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Abstract: There is a problem that complex operation which leads to a heavy calculation burden
is required when the direction of arrival (DOA) of a sparse signal is estimated by using the array
covariance matrix. The solution of the multiple measurement vectors (MMV) model is difficult. In
this paper, a real-valued sparse DOA estimation algorithm based on the Khatri-Rao (KR) product
called the L1-RVSKR is proposed. The proposed algorithm is based on the sparse representation
of the array covariance matrix. The array covariance matrix is transformed to a real-valued matrix
via a unitary transformation so that a real-valued sparse model is achieved. The real-valued sparse
model is vectorized for transforming to a single measurement vector (SMV) model, and a new virtual
overcomplete dictionary is constructed according to the KR product’s property. Finally, the sparse
DOA estimation is solved by utilizing the idea of a sparse representation of array covariance vectors
(SRACV). The simulation results demonstrate the superior performance and the low computational
complexity of the proposed algorithm.

Keywords: sparse direction of arrival (DOA) estimation; multiple measurement vectors (MMV);
Khatri-Rao (KR) product; unitary transformation; array covariance vectors

1. Introduction

The direction of arrival (DOA) estimation is an important area of research in array signal
processing. Currently, there are many DOA estimation algorithms with good performance, such as the
multiple signal classification (MUSIC) algorithm, the estimation of signal parameters via rotational
invariance techniques (ESPRIT) algorithm, etc. Most of these traditional DOA estimation algorithms
require the source number as a priori information and a large number of snapshots to guarantee the
estimation precision. In recent years, the DOA estimation that utilizes the idea of sparse representation
has become many scholars’ research hotspot [1,2]. The target signals can be regarded to be sparse in a
spatial domain, and their DOAs can be estimated according to the array received data and a redundant
dictionary. The DOA estimation algorithm by utilizing the idea of sparse representation mainly divides
into two kinds [3,4]. One is the sparse model based on the array received data, and the other one is
the sparse model based on the array covariance matrix. The singular value decomposition (SVD) of
the array received data is used to propose a L1-SVD algorithm for DOA estimation [5]. Literature [6]
introduces the idea of a sparse representation of array covariance vectors (SRACV) to propose a
method called the L1-SRACV algorithm for estimating sparse signals’ DOAs. Compared to L1-SVD,
the L1-SRACV algorithm does not need to determine the regularization parameter and has a higher
stability. However, the L1-SRACV algorithm needs to estimate the noise power. In [7,8], L1-SRACV
is improved such that the noise power is unnecessary and the algorithm’s robustness is enhanced.
However, the above algorithms are all the resolution problems of the multiple measurement vectors
(MMV) model and refer to complex operations and thus a heavy calculation burden. In this paper, the

Sensors 2016, 16, 693; doi:10.3390/s16050693 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2016, 16, 693 2 of 13

sparse model based on the array covariance matrix is transformed to a real-valued sparse model via a
unitary transformation so that the amount of calculation is reduced by at least four times. Then, the
real-valued sparse model is vectorized, and the MMV model is transformed to a single measurement
vector (SMV) one whose calculation complexity is lower. Recently, the Khatri-Rao (KR) approach for
DOA estimation increases rapidly. It can extend the array aperture effectively, increase the degree of
freedom, and deal with the underdetermined DOA estimation in cases where the number of array
elements is less than the source number in some conditions [9–11]. According to the property of the KR
product and the real-valued overcomplete dictionary achieved by a unitary transformation, this paper
constructs a new real-valued dictionary and uses the idea of a SRACV to estimate the target signals’
DOAs. The simulations demonstrate that the proposed algorithm has a good estimation performance
and a low amount of calculation.

In this paper, the italic letters, the bold italic capital letters, and the bold italic lower-case letters
denote variables, matrices, and vectors, respectively. The remainder of this paper is organized as
follows. The sparse DOA estimation model based on the array covariance matrix is introduced in
Section 2. The proposed algorithm and the detailed formula derivation of the proposed algorithm is
given in Section 3. The simulation results and conclusions are given in Sections 4 and 5 respectively.

