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Abstract: In European seas, ocean monitoring strategies in terms of key parameters, space and
time scale vary widely for a range of technical and economic reasons. Nonetheless, the growing
interest in the ocean interior promotes the investigation of processes such as oxygen consumption,
primary productivity and ocean acidity requiring that close attention is paid to the instruments
in terms of measurement setup, configuration, calibration, maintenance procedures and quality
assessment. To this aim, two separate hardware and software tools were developed in order to test and
simultaneously intercompare several oxygen probes and fluorometers/turbidimeters, respectively in
the same environmental conditions, with a configuration as close as possible to real in-situ deployment.
The chamber designed to perform chlorophyll-a and turbidity tests allowed for the simultaneous
acquisition of analogue and digital signals of several sensors at the same time, so it was sufficiently
compact to be used in both laboratory and onboard vessels. Methodologies and best practice
committed to the intercomparison of dissolved oxygen sensors and fluorometers/turbidimeters have
been used, which aid in the promotion of interoperability to access key infrastructures, such as ocean
observatories and calibration facilities. Results from laboratory tests as well as field tests in the
Mediterranean Sea are presented.

Keywords: dissolved oxygen; fluorescence; turbidity; intercomparison; operational oceanography;
marine technology; ocean observing system

1. Introduction

A major task of operational oceanography is to produce and disseminate data that is of use to
a great variety of applications. A number of services feeding from this data have already reached
a satisfactory level of maturity, e.g., weather routing, sea state, hydrodynamic, search-and-rescue
and oil-spill forecasts. An increased number of biochemical parameters of a certain quality should
be incorporated in the observing systems and systematically monitored to extend the number of
applications in which oceanographic data can be utilized and to improve our understanding of the
driving mechanisms.

Sustained observations of biochemical variables, both at regional and global levels and over
longer time-scales, are a key factor in undertaking operational oceanography goals, as set by scientific
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and societal needs [1,2]. Long-term, multi-parametric observations throughout the water column are
a powerful means of studying the ocean as they can shed light on the driving forces of biochemical
processes [3–5].

Also, model outputs may be improved through assimilation and/or validation procedures [6,7],
enhancing our ability to predict the ocean state. Another advantage is that data availability at the
monitoring sites of fixed-point observatories makes these areas suitable for inter-disciplinary studies
that exploit more than one type of observatories [8–10]. In such cases, the limitations of data sets
derived from different platforms can be identified [11], whereas their comparison can increase our
confidence in the analyses results [12].

During the last decade, several European research projects (MFSTEP, ESONET, HYPOX,
EMSODEV, ENVRIPLUS, FixO3, FERRYBOX, JERICO, to name a few) focused on the improvement of
the monitoring of parameters related to marine biochemistry, ecology and climate change. This effort
evolved in conjunction with the integration/harmonization of the inhomogeneous coastal/open-sea
observing systems. A challenging aspect of achieving this objective is to produce inter-comparable
biogeochemical measurements with the necessary accuracy in the long-term [13].

Although noteworthy attempts have been made in recent years to build up a common base
of technical procedures and best practice for collecting data in the oceans, significant heterogeneity
still exists all over Europe. At the broader international level, a more organic effort and long-term
vision (25-year-plus time period) was made with the Ocean Observatories Initiative (OOI) [14], an
integrated expandable infrastructure of science-driven platforms and sensor systems to measure
physical, chemical and biological properties from the seafloor to the air–sea interface.

Technological design of observing systems, measured parameters, maintenance and quality
control methodologies, as well as quality standards for sensors and data exchange, have not yet been
standardized, at least for a number of important biochemical parameters.

In recent times, the expansion of ocean observatories has been often driven by specific or national
interests and mainly undertaken through short-term research projects. Thus, the main challenge
for the research community is to increase the coherence and the sustainability of these dispersed
infrastructures by addressing their future within a shared international framework for ocean state
monitoring [15].

In the context of a global observation system, measurements from Eulerian observatories not
only complement other approaches but also contribute in a unique way. Such observations describe
the full temporal behaviour of the system revealing, in many cases, a complex relationship among
the measured variables [16,17]. The multi-parametric capability of Eulerian observatories provide a
large number of correlated variables, enabling the contemporaneous advance of physical, biological,
chemical and geological disciplines [18–20].

Regular calibration of sensors is one of the primary requirements for obtaining good quality
data from ocean observatories and ensuring their long-term relevance as viable providers of reliable
information on the marine environment. This is particularly true for observations of oceanographic
variables leading oxygen consumption and primary productivity processes, as they require close
attention of maintenance procedures, in terms of measurement setup and configuration [21].

Often, sensor calibrations made by a manufacturer and/or in a controlled environment provide
very accurate measurements but this procedure inherently neglects real deployment conditions [22].
Among others, ambient characteristics (e.g., biologically active, corrosive, with a large range of
variations of temperature, conductivity and pressure, and so on.) and technical constraints of the
platform type in which the sensors have to be installed (e.g., sensor orientation, clamping methods,
power availability, etc.) are the most relevant aspects to be taken into account. In some cases, for
example for chlorophyll-a measurements, difficulties also arise due to the dominant native species
which may differ from one geographical area to another.

The development of new time and cost effective tools for periodic intercomparison of biochemical
sensors, to be used in an operational autonomous way by technicians taking care of the observatories,
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may avoid the necessity to regularly ship the sensors to manufacturers for post-deployment
maintenance and calibration. This would reduce both the gap of collected time series, which is
a key factor in long-term and permanent monitoring programs, as well as the associated costs.

In this paper, we describe two different innovative hardware and software tools to simultaneously
intercompare dissolved oxygen sensors and fluorometers/turbidimeters in the same environment and
the configuration characteristics of a real deployment.

The two designed tools are in compliance with the requirements of data quality resulting from
several experiments aimed at defining the desired and the sufficient accuracy for dissolved oxygen
measurements on existing platforms [23,24] and with the high-performance liquid chromatography
(HPLC, hereafter) [25] method for chlorophyll-a data.

These tools were jointly developed by the National Research Council of Italy and the Hellenic
Centre for Marine Research to be used in an easy way both in laboratory and on board ships during
oceanographic cruises in order to facilitate the operational management of sensors deployed in
ocean observatories.

The paper presents results of the intercomparison of several sensors carried out in the laboratory
and the most recent data collected using some sensors deployed in-situ.

2. Materials and Methods

2.1. Hardware and Software Tools for the Intercomparison of Dissolved Oxygen Sensors

The aim of the experiment was to test an innovative tool for: the simultaneous intercomparison
of several dissolved oxygen sensors to be used as best practice in the laboratories involved; and
the operational management of marine observatories, even when not specifically equipped with
metrological capabilities.

