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Abstract: Land Surface Temperature (LST) is a key parameter in climate systems. The methods
for retrieving LST from hyperspectral thermal infrared data either require accurate atmospheric
profile data or require thousands of continuous channels. We aim to retrieve LST for natural land
surfaces from hyperspectral thermal infrared data using an adapted multi-channel method taking
Land Surface Emissivity (LSE) properly into consideration. In the adapted method, LST can be
retrieved by a linear function of 36 brightness temperatures at Top of Atmosphere (TOA) using
channels where LSE has high values. We evaluated the adapted method using simulation data at
nadir and satellite data near nadir. The Root Mean Square Error (RMSE) of the LST retrieved from the
simulation data is 0.90 K. Compared with an LST product from the Spinning Enhanced Visible and
Infrared Imager (SEVIRI) on Meteosat, the error in the LST retrieved from the Infared Atmospheric
Sounding Interferometer (IASI) is approximately 1.6 K. The adapted method can be used for the
near-real-time production of an LST product and to provide the physical method to simultaneously
retrieve atmospheric profiles, LST, and LSE with a first-guess LST value. The limitations of the
adapted method are that it requires the minimum LSE in the spectral interval of 800–950 cm´1 larger
than 0.95 and it has not been extended for off-nadir measurements.

Keywords: land surface temperature; hyperspectral thermal infrared; multi-channel method; land
surface emissivity

1. Introduction

Land Surface Temperature (LST) is a key parameter in climate systems. LST is used for Earth
surface energy budget studies [1], numerical weather/climate forecasting [2], the retrieval of climate
variables [3], soil moisture/evapotranspiration estimations [4], and generation of time-consistent
LST product [5,6]. For severe weather forecasting application, the near-real-time LST can provide
important diagnostic information [7]. Thermal infrared remote sensing has become an effective method
to measure LST on large spatial scales [8,9].

Various methods to retrieve LST from satellite-based multispectral thermal infrared data
include the following: the single-channel method [10], the Split-Window (SW) method [11–14], the
multi-channel method [1–17], the multi-angle method [18], the physical-based day/night operational
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method [19], the Temperature and Emissivity Separation (TES) method [20], the multi-temporal
physical method [21], the Kalman filter physical method [22], and the Two-Step Retrieval Method
(TSRM) [23,24]. The single channel method requires good knowledge of the Land Surface Emissivity
(LSE) at the channel used and an accurate atmospheric profile. The SW method requires accurate
atmospheric water vapor content and LSE for land applications [8]. The use of the multi-channel
method is limited by the uncertainty in LSE for the two mid-infrared channels (3–6 µm) being larger
than that of the channels centered between 10 µm and 12 µm [25]. The multi-angle method suffers from
the phenomenon of LSE and LST angular dependence [26]. The physical-based day/night operational
method suffers from problems of geometry mis-registration, variations in the viewing zenith angle, and
inaccurate atmospheric corrections [27]. The TES method, the multi-temporal physical method, and
the Kalman-filter physical method require good atmospheric corrections [21,22,28]. The requirement
of adequate channels and the TRSM method’s complex nature make it difficult to apply. The expected
accuracy of a LST product from thermal infrared sensors is less than 1 K [29], however, this has not yet
been achieved.

The hyperspectral thermal infrared data from sensors, such as the Infrared Atmospheric Sounding
Interferometer (IASI) [30] and the Cross-track Infrared Sounder (CrIS) [31], have thousands of channels
and provide a wealth of information on the atmosphere and the land surface. This type of data
provides a new opportunity for methodological development in retrieving LST from satellite data.

The methods for retrieving LST from space-borne hyperspectral thermal infrared data can be
classified into two types: empirical methods [32–38] and physical based methods [39–44]. The latter
either require atmospheric profiles or are difficult to apply due to their complex nature. The empirical
methods, which include the Artificial Neural Network (ANN) method and the principal component
regression method, are based on a linear/nonlinear empirical relation between principal component
amplitudes of the brightness temperature spectrum at the Top of the Atmosphere (TOA) and
LST [32–37]. The principal component regression method and the ANN method are fast enough
for near real-time applications [39]. However, the empirical methods require thousands of channels,
which are not available for measurements because they contain damaged data at certain channels. It is
required to develop a flexible multi-channel method for retrieving LST from hyperspectral thermal
infrared data with less channels. Previously, we developed a multi-channel method to retrieve surface
temperature for high emissivity surfaces from IASI data using brightness temperatures at TOA at
10 channels [38]. However, the multi-channel method for high emissivity surfaces mentioned above
requires the assumption of blackbody LSE. The objective of this paper is to adapt the multi-channel
method for retrieving LST from hyperspectral thermal infrared data for natural land surfaces while
properly taking LSE into consideration.

The adapted multi-channel method can be used for retrieving LST for natural land surface
from hyperspectral thermal infrared data containing damaged data at certain channels. The
adapted multi-channel method is also promising for near-real-time production of LST products
from hyperspectral thermal infrared data.