2. Signal Model for DOA Estimation

2.1. Input Signal Model

Suppose a uniform linear array (ULA) which has M elements, and the element spacing is
d. There are K uncorrelated far-field narrowband signals impinging on the array from directions
θ “ rθ1 θ2 ¨ ¨ ¨ θKs. The array received signal is given by

yptq “ Asptq ` nptq, t “ 1, 2, ¨ ¨ ¨ , L (1)

where A “ rapθ1q apθ2q ¨ ¨ ¨ apθKqs is the Mˆ K array manifold matrix whose steering vector is

apθkq “ r1, ejφpθkq , ¨ ¨ ¨ , ejpM´1qφpθkqs
T

, φpθkq “ ´2π d
λ sinpθkq, λ denotes the wavelength of the incident

signals, p¨ qT denotes the transpose, sptq is the Gaussian signal with mean zero, nptq is additive Gaussian
white noise, and L is the number of snapshots.

2.2. Signal Model Based on Sparse Representation

Suppose that the grid α “ rα1, α2, ¨ ¨ ¨ , αPs
T (P " K) contains all the potential directions in the

spatial domain. The sparse representation of the signal can be expressed as follows:

Y “ AX` N (2)

where A “ rapα1q apα2q ¨ ¨ ¨ apαPqs is an overcomplete dictionary of size M ˆ P, X “

rx1, x2, ¨ ¨ ¨ , xPs
T is a sparse signal of size P ˆ L in the spatial domain, and xpptq is equal to sk ptq

when the kth target locates at αp and is zero otherwise.
The array covariance matrix is

RY “ EtYYHu “ ARX AH
` σ2 IM (3)

where p¨ qH denotes the conjugate transpose, RX “ E
 

XXH( is the covariance matrix of the sparse
signal X where E t¨ u denotes the expectation, and RX “ diag

 

σ2
1 , σ2

2 , ¨ ¨ ¨ , σ2
P
(

, σ2
p is the pth spatial

signal’s power, σ2 denotes the noise power, and IM denotes an identity matrix of size MˆM.
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3. The Real-Valued Sparse DOA Estimation Based on the KR Product

3.1. The Real-Valued Sparse Model for DOA Estimation

In this section, a real-valued sparse DOA estimation algorithm based on the KR product called the
L1-RVSKR is proposed. As multiplication operation occupies the most proportion in the calculation
and a complex multiplication requires four real number multiplications, the complex data of the array
can be transformed to real data in order to reduce the computational complexity [12–15]. Define a
unitary matrix as follows:

Q “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

1?
2

«

I M
2

J M
2

jJ M
2

´jI M
2

ff

if M is even

1?
2

»

—

—

–

I M´1
2

0 M´1
2 ˆ1 J M´1

2

0T
M´1

2 ˆ1

?
2 0T

M´1
2 ˆ1

jJ M´1
2

0 M´1
2 ˆ1 ´jI M´1

2

fi

ffi

ffi

fl

if M is odd

(4)

where I M
2

, J M
2

, and 0 M´1
2 ˆ1 denote the M

2 ˆ
M
2 identity matrix, the M

2 ˆ
M
2 permutation matrix, and the

M´1
2 ˆ 1 null matrix, respectively.

