a novel methodology to estimate dynamics quantities along with
human motion in order to exploit fusion of sensor information on a probabilistic framework.
The framework is based on the idea of building a joint probability for all dynamic variables d and
measurements y coming from multiple sensors. The probability density p(d, y) incorporates the
dynamic constraints among variables. Preliminary results show that adding the i-th measurement
induces changes in its covariance matrix according to Equation (13) for all variables estimated.
We demonstrate that the variance of each estimated variable in µd|y decreases as the number
of considered measurements (sensors) increase. Moreover, it should be necessary to implement
a procedure (Expectation-Maximization (EM) algorithm) to estimate sensor variance from data; in
a sense, the goal is to build a data-driven variance estimation overcoming datasheet variance. While
this paper presents a proof of concept of the theory behind WearDY, future works will be aimed at
real-time implementation, at the design of the wearable garment and at the improvement of the sensor
architecture in order to make the system reliable in situ. Computationally, it will be fundamental
to integrate MAP dynamics with a state estimator such as an Extended Kalman filter combining
obtained a posteriori estimates with a priori estimates of the filter state. From a design perspective, the
wearable system will be comprised of a soft sensing garment with embedded sensors that facilitate
free movement of the subject. The suit design will ideally exploit the material compliance in order
to improve sensor reliability through elimination of the error introduced by the interface between
the garment and the subject’s skin. Another important future objective concerns the possibility of
using electromyography (EMG) analysis to provide information on muscular activity that is related
to joint torques. Possible future applications of WearDY include rehabilitation monitoring where
a wearable garment will be used for monitoring patients or creating more ergonomic and compliant
prosthesis and exoskeleton systems. The proposed suit and the forthcoming improvements would
permit substantial enhancements in the analysis of human movements in motion.

Acknowledgments: This paper was supported by the FP7 EU projects CoDyCo (No. 600716 ICT 2011.2.1 Cognitive
Systems and Robotics), and Koroibot (No. 611909 ICT-2013.2.1 Cognitive Systems and Robotics). Special thanks to
Marco Jacono and Robotics, Brain and Cognitive Science (RBCS) Department for the technical support for the
Vicon acquisition.

Author Contributions: F.N. developed the theoretical part of the estimation framework; C.L. and F.N. conceived
and designed the experimental protocol; C.L. and N.K. performed the experiments; C.L., F.R. and S.T analyzed
data; C.L. and F.N. wrote the paper.



Sensors 2016, 16, 727 16 of 17

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

Appendix A

Given two estimators d̂1 and d̂2, the first is better than the second if:

λ1(Σd̂1
) < λ1(Σd̂2

),

Σx being the covariance matrix of the stochastic variable x and λ1(A) the maximum eigenvalue of
the matrix A. The motivation behind this choice lies in the fact that the maximum eigenvalue bounds
the variance of any other linear combination of d. Let us assume that we are interested in estimating
x = v>d by choosing x̂ = v>d̂. The estimator variance is given by:

σ(x̂) = v>Σd̂ v ≤ ‖v‖2 · λ1(Σd̂),

with the inequality being an identity when v equals the eigenvector associated to the maximum eigenvalue.

Appendix B

Let A, B be Hermitian ∈ RN×N matrices, A = A> > 0 and B = B> ≥ 0; thus, we have A + B > 0.
Let λ(A), λ(B) be eigenvalues of A and B, respectively. Consider also an eigenvalue decreasing
numbering for each matrix, from the largest to the smallest one. We can apply the Weyl inequality
being k the k-th largest eigenvalue as follows:

Lk ≤ λk(A + B) ≤ Uk (B1)

Lk = max
i+j=1+N

[
λi(A) + λj(B)

]
, Uk = min

i+j=1+k

[
λi(A) + λj(B)

]
,

where Lk and Uk are the lower and the upper bounds, respectively. Without loss of consistency, let us
assume k = 1; thus, Equation (B1) becomes:

L1 ≤ λ1(A + B) ≤ U1 (B2)

L1 = max
i+j=1+N

[
λi(A) + λj(B)

]
, U1 = min

i+j=1+1

[
λi(A) + λj(B)

]
.

If A and B are non-singular matrices and λ1 6= 0, then 1
λ1

is an eigenvalue of A−1. Thus, in
Equation (B2):

1
λ1(A) + λ1(B)

≤ λ1

(
(A + B)−1

)
≤ 1

L1
, L1 = max

i+j=N+1

[
λi(A) + λj(B)

]
(B3)

Substituting in Equation (B3) A = Σ−1
d|yi−1

and B = Y>i Σ−1
yi

Yi:

1
λ1(Σ

−1
d|yi−1

) + λ1(Y>i Σ−1
yi Yi)

≤ λ1

(
Σd|yi

)
≤ 1

L1
, L1 = max

i+j=N+1

[
λi(Σ

−1
d|yi−1

) + λj(Y>i Σ−1
yi

Yi)
]

.
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Since λi(Σ
−1
d|yi−1

) = 1
λN−i+1(Σd|yi−1

)
:

λN(Σd|yi−1
)

1 + λN(Σd|yi−1
)λ1(Y>i Σ−1

yi Yi)
≤ λ1

(
Σd|yi

)
≤ 1

L1
, L1 = max

i+j=N+1

[
1

λN−i+1(Σd|yi−1
)
+ λj(Y

>
i Σ−1

yi
Yi)

]
.
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