The overall instrumental setup included two Aanderaa Instruments AS (Bergen, Norway) optodes
model 3975, four Sea-Bird Electronics, Inc. (Bellevue, WA, USA) model SBE43 sensors (SBE43, hereafter),
one freshly calibrated conductivity and temperature recorder (Sea-Bird Instruments, Inc. model SBE37,
s/n 5372) and two submersible pumps (Sea-Bird Instruments, Inc. model SBE5T and SBE5P).

SBE43 and optode instruments use different technology: the first is an electrochemical sensor
mainly used for moored applications or to perform casts; and the second is an optic sensor characterized
by high precision, thus very suitable for sensor calibration (see Appendix A for more details).

The hardware consisted of a chamber equipped with heater and circulator, an analogue and a
serial acquisition board and a datalogging system. The software was based on specific routines to
acquire and visualize the near-real time data provided by the oxygen probes to be tested and the
ancillary reference measurements.

The chamber was constituted of a glass tank (800 mm ˆ 500 mm ˆ 500 mm) filled with 100 litres
of filtered (mesh size 0.2 mm) sea water. Homogenous mixing in the tank was attained using the Haake
N2 immersion circulator, whereas two aerators were switched on to increase oxygen concentration
(introducing oxygen from the air into the water), or turned off to facilitate low dissolved oxygen
concentrations. When needed, the top of the chamber was covered by a lid, leaving only a thin gap
for the instrument cables in order to limit the exchange of oxygen between the atmosphere and the
tank water. The Haake circulator also controlled the temperature inside the tank, allowing for fast
(15 min) temperature stabilization, through a pump that circulated the water mass, via the heater
and distributed back to the tank. During the experiment, the stability of the bath temperature was
continuously monitored with a Sea-Bird Electronics, Inc. SBE35 Deep Ocean Standards Thermometer
(accuracy ˘0.001 ˝C) calibrated in a certificated primary standards laboratory.

A multipoint (eight steps) comparison in the range 4–6 mL¨L´1 with Winkler samples was carried
out in order to verify the performance of both optodes, since the sensor s/n 1647 was freshly calibrated
by the manufacturer and never used after the calibration service (based on a robust multipoint
calibration), whereas optode s/n 794 was an old sensor calibrated three years ago. Both optodes were
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validated before the experiment in 0% and 100% dissolved oxygen saturation points according to the
manufacturer’s guidelines.

For each step of the intercomparison procedure, five water samples (replicates) were collected
from the tank filling by siphoning calibrated oxygen bottles (~115 mL). This procedure was carried out
at different controlled temperatures and by getting water as close as possible to the optodes. Different
oxygen concentrations were obtained changing the temperature inside the bath and waiting for a
complete stabilization of the water inside the tank (standard deviation of the temperature less than
0.01 ˝C before the water sampling). Oxygen stability in the tank was verified calculating the standard
deviation of the acquired data during each step.

Figure 1 shows the standard deviation of the temperature inside the bath measured by the SBE35
and the standard deviation of the dissolved oxygen acquired by the two optodes for each step during
10 min of measurements.

Sensors 2016, 16, 702 4 of 24 

 

validated before the experiment in 0% and 100% dissolved oxygen saturation points according to the 

manufacturer’s guidelines. 

For each step of the intercomparison procedure, five water samples (replicates) were collected 

from the tank filling by siphoning calibrated oxygen bottles (~115 mL). This procedure was carried 

out at different controlled temperatures and by getting water as close as possible to the optodes. 

Different oxygen concentrations were obtained changing the temperature inside the bath and waiting 

for a complete stabilization of the water inside the tank (standard deviation of the temperature less 

than 0.01 °C before the water sampling). Oxygen stability in the tank was verified calculating the 

standard deviation of the acquired data during each step. 

Figure 1 shows the standard deviation of the temperature inside the bath measured by the SBE35 

and the standard deviation of the dissolved oxygen acquired by the two optodes for each step during 

10 min of measurements. 

 

Figure 1.(a) Dispersion diagram between the temperature measured by the SBE35 and its standard 

deviation for each step (b) dispersion diagram between the temperature measured by the SBE35 and 

the standard deviation of dissolved oxygen provided by optode s/n 794 (dark red empty dot) and 

optode s/n 1647 (dark cyan full dot). 

Water samples were taken with the recommended precautions to prevent any biological activity 

and gas exchanges with the atmosphere [26], while the standard procedure for Winkler requiring 

bottles to be over flown by three times their volume before fixation [27] was followed. Samples were 

maintained in the dark at the respective step temperature until analysis. Dissolved oxygen was 

determined within three hours after sampling using a Metrohm Dosimat 765, according to the 

Winkler method as modified by [28]. The method is considered to have an accuracy of <0.05 mL L−1 

[29,30], probably close to 0.01 mL L−1 [31]. The overall analytical precision of the dissolved oxygen 

determination based on the replicates taken at seven out of eight steps was evaluated from the 

average standard deviation as <0.01 mL·L−1 (at the other step precision was  

0.02 mL L−1) demonstrating the high quality results of the analytic method. 

The direct comparison between the values obtained from Winkler titration and the two optodes 

positioned side by side showed a perfect agreement between optode s/n 1647 and a constant shift for 

optode s/n 794 (Figure 2). 

Figure 1. (a) Dispersion diagram between the temperature measured by the SBE35 and its standard
deviation for each step; (b) dispersion diagram between the temperature measured by the SBE35 and
the standard deviation of dissolved oxygen provided by optode s/n 794 (dark red empty dot) and
optode s/n 1647 (dark cyan full dot).

Water samples were taken with the recommended precautions to prevent any biological activity
and gas exchanges with the atmosphere [26], while the standard procedure for Winkler requiring
bottles to be over flown by three times their volume before fixation [27] was followed. Samples were
maintained in the dark at the respective step temperature until analysis. Dissolved oxygen was
determined within three hours after sampling using a Metrohm Dosimat 765, according to the Winkler
method as modified by [28]. The method is considered to have an accuracy of <0.05 mL¨L´1 [29,30],
probably close to 0.01 mL¨L´1 [31]. The overall analytical precision of the dissolved oxygen
determination based on the replicates taken at seven out of eight steps was evaluated from the average
standard deviation as <0.01 mL¨L´1 (at the other step precision was 0.02 mL¨L´1) demonstrating the
high quality results of the analytic method.

The direct comparison between the values obtained from Winkler titration and the two optodes
positioned side by side showed a perfect agreement between optode s/n 1647 and a constant shift for
optode s/n 794 (Figure 2).
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and the concentrations provided by two Aanderaa optodes model 3975 under analysis. Error bars
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Analysis on the performance of the optode measurements (O in Equations (1) and (2)) with respect
to the Winkler (P in Equations (1) and (2)) were carried out by means of mean bias error and root mean
square error, as defined in Equations (1) and (2) using J steps.
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The obtained bias and root mean square error were ´0.2 mL¨L´1 and 0.201 mL¨L´1 for the
optode s/n 794 and ´0.0425 mL¨L´1 and 0.057 mL¨L´1 for the optode s/n 1647, respectively.