Theorem 1. For any MˆM Hermitian persymmetric matrix D, QDQH is real and symmetric.
However, as the number of snapshots in practice is finite, the practical sampling covariance matrix

is Hermitian but generally not persymmetric. Therefore, the persymmetrized estimator of the practical
sampling covariance matrix is

R “ 1
2 pRY ` JMR˚Y JMq

“ 1
2 pARX AH

` JMpARX AH
q
˚

JMq ` σ2 IM

“ 1
2 pARX AH

` pJM A˚qR˚XpJM A˚q
H
q ` σ2 IM

(5)

where p¨ q˚ denotes the complex conjugate.
The array manifold matrix of the isometric uniform linear array satisfies that JM A˚ “ AB and

we have
R “ 1

2 pARX AH
` ABR˚XBH AH

q ` σ2 IM

“ 1
2 ApRX ` BR˚XBHqAH

` σ2 IM
(6)

where the diagonal matrix B “ Φ1´M, and the rotation matrix Φ “ diag
!

ejφpα1q ¨ ¨ ¨ ejφpαPq
)

.
The real-valued symmetrical matrix can be achieved via a unitary transformation

Rr “ QRQH

“ 1
2 QApRX ` BR˚XBHqAHQH ` σ2 IM

(7)

The equation B “ Φ1´M is substituted into Equation (7) and we have

Rr “ 1
2 QApRX `Φ1´MR˚XΦM´1qAHQH ` σ2 IM

“ 1
2 QAΦ

1´M
2 Φ

M´1
2 pRX `Φ1´MR˚XΦM´1qΦ

1´M
2 Φ

M´1
2 AHQH ` σ2 IM

“ 1
2 QAΦ

M´1
2 pRX `Φ1´MR˚XΦM´1qΦ

1´M
2 AHQH ` σ2 IM

“ 1
2 QApΦ

M´1
2 RXΦ

1´M
2 ` pΦ

M´1
2 RXΦ

1´M
2 q

˚
qAHQH ` σ2 IM

“ 1
2 ΨpΦ

M´1
2 RXΦ

1´M
2 ` pΦ

M´1
2 RXΦ

1´M
2 q

˚
qΨH ` σ2 IM

“ ΨRepΦ
M´1

2 RXΦ
1´M

2 qΨT ` σ2 IM

(8)
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where Rep¨ q denotes the real part and

A “ AΦ
1´M

2 “ rapα1q apα2q ¨ ¨ ¨ apαPqs (9)

apαpq “

$

&

%

re´j M´1
2 φpαpq , ¨ ¨ ¨ , e´j 1

2 φpαpq, ej 1
2 φpαpq , ¨ ¨ ¨ , ej M´1

2 φpαpqs
T

if M is even

re´j M´1
2 φpαpq , ¨ ¨ ¨ , 1 , ¨ ¨ ¨ , ej M´1

2 φpαpqs
T

if M is odd
(10)

and the real-valued overcomplete dictionary is

Ψ “ QA “ rψpα1q ψpα2q ¨ ¨ ¨ ψpαPqs (11)

If M is even, the real-valued steering vector is

ψpαpq “
?

2
„

cosp
M´ 1

2
φpαpqq , ¨ ¨ ¨ , cosp

1
2

φpαpqq , sinp
1
2

φpαpqq , ¨ ¨ ¨ , sinp
M´ 1

2
φpαpqq

T
(12)

and, if M is odd, the real-valued steering vector is

ψpαpq “
?

2
„

cosp
M´ 1

2
φpαpqq , ¨ ¨ ¨ , cospφpαpqq , 1, sinpφpαpqq , ¨ ¨ ¨ , sinp

M´ 1
2

φpαpqq

T
(13)

Then, an important property of the KR product is used with Equation (8). The property of the KR
product can be expressed as follows [9]:

vecpΥZΞHq “ pΞ˚ dΥqζ (14)

where vecp¨ q is the vectorization operation that stacks each column of a matrix one by one,
Υ “ rυ1, υ2, ¨ ¨ ¨ , υks P Cmˆk, Ξ “ rξ1, ξ2, ¨ ¨ ¨ , ξks P Cnˆk, d denotes the KR product, Ξ˚ d Υ “

rξ˚1 b υ1, ξ˚2 b υ2, ¨ ¨ ¨ , ξ˚k b υks, b denotes Kronecker product, ζ “ rζ1, ζ2, ¨ ¨ ¨ , ζks
T, and Z “ diagpζq is

a diagonal matrix.
According to the above property, Equation (14) is applied to Equation (8), and Equation (8) can be

vectorized as
rr “ vecpRrq

“ pΨdΨq¨diagtRepΦ
M´1

2 RXΦ
1´M

2 qu ` σ2vecpIMq

“ pΨdΨq¨ u` σ2vecpIMq

(15)

where rr “ vecpRrq is the vector form of Rr, and u “ diag
!