This paper is organized as follows: Section 2 adapts the multi-channel method using simulation
data with typical LSE data of natural land surfaces. The sensitivity of the adapted method to
instrumental noise and LSE is shown in Section 3. The evaluation of the adapted method using
simulation data and satellite data is shown in Section 4, and the last section lists the conclusions.

2. Methodology

2.1. Multi-Channel Method

According to the multi-channel method for retrieving LST from hyperspectral thermal infrared
data for high emissivity surfaces [38], LST can be retrieved from:

Ts “ w0 `
ÿ

i“1:p

wiTb
i

(1)
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where Ts is the LST, wi (i = [1, p]) are the regression coefficients, and Tbi is the brightness temperature
at TOA at channel i. The number of channels is p, and the center wavenumbers at channel
i (i = [1, p]) and the wi (i = [0, p]) coefficients can be determined using simulation data with LSE of unity.
The determined central wavenumbers of the channels are in the spectral interval of 800–1200 cm´1.
The specifics for determining the wi coefficients and the central wavenumbers of the channels are
shown in [38]. This multi-channel method relies on the assumption that LSE is equal to one and can
not be directly used for applications on natural land surfaces.

2.2. Adaptation for Natural Land Surfaces

2.2.1. Adapted Multi-Channel Method

The previous multi-channel method is limited to applications on high emissivity surfaces. To
extend the previous multi-channel method, we developed the adapted multi-channel method for
retrieving LST from hyperspectral thermal infrared data for natural land surfaces. In the adapted
multi-channel method, with the assumption that the LSE has high values in the spectral interval
of [νa, νb] cm´1, LST can be retrieved from:

Ts “ α0 `
ÿ

i“1:n

pαs,iTb
s,i
` αw,iTb

w,i
q (2)

where α0, αs,i (i = [1:n]) and αw,i (i = [1:n]) are the regression coefficients (also called αi in this paper), and
Tbs,i (i = [1:n]) and Tbw,i (i = [1:n]) are the brightness temperatures at TOA at a channel-pair centered in
the spectral interval of [νa, νb]. A channel-pair includes two nearby channels where the absorption of
water vapor is strong in one channel and is weak in another channel. The α0, αs,i„ and αw,i (i = [1:n])
coefficients and the central wavenumbers of the channels are determined using simulation data as
described below. As a trade-off between the loss of information and the number of required channels,
we only used the brightness temperatures at the channel-pairs, which represent the main feature of the
brightness temperature spectrum at TOA in the spectral interval of [νa, νb].

2.2.2. Analysis of the Variation in LSE

To determine the spectral interval where LSE has high values, we used typical LSE data from the
Advanced Spaceborne Thermal Emission Radiometer (ASTER) emissivity library to study the variation
in LSE. The wavelength of the LSE data in the ASTER library is from 714 cm´1 to 25,000 cm´1. The
materials in the LSE data in the ASTER library include rocks, minerals, soils, vegetation, water bodies,
meteorites, and manmade materials. Because pure pixels of rocks, minerals, meteorites, and manmade
materials are rare in hyperspectral thermal infrared data with a spatial resolution of 12 km, we did not
use the LSE data for these four types of materials for this analysis. Specifically, the materials of the LSE
data used include water, snow, ice, three vegetation types, and 41 soils. The absorption of atmospheric
ozone is strong in the spectral interval of 985–1071 cm´1. To eliminate the effect of atmospheric ozone,
the spectral intervals used for this analysis were 800–985 cm´1 and 1071–1200 cm´1. The criteria for
determining the spectral interval of [νa, νb] in Equation (2) is that the mean values of the channel LSEs
are larger than 0.95 and the standard deviations of the channel LSEs are not larger than 0.01.

The mean values of the channel LSEs and the standard deviations of the channel LSEs as a
function of wavenumber are shown in Figure 1. The mean channel LSEs in the spectral interval of
800–950 cm´1 are larger than 0.95, and the corresponding standard deviations of the channel LSEs
are approximately 0.01. The mean channel LSE decreases to about 0.943 in the spectral interval of
1071–1200 cm´1 and the standard deviation of the channel LSE increases to high values in the spectral
interval of 1071–1200 cm´1, ranging between 0.03 and 0.045. We only considered the channels in the
spectral interval of 800–950 cm´1 in the determination of the central wavenumbers of the channels.
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Figure 1. The mean values of the channel LSEs and the standard deviations of the channel LSEs as a 
function of wavenumber. (std = standard deviation of channel LSE). 
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temperature and moisture profiles that have 35 layers from 1013 hPa to 0.01 hPa. The total 
precipitable water vapor and the bottom temperature of the atmospheric profile are 2.91 g/cm2 and 
294.2 K, respectively. The LST and LSE for the simulation were 299.7 K and unity, respectively. 4A/OP 
was used to simulate the atmospheric radiative terms for measurements at nadir with the MODerate 
resolution atmospheric TRANsmission and radiance (MODTRAN) software build-in profiles. The 
spectral interval and spectral sampling frequency for the simulation were 800–950 cm−1 and 0.25 cm−1, 
respectively. The radiative transfer equation was used to simulate the brightness temperature 
spectrum at TOA for nadir observations with the atmospheric radiative terms from the 4A/OP model. 
With the brightness temperature data simulated using typical atmospheric profile data, we first 
selected the weak-absorption channels from each micro atmospheric window in the spectral interval 
of 800–950 cm−1. Then, we selected nearby strong-absorption channels, which had a brightness 
temperature difference larger than c K compared with themselves as the determined strong-
absorption channels. The value of c for this simulated brightness temperature data is an empirical 
value of 2.5. 