The satisfactory agreement between the Aanderaa optode s/n 1647 (OPT, hereafter) and the
analytical dissolved oxygen concentration obtained through Winkler titration allowed us to consider
OPT as a valid reference for the subsequent laboratory intercomparison tests of the four SBE43 sensors.

A specific software tool was developed to simultaneously acquire and store serial data from
a Conductivity-Temperature-Depth (CTD) sensor and analogue voltage values provided by up to
8 dissolved oxygen sensors under testing within the tank. Measurements were collected by a datalogger,
processed and displayed in real-time. The datalogger consisted of a computer running LabVIEW
(a full-featured graphical programming language and development environment for embedded system
design) and a National Instruments acquisition board (Austin, Texas, USA) (NI-8205) having multiple
channel capability with adjustable voltage ranges and an accuracy of 0.15 mV in the range 0–5 V.
When launched, the program configures the CTD sensor, then the user can in real time start to monitor
the oxygen concentration measured by the sensors and can commence data logging and storing of
CTD and raw analogue voltage data to separate text files. Data was collected at 1 Hz. Serial, data
provided by the optodes were continuously collected by another computer that was synchronized in
time with the data logger and the computer, collecting the output of the four SBE43 in tests.
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2.2. IntercomparisonProtocol for Dissolved Oxygen Sensors

The protocol used to intercompare the four SBE43 oxygen sensors was based on the recommendation
synthesized in [32] consisting in the analysis of the output of the sensors merged into the tank filled of
water and the correspondent OPT data was used as a reference.

Since the SBE43 is an in-line sensor, it has to be flushed with the same flow of the TC-cell which
provides temperature and salinity measurements. Thus, four SBE43s were arranged in pairs, each pair
flushed by a submersible pump (Figure 3). It must be noted that no antifouling methods were used at
the intake and outlet of the duct.

1 
 

 
 

 

Figure 3. Sketch of the experimental setup used for the intercomparison of the dissolved oxygen
sensors and user interface of the developed software tool.

A preliminary estimate of dissolved oxygen concentration in the tank was obtained in real-time
applying the Owens-Millard [33] equation, using the raw analogue voltage output provided by
four SBE43s, temperature and salinity measures from SBE37 and the manufacturer’s calibration
coefficients since none of the sensors was deployed after their last calibration performed by Sea-Bird
Instruments, Inc.

As pointed out in [34,35], dissolved oxygen sensors are flow sensitive. Mounting or positioning of
the sensor with respect to the frame, or to the attached CTD, can affect the quality of the measurements,
as well as give a slow response time to environmental changes. Thus, controlled calibration results
can differ from real environment performances. This is especially true for SBE43 sensors that need to
be flushed several seconds prior to measurement. For these reasons, the instruments under testing
were assembled in configurations as close as possible to those employed in real deployments, and two
different configuration setups were tested. In all trials, the tank with controlled temperature was used
and the OPT was positioned as close as possible to the water intake of the dissolved oxygen duct.
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Three SBE43s (s/n 2281, 2050, 1163) had a membrane 1 mil thick, suggested for moored
applications, and one (s/n 541) had a thinner membrane (0.5 mil), which has a faster response
and for this reason it is suggested for profiling purposes.

In the first test, the CT SBE37 was placed horizontally on the bottom of the tank and its outtake
was connected using pipes and 1/2 inch Y-fittings to the two pairs of dissolved oxygen sensors; each
pair was flushed by a submersible pump and was facing upwards.

In the second test, both the SBE37 and the pairs of oxygen sensors flushed by submersible pumps
were horizontally suspended at the centre of the tank by means of ropes.

In order to verify that the chosen instrumental setup did not affect the performance of the SBE43
sensors, a preliminary test was performed sharply varying the oxygen concentration inside the tank.
The flow rate effect was evaluated by measuring the flow rate of the two pumps in both chosen
instrumental configurations and an average flow rate of about 33 mL¨ s´1 was measured for both
pumps, really close to their nominal flow rate. Under this condition, it was possible to compare the
time response with the one provided by sensor specifications, considering the time required to reach
99% of the final equilibrium, as stated by the manufacturer’s recommendations.

Figure 4 shows the response curves of SBE43 s/n 541 (0.5 mil membrane) and SBE43s s/n 2281,
s/n 2050 and s/n 1163 (1 mil membrane) and their agreement with the SBE43 sensor specification that,
at a temperature of 15 ˝C, shows a time response of about 15 s for an SBE43 with a 0.5 mil membrane
and of about 23 s for a SBE43 with a 1 mil thick membrane. In case of a low flow rate, it is necessary to
sample after a longer period of time in order to achieve the same performance.
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Figure 4. Response time of dissolved oxygen SBE43 sensors at a stabilized temperature of 15 ˝C.
SBE43 DO s/n 541 uses a thinner membrane with respect to the other three sensors, hence it has a
faster response to a sharp increase of oxygen concentration.

2.3. Hardware and Software Tools for the Intercomparison of Chlorophyll-a and Turbidity Sensors

The designed hardware and software tools for chlorophyll-a and turbidity sensors intended to
respond to the need for an easy intercomparison technique to obtain the same output from all sensors,
simultaneously exposed to the same environmental conditions.

In order to fulfil the objective, an innovative ad-hoc chamber was designed. It was composed of
a rectangular box (405 mm ˆ 650mm ˆ 220 mm) with a lid having an internal volume of 28 L, with
an inlet and an outlet from which a pipe passed through a magnetically coupled, centrifugal pump
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capable of a flow rate of 50 L¨min´1. Cables from the sensors were passed out from the chamber by
cable glands.

The chamber was designed to host sensors of different manufacturers characterized by serial
and/or analogue output to perform an intercomparison exercise taking into account that, especially
for turbidimeters of different brands, turbidity values can show discrepancies although measured on
the same water sample [36,37].

Three combined fluorescence and turbidity sensors (model ECO-FLNTUS from WET Labs, Inc.
(Philomath, OR, USA)) were available for the intercomparison. ECO-FLNTUS sensors are specifically
designed to allow assessment of fluorescence and turbidity variability and interactions and provide
excellent precision, reliability and overall performance for environmental monitoring applications [38].
Two of them (s/n 3372 and s/n 2776) were freshly calibrated by the manufacturer and never deployed
at sea, one (s/n 615) was an aged sensor recently refitted by the manufacturer to measure chlorophyll-a
in the range 0–25 µg¨L´1 instead of 0–50 µg¨L´1. The ECO-FLNTUS s/n 3372 was the only sensor
with a measurement range of 0–50 µg¨L´1.

All sensors had analogue and serial output capabilities with 4000-count range and an integrated
anti-fouling bio-wiper that was removed before the test.