RepΦ
M´1

2 RXΦ
1´M

2 q

)

is a vector which is

consist of the diagonal elements of the matrix RepΦ
M´1

2 RXΦ
1´M

2 q. Equation (15) can be considered a
new observation model, in which the observation vector rr, the dictionary pΨ dΨq, and the sparse
vector u are all real-valued. Furthermore, the MMV model is transformed to a SMV model by using
the KR product’s property. Therefore, the computational complexity can be effectively decreased.
Moreover, the dictionary is constructed via the KR product so that a new virtual array is produced [16].
The dimension of the produced virtual array pΨdΨq is M2, and the number of the distinct rows in
pΨdΨq is 2M´ 1, which is greater than the matrix Ψ’s dimension M. Therefore, the array aperture is
extended, and the resolving power is effectively improved.

3.2. DOA Estimation Based on a SRACV

According to Equations (5) and (7), Rr can also be formulated as

Rr “ 1
2 QpRY ` JMR˚Y JMqQH

“ 1
2 QRYQH ` 1

2 QJMR˚Y JMQH

“ Rr1 ` Rr2

(16)
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where Rr1 “
1
2 QRYQH and Rr2 “

1
2 QJMR˚Y JMQH.

The vector form of Equation (16) can be expressed as

rr “ vecpRrq “ vecpRr1q ` vecpRr2q (17)

where
vecpRr1q “

1
2

vecpQRYQHq “
1
2
pQ˚ bQqvecpRYq “ G1vecpRYq (18)

G1 “
1
2
pQ˚ bQq (19)

vecpRr2q “ 1
2 vecpQJMR˚Y JMQHq

“ 1
2 pQ

˚ bQqvecpJMR˚Y JMq

“ 1
2 pQ

˚ bQqpJM b JMqvecpR˚Yq
“ G2vecpR˚Yq

(20)

and
G2 “

1
2
pQ˚ bQqpJM b JMq (21)

As the number of snapshots is finite in practice, the practical sampling covariance matrix is
given by

R̂Y “
1
L

L
ÿ

t“1

YYH “ RY ` ∆R (22)

where ∆R “ R̂Y ´ RY is the estimate error. The vector ∆r “ vecp∆Rq “ vecpR̂Y ´ RYq satisfies an
asymptotic normal distribution [17,18]

∆r „ AsNp0M2ˆ1,
1
L

RT
Y b RYq (23)

where AsNpµ, σ2q denotes an asymptotic normal distribution whose expectation is µ and whose
variance is σ2. According to the literature [17–19], it can be known that

vecp∆Rr1q „ AsNp0M2ˆ1, G1p
1
L

RT
Y b RYqGH

1 q (24)

and
vecp∆Rr2q „ AsNp0M2ˆ1, G2p

1
L

RY b R˚YqG
H
2 q (25)

where
vecp∆Rr1q “ vecp

1
2

QR̂YQH ´
1
2

QRYQHq “ G1∆r (26)

and
vecp∆Rr2q “ vecp

1
2

QJMR̂˚Y JMQH ´
1
2

QJMR˚Y JMQHq “ G2∆r˚ (27)

In order to obtain the covariance of ∆r and ∆r˚, firstly we have

Etr̂ipr̂˚j q
H
u “ 1

L2

L
ř

t1“1

L
ř

t2“1
Etypt1qy˚i pt1qpypt2qy˚j pt2qq

T
u

“ 1
L2

L
ř

t1“1

L
ř

t2“1,t2‰t1

Etypt1qy˚i pt1quEtpypt2qy˚j pt2qq
T
u ` 1

L2

L
ř

t1“1
Etypt1qy˚i pt1qy˚j pt1qyTpt1qu

“ L2´L
L2 rirT

j `
1
L prirT

j ` rjrT
i q

“ p1´ 1
L qrirT

j `
1
L prirT

j ` rjrT
i q

“ rirT
j `

1
L rjrT

i

(28)
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where r̂i, ri, yiptq denote the ith column of R̂Y, the ith column of RY and the ith element
of yptq, respectively.