Recorded noise level (standard deviation of one minute of collected data) during repeated
measurements was analyzed in order to evaluate the performance of the chamber in terms of stability.
The test was carried out using different concentrations of 244 million of mL of Chlorella culture per
part. The Chlorella culture was prepared by Aqualabs of the Institute of Marine Biology, Biotechnology
and Aquaculture (IMBBC) of the Hellenic Centre for Marine Research (HCMR). Chlorella belongs to
the phylum Chlorophyta and it is one of the most common algae in the Mediterranean Sea. The same
test was performed using different solutions of disodium salt form of fluorescein (Na-fluorescein, also
known as Uranine). Uranine is a synthetic organic compound slightly soluble in water and alcohol
widely used as a fluorescent tracer in many applications.

Fluorometers results proved a good stability of the chamber with an average standard deviation of
0.0256 V and 0.0136 V during 1 min of measurements at 2 Hz for Chlorella and Uranine measurements,
respectively. The noise was lower during the test performed with Uranine and this can be explained
considering that the dye solution, being synthetic, is more stable with respect to Chlorella solutions
(Figure 5). The same procedure was followed with the turbidimeter sensors and an average of 0.0260 V
was measured, very similar to the ones retrieved for the fluorometers.
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The appropriate mixing of the chamber was tested verifying the linearity of the response of
the fluorescence and turbidity sensor s/n 2776 to a progressive addition of Chlorella and Formazine,
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respectively (Figure 6). Formazine is the most common standard reference for the laboratory calibration
of turbidimeter. In this test, the calibration coefficients provided by the manufacturer were used.

A software programme written in LabVIEW was specifically developed for managing an array of
up to 5 ECO-FLNTUS sensors. A configuration text file contains for each instrument, an identifier, the
specifications and the configuration commands. When launched, the program configures each sensor,
then the user can start the acquisition phase. In order to avoid any interference between them, sensors
are operated sequentially. Through a user interface, the operator can monitor in real-time, the average
and the standard deviation of the sensor under test and when needed, can start to log and store the
converted decimal outputs and raw analogue voltage signals from the instruments. Acquisition can
last for a predefined time period or can be stopped by user. For each test point, the user can input a tag
that will be included into the filenames of the ASCII files containing the acquired data. Analogue raw
voltage signals from the sensors were acquired by a data acquisition board (National Instruments Inc.,
model NI-8205), whereas serial communication was performed through a serial device driver directly
connected to the computer. For the turbidity test, a bent rubber sheet placed in front of the sensor
array was used to suppress multiple reflections (if any) from the walls of the box.
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2.4. IntercomparisonProtocol for Fluorometers/Turbidimeters

The adopted protocol dealt with the direct comparison between the output of the sensors and
reference measurements that were constituted of different concentrations of 244 million cells per mL
of Chlorella culture and known concentrations of Uranine solution for the fluorometers; and known
concentrations of Formazine for the turbidimeters.

The ECO-FLNTUS fluorometer measures chlorophyll-a content at 470 nm and two bright blue
LEDs (centred at 455 nm and modulated at 1 kHz) provide the excitation source. A blue interference
filter is used to reject the small amount of red light emitted by the LEDs. The blue light from the
sources enters the water volume at an angle of approximately 55˝–60˝ with respect to the end face of
the unit. Fluoresced light is received by a detector positioned where the acceptance angle forms a 140˝

intersection with the source beam. A red interference filter is used to discriminate against the scattered
blue excitation light. The red fluorescence emitted is synchronously detected by a silicon photodiode
(see Appendix B, for more details).

WET Labs Inc. calibrates its sensors using 25 µg¨L´1 culture of Thalassiosiraweisflogii and highly
recommends calibrating the fluorometers in field, by using native species of the area of the deployment.
For this reason, the sensors were exposed to several concentrated solutions of Chlorella.

The developed chamber was filled with sterile sea water and the three sensors were placed in line
(Figure 7). A pumped circuit was activated for 30 s to mix the water inside the chamber before the
measurements and was switched off during the measurement.
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Sixteen steps were performed, comparing both voltage and raw count data provided by the
three fluorometers.

The instrument response was monitored through a real-time plot and the online calculation of the
average and the standard deviation of the voltage signal was visualized in the user interface. When the
signal was considered stable enough, analogue voltage outputs were acquired sequentially from each
sensor for 1 min at a sampling rate of 2 Hz. At the same time, the instrument stored raw data in the
internal memory, the content of which was retrieved and deleted through the serial link.

Two replicates of three samples that corresponded to three levels of concentration (low, medium,
high) were withdrawn from the chamber, filtered through GF/F filters under low vacuum pressure
(<150 mmHg). These samples were analyzed through HPLC by the Chemistry laboratory and the
Environmental and Analytical Chemistry laboratory of IMBBC of HCMR.

1 
 

 
 

 
Figure 7. Sketch of the experimental setup used for the intercomparison of chlorophyll-a and turbidity
sensors and user interface of the developed software tool.

For the HPLC method, filters were immediately extracted in 3 mL of 100% acetone overnight
and all sample extracts were analyzed by an HPLC system (Agilent Infinity 1260) comprising by
Chemstation software, a degasser, a binary pump, an autosampler, a column thermostat and a diode
array detector. The pigments were separated and quantified following the method described by
Van Heukelem and Thomas [39]. For fluorometric measurements, extraction was performed in 10 mL
of 90% acetone solution at 4 ˝C overnight and measurements were performed with a TURNER TD700
fluorometer. Both the aforementioned analyses were carried under dim light and low temperature
conditions to minimize pigment destruction.

3. Results

3.1. Laboratory Tests for Dissolved Oxygen Sensors

During the whole experiment for the dissolved oxygen intercomparison, 14 steps were performed
with a temperature range from 15 ˝C to 32 ˝C and salinity spanning from 38.8 psu to 39.2 psu.
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For each point, homogenous mixing in the tank was attained using the immersion circulator and
verifying the congruity of the measurements provided by the OPT, positioned close to the inlet of the
duct and the other optode (s/n 794) suspended at the outlet of the pump. Two aerators were switched
on to increase oxygen concentration or turned off to facilitate low, dissolved oxygen concentrations.
Sea water was refrigerated during the night and progressively warmed during the day to reach the
desired set points in temperature. Temperature in the laboratory was set at the same temperature of
the water by means of an air conditioner for the whole experiment duration. Temperature and salinity
were left to stabilize with a standard deviation, on average equal to 0.0058 ˝C for temperature and
of 0.0020 psu for salinity. In terms of oxygen, the water inside the tank was left to homogenize and
saturation was measured by both OPT and optode to reach 100% or higher, then 5 min of continuous
raw voltage measurements by each SBE43 were collected and stored. Figure 8 shows the difference of
the dissolved oxygen measured by OPT and optode 794 during each step.
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Figure 8. Absolute difference of dissolved oxygen measurements provided by the OPT positioned
close to the inlet of the duct and the optode s/n 794 suspended at the outlet of the pump.

Comparison between all SBE43 sensors and the OPT indicates a slight overestimation of all
SBE43 independently from the type of membrane (for profiling or moored applications) although
linearity is maintained. The root mean square error and the bias, calculated using Equation (1), show a
misfit between the reference OPT and the SBE43 sensor of about 0.32 mL¨L´1 and 0.29 mL¨L´1 on
average, respectively.

Both configurations used in the first test (SBE37 in an horizontal position and two pairs of SBE43
and pump in a vertical position) and in the second test (SBE37 and two pairs of SBE43 and pump in an
horizontal position) showed the same results, indicating that the orientation of the SBE43 with respect
to the SBE37 is irrelevant, provided that it is flushed with the same stream of the CT-cell and the flow
rate of the pump is large enough.

Results revealed the need to adjust the linear slope scaling coefficient (SOC) of SBE43 sensors:
to this aim, the correction ratio (CR) between the OPT measurements and the corresponding
concentrations provided by the SBE43 was calculated. The updated values of SOC were obtained
multiplying SOC and CR values. Figure 9 summarizes the performance achieved using old and
updated SOC.

The use of new SOC allowed an improvement in terms of mean bias error and root mean square
error of 0.21 mL¨L´1 on average.

The analysis of the performance of the oxygen sensors cannot be separated from the fact, that a
small deviation of the oxygen concentration from fully saturated water mass, can strongly influence the
air-sea oxygen flux [40,41]. Furthermore, the comparison between the theoretical saturation values of
the water at a predefined temperature and salinity and the measured percent saturation, is an indicator
of the performance. Two separate experiments were carried out to evaluate the performance of the
new curves, with respect to temperature and salinity variations in the most common range of a real
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deployment in the Ligurian or Cretan Sea. In the first one, temperature was increased from 15 ˝C up to
32 ˝C at a constant salinity of 39 psu whereas the second test was carried out at a constant temperature
of 26 ˝C and salinity, increasing from 34 psu up to 39 psu.

During the performed steps with constant salinity and different temperatures, very good
agreement was found between the OPT measurements and theoretical values at 100% saturation
(average bias of 0.018 mL¨L´1). Underestimation up to 13% in saturation were evidenced for the
SBE43 sensors that showed lower values for all tests.
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(d) s/n 1163 before (full dot) and after (empty square) the SOC correction. Error bars correspond to
five times’ the measured standard deviation.

Also keeping the temperature constant and varying the salinity, the same good agreement between
OPT measurements and theoretical values at 100% saturation was observed, obtaining an average
bias of 0.067 mL¨L´1. Simultaneously, all SBE43 sensors were not fully saturated, having an average
difference with respect to OPT, of about 5% for s/n 541 and 1163 and of 1% for s/n 2281 and 2050.

OPT saturation values for all steps and for constant temperature and salinity tests were compared
to the percentage of oxygen saturation provided by SBE43 sensors, before and after the SOC adjustment.
Percentage of oxygen saturation for SBE43 was calculated as the ratio between the measured oxygen
concentrations and the theoretical oxygen solubility, defined as the volume of oxygen gas at standard
temperature and salinity conditions absorbed from humidity-saturated air, at total pressure of one
atmosphere per unit of volume of the liquid, at the temperature of measurement.

Results show that by varying the temperature, the offset between the dissolved oxygen
concentration measured by the OPT and the SBE43s before the comparison decreases as the saturation
gap reduces, whereas very close values were obtained after the SOC adjustment independently
from the gap in oxygen saturation. In isothermal conditions, the increase of salinity did not affect
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the measurements and the constant offset that was observed for all SBE43 sensors before the SOC
adjustment was reduced by applying the obtained curves (Figure 10).
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salinity (empty marker).

3.2. Laboratory Tests for Chlorophyll-a Sensors

Analysis using the HPLC method has to be considered as standard for the assessment of
fluorometers’ performance, although it requires expertise and specifically equipped chemical
laboratories, not commonly found in institutions for managing operational marine observatories.

The output of the ECO-FLNTUS fluorometer has a linear correlation with chlorophyll-a, and
concentration can be calculated as:

Concentration rµg¨L´1s “ pOUT´BLANKq¨ SF (3)

where concentration is the chlorophyll-a concentration of the sample of interest, OUT is the raw
measured output, BLANK corresponds to the blank value, that is the clean water offset and SF is the
scale factor. Equation (3) is valid for both voltage and count outputs.

The determination of the blank value is one of the most difficult procedures in the calibration
routine [42]. Its variability can negatively affect the measurements, especially when chlorophyll-a
observations are carried out in oligotrophic basins as in the case of the Cretan Sea, where measured
values are close to the blank value.

Several tests were performed considering the output of the instrument (both voltage and count)
in air (AIR), using tap water (TW), filtered sea water (FSW) and a tape (TAPE) on the detector in order
to verify the impact of BLANK value on the estimates of chlorophyll-a concentration. One minute of
simultaneously raw voltages at 2 Hz and counts at 1 Hz were acquired, after the stabilization of the
values at a controlled temperature of 22 ˝C.
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Measurements in air and with the detector window covered by tape show very similar values,
whereas concentrations are greater for filtered sea water and tap water, with respect to the dimming of
the window of the detector. Especially in the case of tap water, turbidity can be responsible for the
increase of the BLANK due to the step up of light scatter [43].

Filtered sea water could be considered as the appropriate blank value, only if the removal
of phytoplankton culture is made in the same ambient irradiance of the in-situ environment.
Thus, according to the manufacturer's advice, the most accurate blank value can be obtained by
completely covering the window of the detector with black tape and leaving the window of the
emitter uncovered [44].

Table 1 summarizes the difference of chlorophyll-a concentration in unit of µg¨L´1 using different
BLANK values (air, filtered sea water, tap water) in voltage, with respect to the BLANK value obtained
with the detector covered by the black tape.

Table 1. Difference of chlorophyll-a concentration in unit of µg¨ L´1 computed using different BLANK
values (air, filtered sea water, tap water) with respect to using BLANK value obtained with the detector
covered by the black tape.

Chlorophyll-a Offset s/n

WET Labs, Inc.
ECO-FLNTUS Sensors

2776 3372 615

SF¨ (BLANKTAPE ´ BLANKAIR) 0.026 ´0.034 0.023
SF¨ (BLANKTAPE ´ BLANKFSW) ´0.356 ´0.298 ´0.417
SF¨ (BLANKTAPE ´ BLANKTW) ´7.930 ´8.207 ´8.725

BLANK value corresponding to the BLANKTAPE was used in the experiment.
The intercomparison between the three fluorometers was performed at a controlled temperature

of 22 ˝C, the same as the calibration sheet provided by the manufacturer. The chamber was filled
with filtered sea water and sixteen steps were performed adding small aliquots of Chlorella culture
to increase progressively the concentration of chlorophyll-a in the chamber. The readings for a
period of one minute, after checking that the standard deviation was less than 0.02 V, were recorded.
Samples were mixed through a magnetically coupled centrifugal pump, to achieve homogenous
solutions. Three samples of different concentrations corresponding to a low, medium and high
concentration for the Mediterranean Sea were collected from the chamber, in order to measure
chlorophyll-a concentration through a laboratory fluorometric instrument and HPLC.