Then, the covariance matrix of ∆r and ∆r˚ is given by

C “ covp∆r, ∆r˚q fi Etpr̂´ rqpr̂˚ ´ r˚qHu “ Etr̂pr̂˚qHu ´ rrT

“

»

—

—

—

—

–

1
L r1rT

1
1
L r2rT

1 ¨ ¨ ¨ 1
L rMrT

1
1
L r1rT

2
1
L r2rT

2 ¨ ¨ ¨ 1
L rMrT

2
...

...
...

1
L r1rT

M
1
L r2rT

M ¨ ¨ ¨ 1
L rMrT

M

fi

ffi

ffi

ffi

ffi

fl

(29)

where covpx, yq denotes the covariance matrix of x and y, and we have

covpvecp∆Rr1q, vecp∆Rr2qq “ covpG1∆r, G2∆r˚q “ G1covp∆r, ∆r˚qGH
2 “ G1CGH

2 (30)

From Equation (30), it can be known that vecp∆Rr1q and vecp∆Rr2q are dependent. Obviously, the
sum of vecp∆Rr1q and vecp∆Rr2q still satisfies an asymptotic normal distribution

vecp∆Rrq „ AsNp0M2ˆ1, G1p
1
L

RT
Y b RYqGH

1 ` G2p
1
L

RY b R˚YqG
H
2 ` 2G1CGH

2 q (31)

Define W “ G1p
1
L RT

Y b RYqGH
1 ` G2p

1
L RY b R˚YqG

H
2 ` 2G1CGH

2 , and we have

W´ 1
2 vecp∆Rrq „ AsNp0M2ˆ1, IM2q (32)

and
||W´ 1

2

”

r̂r ´ pΨdΨq¨ u´ σ2vecpIMq
ı

||
2

2
„ Asχ2pM2q (33)

where r̂r “ vecpR̂rq “ vecp 1
2 QpR̂Y ` JMR̂˚Y JMqQHq, Asχ2pM2q denotes an asymptotic chi-square with

M2 degrees of freedoms. Then, the following formula can hold with a high probability q

||W´ 1
2

”

r̂r ´ pΨdΨq¨ u´ σ2vecpIMq
ı

||
2

2
ď η (34)

where η “ χ2pM2q, which can be obtained through the function chi2invpq, M2q in Matlab. Further, the
formula for sparse DOA estimation is given by

min||u||1 s.t. ||W´ 1
2

”

r̂r ´ pΨdΨq¨ u´ σ2vecpIMq
ı

||
2
ď
?

η (35)

It is obvious that only the matrix W is complex in Equation (35). Therefore, the operations before
W are all real number operations for a low calculation complexity. The computational complexity of
the operations before W is reduced by at least four times. In fact, solving Equation (35) through a
second-order cone programming (SOCP) framework occupies most of the computational complexity
in the proposed algorithm. Solving Equation (35) requires OpP3q in the proposed algorithm, while
it requires OpM3P3q in the L1-SRACV algorithm and OpK3P3q in the L1-SVD algorithm [5,6,20]. It is
obvious that the computational complexity of the proposed algorithm is much lower than those of the
other two algorithms.