Results between the two different laboratory techniques show an average standard deviation of
0.16 µg¨L´1, with a maximum of 0.37 µg¨L´1 for the highest chlorophyll-a concentration.

To calculate new scale factors, HPLC results were used as reference and both voltage and count
outputs were considered.

Factory calibration scale factors are greater than those computed from experimental data, for
the two ECO-FLNTU with a range of 0–25 µg¨L´1: nominally they are 6 µg¨L´1 V´1 instead of
4.19 µg¨L´1 V´1 for s/n 2776 and 4.25 µg¨L´1 V´1 for s/n 615 resulting from the experiment. A scale
factor value of 9.14 µg¨L´1 V´1 close to the nominal 10 µg¨L´1 V´1 was found for the fluorometer
with an extended range (s/n 3372).

Figure 11 shows the scatter plots between the concentration of chlorophyll-a estimated using
manufacturer and new values for BLANK and SF in Equation (3) and the instrument response of the
three sensors (voltage and count).
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Figure 11. Dispersion diagrams of chlorophyll-a concentrations and output of the fluorometers in
voltage (empty marker) and count (full marker) before (circle) and after (square) the experiment,
for fluorometers (a,d) s/n 2776, (b,e) s/n 3372, (c,f) s/n 615. Diamonds correspond to HPLC result.
Top diagrams refer to the entire voltage range; bottom diagrams are a zoom in the range 0–1 V.

Results confirm the constant ratio between voltage and raw count, showing the linearity of the
sensors throughout the entire voltage range as well as the very good correlation between the new
curves and the reference samples analysed through HPLC method. The perfect agreement between
voltage and count proves the reliability of using, in an operational way, the voltage provided by
the fluorometers when they are installed on a multiparametric device (i.e., SBE16plus) without the
necessity to consider the raw count values. The impact of the new curves on the concentrations is
relevant for both low and elevated chlorophyll-a values. In this study, the curves provided by the
manufacturer show always an overestimation of the concentrations that can be quantified with an
absolute bias of 0.59 µg¨L´1 and 0.58 µg¨L´1 for the two sensors with a narrow range (0–25 µg¨L´1)
and of 0.12 µg¨L´1 for the fluorometer with an extended range (0–50 µg¨L´1).

The error is exponential with the increase of the voltage and at the maximum voltage output, it is
greater than 8 µg¨L´1 for the two narrow range fluorometers and about 3 µg¨L´1 for the extended
range sensor using the manufacturer curves, with respect to the application of the new curves.

To investigate the relationship between the instrument response to Chlorella culture and synthetic
dye, Uranine was used. The produced fluorescence of synthetic dyes and Chlorella show a peak
excitation at 494 nm and 440 and nm and a peak emission at 521 nm and 680, respectively. Although the
fluorescence produced by Uranine takes place at a different wavelength and only a tail of its
fluorescence peak could be detected by the ECO-FLNTUS, Uranine and Basic Blue 3 (BB3) are
commonly used to assess fluorometer performance [45].

Starting from a solution having a high concentration (20 mg¨L´1) of Uranine, different volumes
were progressively poured into the chamber in order to get different increasing fluorescence
concentrations. The experiment was performed at a controlled temperature of 22 ˝C and within
one day to avoid loss of stability of the dye solution.

Fluorescence shows a linear response with the increasing of the dye solution up to 2.5 V:
beyond this threshold a small drift was observed. Sensors with narrow range saturated in the
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last two steps, corresponding to concentrations of Uranine greater than 200 µg¨L´1 (Figure 12).
Comparing the two curves obtained using Chlorella and Uranine, an angular shift of 11.81 degree
for both the sensors with reduced range and of 5.33 degree for the sensor with extended range was
observed. To evaluate the feasibility of using Uranine instead of Chlorella for operational periodic
intercomparison, an error analysis was performed taking into consideration the obtained angular shift.
Specifically, Uranine curves were rotated to the above mentioned angles and compared to Chlorella
curves. The difference between the chlorophyll-a concentrations (obtained applying the Chlorella curve
and the rotated Uranine curve) was considered as an error. Results show an increasing of the error
with the increase of the output voltage for all sensors spanning from ´0.020 µg¨L´1 to 0.040 µg¨L´1,
thus falling within the average error obtained and considering the standard deviation of one minute of
collected data (Figure 12).
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Figure 12. Dispersion diagrams of chlorophyll-a concentrations of Chlorella and fluorescence of Uranine
vs. fluorometers response for sensor (a) s/n 2776, (b) s/n 3372 and (c) s/n 615. (d) Offset between the
chlorophyll-a estimates using the shifted curve from the dye solution and the Chlorella concentration.

The comparison between the two curves illustrates the feasibility of using Uranine to compare
fluorometers considering the angular shift, provided that the pH of the water filling the chamber is
above 8. Indeed, several studies have been performed to verify the influence of pH variations on
the fluorescence of the Uranine [46–48], and results showed an increase of the fluorescence for acid
solutions and constant values from neutral up to strongly basic solutions.

To verify the impact of pH variations on fluorescence properties of Uranine using the developed
instrumental setup, twenty-nine measurement points were performed with pH spanning from 3.5 up to 11.

Starting from the chamber filled with filtered sea water at 8.64 pH, a volume of 30 mL Uranine
stable solution (20 mg¨L´1) was added and aliquots of NaOH 0.5 M and HCl 0.5 M were progressively
poured in the chamber to adjust pH. A submersible pump was switched on to mix the water volume
at each step and off during the data acquisition, to ensure a homogenous mixing of the water volume.
Latch HQ40d portable meter was used to monitor pH.

The same software tool used for the fluorescence experiment was employed to collect raw data in
real time from the three ECO-FLNTUS sensors.

Figure 13 shows an example of the response of the fluorometer at the beginning of the test when
30 mL of Uranine was poured into filtered sea water causing a steep increase in the acquired voltage
and when 1 mL of HCl 0.5 M was added to decrease pH, thus producing a drop in the signal.
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Figure 13. Voltage signal of sensor s/n 2776: (a) the steep increase when 30 mL of Uranine was poured
into filtered sea water and; (b) the rapid drop when 1 mL of HCl 0.5 M was added into the chamber
making pH decreasing from 4.7 down to 4.4.; (c) the chlorophyll-a curves as pH varies.

Chlorophyll-a concentrations confirmed the non-linear behaviour for acid solution, especially
for pH values below 7 and quite constant values for pH exceeding 8, pointing out the feasibility to
inter-compare/inter-compare fluorometers using the Uranine dye solution in a controlled environment
with pH greater than 8.

3.3. Laboratory Tests for Turbidity Sensors

ECO-FLNTUS turbidimeter has a linear response throughout the measurement range that can be
described by

Turbidity rNTUs “ pOUT´BLANKq¨ SF (4)

where Turbidity is the level of turbidity of the sample of interest, OUT is the raw measured output,
BLANK corresponds to the clean water offset and SF is the scale factor. Equation (4) is valid for both
voltage and count outputs.

For the experiment, the same combined fluorescence and turbidity sensors used for the
chlorophyll-a tests were used. Two of them (s/n 615, s/n 2776) have a measurement range of 0–10 NTU
whereas s/n 3372 has a wider range of 0–25 NTU.

To determine the BLANK values of all three sensors, the same procedure followed for the
chlorophyll-a test was used. Several tests were performed by considering the output of the sensor in
air (AIR), using filtered sea water (FSW) and filtered sea water with a black rubber shield inside the
chamber (FSWB), with a tape (TAPE) on the detector. One minute of simultaneously raw voltage at 2 Hz
and count at 1 Hz were recorded after the stabilization of the values at a controlled temperature of 22 ˝C.

Measurements in air show the greatest differences, with respect to the results obtained with the
tape on the detector, whereas the offset between observations in filtered sea water, without and with
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the black rubber shield in front of sensors, evidenced the importance of avoiding reflection inside the
chamber (Table 2). Measured and manufacturer BLANK show very similar values for the output in
voltage, whereas greater values were obtained for count data even if the ratio between the output in
voltage and count for the three tested sensors remains almost constant.

Table 2. Difference of turbidity concentration in NTU unit computed using different BLANK values
(air, filtered sea water without and with a black rubber shield) with respect to using BLANK value
obtained with the detector covered by the black tape.

Turbidity Offset s/n
WET Labs, Inc.

ECO-FLNTUS Sensors

2776 3372 615

SF¨ ( BLANKTAPE– BLANKAIR) –2.003 –2.169 –2.326
SF¨ ( BLANKTAPE– BLANKFSW) –1.497 –1.867 –1.597
SF¨ ( BLANKTAPE– BLANKFSWB) –0.404 –0.270 –0.290

As for the chlorophyll-a experiment, filtered sea water could be considered an appropriate blank
only if the removal of phytoplankton culture is performed in the same irradiance condition of the
in-situ environment. For this reason, in compliance with the manufacturer's advice, the BLANK value
used in the experiment was defined as the BLANKTAPE value.

The intercomparison between the three turbidimeters was performed as for the fluorometers test,
at a controlled temperature of 22 ˝C, the same of the calibration sheet provided by the manufacturer.
The chamber was filled with filtered sea water and seven steps were performed increasing the
concentration from 2 NTU up to 12 NTU. Unwanted reflections were avoided by placing a sheet
of black rubber in front of the sensors. To achieve homogenous solutions, the same magnetically
coupled, centrifugal pump used for the chlorophyll-a test was employed.

Results show an almost perfect agreement between the three scale factors provided by WET Labs
Inc. and the obtained values, pointing out that the developed new chamber is very suitable to perform
intercomparisons of turbidimeters and in turn, of fluorometers.

Since the aim was to intercompare the sensors to be routinely installed in the Mediterranean basin,
the scale factor to be operationally used was obtained considering a range between 0 NTU and 6 NTU.
Within this hypothesis, the obtained scale factor was 2.06 NTU V´1 (0.002441 NTU count´1) for s/n
2776 and 2.005 NTU V´1 (0.002385 NTU count´1) for s/n 615, instead of 2 (0.0024 NTU count´1 and
0.0022 NTU count´1, respectively) from datasheet and 4.82 NTUV´1 (0.005926 NTU count´1) for s/n
3372 instead of 5 NTU V´1 (0.0061 NTU count´1).

Figure 14 shows the estimates obtained, applying both the factory and the new curves and their
difference with respect to the standard concentration.

For the two sensors with the narrowest measurement range, the curve of the offset between
standard concentrations and the values obtained, applying both old and new curves overlaps up to
6 NTU. A better fit to the reference data was also obtained for turbidity greater than 6 NTU with respect
to the original calibration. The use of a maximum calibration standard of 12 NTU, corresponding to
half range for sensor s/n 3372, resulted in a greater difference between the standard and the estimates
obtained in applying the old and the new curves. Nonetheless, the new curves provide an almost
perfect match for the measurements of the three turbidimeters in the range 0–6 NTU, which is of
interest for deployment in the Mediterranean Sea.
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Figure 14. (a–c) Scatter plots of turbidity estimated by the three sensors before and after the experiment
as instrument response in voltage varies; (d) Curves of the offset between the reference concentrations
and the values obtained applying old and new curves.

4. Conclusions

Marine ecosystem dynamics are inherently non-linear, and resolving temporal and spatial
variability in the oceans is a very difficult task. Understanding ocean processes is often limited by a lack
of multidisciplinary oceanographic time-series datasets at appropriate spatial and temporal resolutions.

In the last few years, technological evolution has pushed forward the development of innovative
automated sensors for the monitoring of key biochemical parameters.

Factory calibration can be inadequate taking into account operational constraints of installation of
optical sensors into mobile or fixed platforms. Thus, it is fundamental to create tools which enable to
pre- and post-compare sensors not necessarily in metrologically equipped laboratories, by using an
instrumental setup as close as possible to real deployment conditions.

The developed, dissolved oxygen intercomparison tool allows for a continuous and real-time
monitoring of both reference sensor and instruments to be tested and it needs to be valid under different
conditions (stable or varying temperature and/or salinity) by providing great accuracy. Obtained time
response from the tested SBE43 was coherent with the specifications pointing out that the tank and
the tool could be useful to detect also quick changes in the dissolved oxygen concentration. The test
performed, using two different installation methods (with measurement package in horizontal and
vertical arrangement), evidenced that both setups can be operationally employed, since no differences
were found in the results providing that the flow rate of the pump is fast enough (around 33 mL¨ s´1).

The possibility to acquire real time, raw voltage measurements from oxygen sensors without using
a multiparametric probe, allows for the simultaneous intercomparison of several oxygen probes in a
small bath. This has several advantages: it is easier to control and keep stable the water temperature
and in turn, it is more practical to perform several steps in a short period of time thereby reducing the
waiting time between the steps. Furthermore, the tool is easy to use both in laboratory and onboard
ships during oceanographic cruises or surveys.

The designed chamber for the intercomparison of multiple fluorometers and turbidimeters allows
easy and repetitive measurement steps, and it proves to be stable and to guarantee an appropriate
mixing during repeated tests, with same concentrations of chlorophyll-a and turbidity.