The proposed L1-RVSKR method can be considered as the unitary L1-SRACV algorithm. The
array covariance matrix is transformed to a real one and vectorized. By this way, a real-valued SMV
model is obtained, and the calculation complexity is decreased. Moreover, the KR product is used to
construct a new virtual dictionary that increases the degree of freedom.
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4. Simulation Experiments

In this section, several simulations are performed with MATLAB R2014a and CVX toolbox to verify
the performance of the proposed L1-RVSKR algorithm. Firstly, the spatial spectra of the L1-RVSKR
method is compared with L1-SRACV, L1-SVD, and MUSIC. Then, several experiments are performed to
compare the estimation performance of different algorithms versus the signal-to-noise ratio (SNR), the
angle interval, and the number of snapshots. Finally, the low computational complexity of the proposed
algorithm is verified and analyzed by comparing the running time with the other two algorithms. We
consider a ULA with λ{2 spacing in the following simulations, and the number of sensors is 8 except
that shown in Figure 1 and the last simulation. The grid is divided in the range of ´90˝ to 90˝ spacing
1˝. The probability is set to be q “ 0.999 to achieve the parameter η, and the average value of the
M´ K smallest eigenvalues of R̂Y is used as σ2 in the L1-RVSKR and L1-SRACV algorithms.
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Figure 1. The spatial spectra for four signals with the number of sensors M “ 5, the number of
snapshots L “ 500 and SNR = 0 dB.

4.1. The Spatial Spectra Comparison

In this simulation, the spatial spectra of the L1-RVSKR algorithm is compared with L1-SRACV,
L1-SVD, and MUSIC. Consider four uncorrelated far-field narrowband signals arriving at the array
from directions r´35˝,´10˝, 15˝, 40˝s. The number of sensors is 5, and the number of snapshots is 500.
Figure 1 shows the spatial spectra of different methods with SNR = 0 dB. It can be seen from Figure 1
that the spatial resolution of the L1-RVSKR algorithm is better than those of the other algorithms, and it
has no pseudo-peaks in such a simulation condition. In Figure 2, we consider two uncorrelated far-field
narrowband signals arriving at the array from directions 8˝ and 17˝. The number of sensors is 8, and
the number of snapshots is 300. Figure 2 shows that the L1-RVSKR algorithm can distinguish each
signal in different SNRs. Several pseudo-peaks appear with the L1-RVSKR and L1-SRACV algorithms
when SNR is high, but the pseudo-peaks are lower than that of the real estimated DOA. With the
decrease of the SNR, there is only one pseudo-peak of the L1-RVSKR algorithm left, which is less than
that of the L1-SRACV algorithm. Moreover, the L1-SVD and MUSIC algorithms cannot distinguish the
signals with low SNR, although they have no pseudo-peaks.

According to the above simulation results, the L1-RVSKR and L1-SRACV algorithms are easy to
produce pseudo-peaks because they are realized by L1-norm minimization. The problem can be solved
by the idea of a weighted L1-norm constraint [21,22].
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Figure 2. The spatial spectra for two signals with the number of sensors M “ 8 and the number
of snapshots L “ 300 : (a) SNR = ´8 dB; (b) SNR = ´6 dB; (c) SNR = ´4 dB; (d) SNR = ´2 dB;
(e) SNR = 0 dB. DOA: direction of arrival; RVSKR: real-valued sparse DOA estimation algorithm based
on the KR product; SRACV: sparse representation of array covariance vectors; SVD: singular value
decomposition; MUSIC: multiple signal classification; SNR: signal-to-noise ratio.

4.2. The Estimation Performance versus SNR

In this section, the estimation performance of different methods versus the SNR is compared by
an experiment. Firstly, we define the root mean square error (RMSE) as follows:

RMSE “

g

f

f

e

N
ÿ

n“1

K
ÿ

k“1

pθ̂kn ´ θkq
2

KN
(36)

where N denotes the number of independent Monte Carlo simulations, and θ̂kn is the estimated value
of θk in the nth simulation.