The new software tool developed for the simultaneous intercomparison of several probes allows
all tested sensors to be exposed to the same concentration of native phytoplankton species, to measure
chlorophyll-a, avoiding problems due to the decay of the species. The chamber demonstrates versatility,
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to be used with both in vivo species and dye solutions, allowing tuned instruments to show similar
responses if exposed to similar conditions.

Results demonstrate that an angular shift of the fluorescence/chlorophyll-a concentration curve
exists when moving from a native species solution to a dye solution and that, after a first adjustment
through HPLC, it is possible to use this shift to perform further comparisons of the same sensor only
using dye solution (i.e., Uranine, BB3, etc.), provided that the pH is not influencing the fluorescence
properties of the dyes.

Results for turbidity coincide with the calibration performed by the manufacturer confirming the
overall reliability of the new chamber for performing comparisons.

Furthermore, the two tools are really promising when shared within a network of observatories,
as the Mediterranean Moored Multi-sensor Array (M3A) network [49] or the FixO3 network [50]
for intercomparison of sensors, before and after the deployment, since the possibility of operating
several sensors in parallel increases the quality of measurements and allows the detection of sensor
failure or drift.

The use of these new tools could be a viable way of avoiding gaps or aberrations in time series
data sets between two consecutive deployments and the enhancement of long term, in situ monitoring
of marine biogeochemical parameters. Indeed, the used sensors were successfully deployed on the
W1-M3A observatory [51] at the end of June 2015. A multiparametric probe equipped with the
SBE43 s/n 2050 and the ECO-FLNTUS s/n 2776 was installed on the spar buoy at a 6 m depth.
On 13 November 2015, the sensors were replaced with the SBE43 s/n 2281 and the ECO-FLNTUS s/n 3372.

At the end of August, an oceanographic cruise took place in the surroundings of the W1-M3A
observatory and, on that occasion, CTD casts and water samples were collected. Winkler titration
method applied to the water sample correspondent to a 6 m depth and the data provided by the cast
show a good agreement with the measurements collected by the equipment on board the observatory.

Figure 15 shows, as an example, the acquired time series of dissolved oxygen, chlorophyll-a and
turbidity from July 2015 to December 2015 at a 6 m depth.
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The change of sensors on 13 November 2015 did not affect the continuity of the measurements.
This demonstrates the usefulness of the intercomparison exercise carried out for the long-term
monitoring of biochemical properties on oceanographic fixed platforms.
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Appendix A: Dissolved Oxygen Sensors Technology

The technology for the dissolved oxygen monitoring in the ocean is nowadays mature and
commercial sensors exploit two different methodologies: electrochemistry and optics.

In the first category, electrochemical sensors such as the Sea-Bird Electronics, Inc. model SBE43 are
based on an upgraded version of the Clark polarographic membrane [52,53] developed by Clark [54]
that measures the partial pressure of oxygen by means of the rate of the diffusion of oxygen through a
membrane. Specifically, the Clark cell works on the principle of molecular O2 at a gold cathode: the
oxygen diffuses across a membrane and it is converted to OH´ ion at the gold cathode, and oxygen
concentration is proportional to the induced current.

SBE43 provides an estimate of oxygen dissolved into the water taking into account pressure and
salinity [55] and applying the Owens-Millard equation [33].

SBE43 sensors need to be flushed to reach the level of accuracy and stability reported in
the technical specifications and have an equilibration time from few seconds up to some tens of
seconds, depending on the thickness of the membrane. They are suitable for moored applications,
Conductivity-Temperature-Depth (CTD) sensor casts and mobile platforms since they can have a quick
response to oxygen change at the expense of a loss of sensitivity, producing a predictable drift in the
measurements with time.

In the second category, the most frequently used optical sensor for oxygen monitoring is the
Aanderaa Instruments AS optode class of instruments whose measurements are based on the principle
of fluorescence quenching of a platinum porphyrin complex immobilized in a sensing foil [56,57].
Chemicals in the foils are excited by a blue light and it is possible to obtain the quantity of dissolved
oxygen from the shift in phase between the emission and the fluoresced red signal. The quenching is
expressed by the Stern-Volmer equation [58] and the dependence on salinity and pressure is based on
the Garcia and Gordon formula [55]. Optodes provide long term stability and high precision but are
characterized by a slow response time that can affect measurements in the upper ocean where vertical
gradients in temperature and oxygen may be significant. This type of sensor is implemented in Argo
floats, gliders and on moorings and it is generally used as reference for laboratory calibration due to
the accuracy in the measurements, although it must be noted that the best standard analytical method
for discrete sampling is the Winkler method [27].

Appendix B: Chlorophyll-a and Turbidity Sensors Technology

The first attempt to measure in-situ chlorophyll-a dates back to 1966 [59], and, since then, several
efforts have been made to obtain reliable field type fluorometers. Actually, they can be subdivided into
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pumped flow-through models and not pumped ones: the first category comprises all sensors in which
excitation and detection are internal to the instrument, whereas all sensors for which excitation and
detection occur externally belong to the second class.

Commercial in-situ fluorometers use blue excitation light (typically LED 455/470 nm). This light
is absorbed by phytoplankton pigments. After rapid photobiological processes in the cell, part of the
absorbed energy is re-emitted as fluorescence by chlorophyll-a at 680 nm (centre of peak).

Many sensors combine fluorometer and turbidimeter since the scattered light can be used
to measure both chlorophyll-a and turbidity using different wavelengths of about 470 nm and
700 nm, respectively.

Turbidity is properly used to describe water clarity since it provides an estimate of the attenuation
of the light due to the presence of suspended materials measuring their effect on the optical properties
of the sea water [60].

Despite the simplicity of the method and the relatively low complexity of the instrumentation,
long term monitoring of chlorophyll-a is still a challenge due to fouling problems and to the variability
of the observations. Indeed, being related to biological processes, the observations can be affected by
phytoplankton composition and physiological status, morphology and other environmental factors
such as presence of other plant pigments and of dissolved organic matter [61,62]. Indeed, suspended
particles affect also turbidity measurements since their different size and distribution can influence
the optical observations making it difficult to obtain reliable long term time series of turbidity
measurements [37].

The intrinsic variability of the parameters to be monitored underlines the need to perform accurate
calibration of the sensors to be deployed at sea in operational monitoring sites, in order to be able to
verify drift of the sensor and to correct the data between two subsequent installations.

The most accurate method to analyze chlorophyll-a concentration in laboratory is HPLC [25],
while other options are spectrophotometry and fluorometry [63].

In situ turbidimeters are mostly calibrated through standard reference such as formazine although
this chemical provides a relative measurement that can vary not only between different types of
sensors, but also from instrument to instrument, and, for this reason, an intercomparison in the same
calibration bath of multiple sensors is highly recommended.
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