Similarly, we consider two uncorrelated far-field narrowband signals from directions 8˝ and 17˝.
The number of snapshots is 300. The SNR varies from ´10 dB to 10 dB with 2 dB steps. For each SNR,
50 Monte Carlo simulations are performed to verify the performance of the proposed method. The
simulation result is shown in Figure 3. It is shown that the RMSEs of the three algorithms decrease
with the increase of the SNR. The RMSE of L1-RVSKR is less than those of the other two methods when
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the SNR is less than ´6 dB. It is declared that the proposed L1-RVSKR algorithm can achieve better
performance than the other two methods with low SNR.
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Figure 3. Root mean square error (RMSE) of DOA estimation versus SNR.

4.3. The Angle Resolution Capability

In this section, the angle resolution capabilities of different algorithms are compared. We suppose
that there are two uncorrelated signals whose directions are 8˝ and ∆θ ` 8˝. The angle interval ∆θ

varies from 2˝ to 18˝ with a step of 2˝. For each angle interval, 50 Monte Carlo simulations are
performed to compare the angle resolution capability of the proposed method with MUSIC, L1-SVD,
and L1-SRACV. The SNR is set to 0 dB, and the number of snapshots is 300. Figure 4 shows the
comparison of the angular resolution of different methods. It can be seen from Figure 4 that the RMSEs
of the four methods decrease with the increase of the angle interval. The RMSE of L1-RVSKR decreases
significantly when the angle interval is smaller than 4˝, and the performance of L1-RVSKR is superior
to the other methods when the angle interval is smaller than 6˝. This simulation illustrates that the
resolving ability of the proposed method is superior to those of the other three methods.
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Figure 4. RMSE of DOA estimation versus the angle interval.

4.4. The Estimation Performance versus the Number of Snapshots

In this section, we analyze the relationship of the RMSE of the DOA estimation and the number
of snapshots in the case of SNR “ 0dB. Consider two uncorrelated far-field narrowband signals
impinging on the array from directions 8˝ and 17˝. The number of snapshots varies from 100 to 350
with a step of 50. For each number of snapshots, 50 Monte Carlo simulations are performed to verify
the performance of the proposed method. It can be seen from Figure 5 that the RMSEs of the three
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methods decrease as the increase of the number of snapshots. It is illustrated in this simulation that the
RMSE of the L1-RVSKR algorithm is smaller than the other two methods, and the L1-RVSKR algorithm
has a better performance with a small number of snapshots.
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Figure 5. RMSE versus the number of snapshots.

4.5. The Algorithm Complexity Analysis

In this section, we perform 50 Monte Carlo simulations to verify the low computational complexity
of the proposed L1-RVSKR algorithm. The average running time of the three algorithms with different
numbers of sensors is shown in Table 1 and Figure 6. It is shown that the running time of L1-RVSKR is
the shortest among the three algorithms. The proposed L1-RVSKR algorithm runs much faster than
the other two algorithms and has a higher computational efficiency. Therefore, L1-RVSKR outperforms
the other two algorithms with low computational complexity according to the above analysis and
simulation results.

Table 1. The running time versus the number of sensors.

Number of Sensors L1-RVSKR L1-SRACV L1-SVD

6 3.2773 s 36.9106 s 12.9263 s
8 3.4291 s 89.6315 s 12.2859 s

10 5.8132 s 183.1054 s 12.3405 s
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5. Conclusions

In this paper, we propose a real-valued sparse DOA estimation algorithm by using the KR
product. The sparse model of the array covariance matrix is transformed to a real-valued one via a
unitary transformation. Therefore, the calculated amount is reduced. Moreover, the vectorization
is made to transform the real-valued MMV model to a SMV one. The array aperture is extended,
and the estimation accuracy is improved by using the KR product. Finally, the idea of a SRACV is
utilized for DOA estimation. The simulation results show that the proposed method can achieve
better performance than L1-SVD and L1-SRACV with a low SNR, a small angle interval, and a small
number of snapshots. The proposed method also improves the computational efficiency. However, the
algorithm cannot deal with an underdetermined DOA estimation because the sparse model used is a
model of SMV. We will work on this aspect in the future.
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