The determined central wavenumbers of the channels and the simulated brightness temperature 
spectrum at TOA are shown in Figure 2. The 36 channels centered in the spectral interval of 800–950 
cm−1 are used in this study. 

To analyze the representativeness of the selected channels, we simulated brightness temperature 
data as above using the tropical and the sub-polar-winter atmospheric profile data extracted from 
MODTRAN. The total precipitable water vapors for the tropical profile and the sub-polar-winter 
profile are 4.08 g/cm2 and 0.42 g/cm2, respectively. The bottom temperatures for the tropical profile 
and the sub-polar-winter profile are 299.7 K and 257.2 K, respectively. This simulated brightness 
temperature data is shown in Figure 2. From Figure 2, we can see that the brightness temperatures at 
the selected channels are representative of the entire brightness temperature spectrum in 800–985 
cm−1 for these typical atmospheric conditions. 

Figure 1. The mean values of the channel LSEs and the standard deviations of the channel LSEs as a
function of wavenumber. (std = standard deviation of channel LSE).

2.2.3. Determination of Central Wavenumbers of the Channels

To determine the central wavenumber of strong-absorption channels and weak-absorption
channels in Equation (2), we simulated data using the Operational release for Automatized
Atmospheric Absorption Atlas (4A/OP) [45,46] with the Middle-latitude-summer atmospheric profile
extracted from the MODTRAN software. The atmospheric profile consists of atmospheric temperature
and moisture profiles that have 35 layers from 1013 hPa to 0.01 hPa. The total precipitable water
vapor and the bottom temperature of the atmospheric profile are 2.91 g/cm2 and 294.2 K, respectively.
The LST and LSE for the simulation were 299.7 K and unity, respectively. 4A/OP was used to
simulate the atmospheric radiative terms for measurements at nadir with the MODerate resolution
atmospheric TRANsmission and radiance (MODTRAN) software build-in profiles. The spectral
interval and spectral sampling frequency for the simulation were 800–950 cm´1 and 0.25 cm´1,
respectively. The radiative transfer equation was used to simulate the brightness temperature
spectrum at TOA for nadir observations with the atmospheric radiative terms from the 4A/OP
model. With the brightness temperature data simulated using typical atmospheric profile data, we first
selected the weak-absorption channels from each micro atmospheric window in the spectral interval
of 800–950 cm´1. Then, we selected nearby strong-absorption channels, which had a brightness
temperature difference larger than c K compared with themselves as the determined strong-absorption
channels. The value of c for this simulated brightness temperature data is an empirical value of 2.5.

The determined central wavenumbers of the channels and the simulated brightness temperature
spectrum at TOA are shown in Figure 2. The 36 channels centered in the spectral interval of
800–950 cm´1 are used in this study.

To analyze the representativeness of the selected channels, we simulated brightness temperature
data as above using the tropical and the sub-polar-winter atmospheric profile data extracted from
MODTRAN. The total precipitable water vapors for the tropical profile and the sub-polar-winter profile
are 4.08 g/cm2 and 0.42 g/cm2, respectively. The bottom temperatures for the tropical profile and the
sub-polar-winter profile are 299.7 K and 257.2 K, respectively. This simulated brightness temperature
data is shown in Figure 2. From Figure 2, we can see that the brightness temperatures at the selected
channels are representative of the entire brightness temperature spectrum in 800–985 cm´1 for these
typical atmospheric conditions.
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Figure 2. The central wavenumbers of the channels illustrated with the simulated brightness
temperature spectrum at TOA (Top of Atmosphere). The bottom temperature is 294.2 K, and the
LST (Land Surface Temperature) is 299.7 K.

2.2.4. Determination of the αi Coefficients

To determine the αi coefficients, we simulated a large amount of data using 4A/OP with typical
atmospheric profiles from the Thermodynamic Initial Guess Retrieval (TIGR) database [47,48] as
mentioned above. The atmospheric profile data and the LST data for the simulation to determine the
αi coefficients were the same as those described in [38]. For each simulation condition, the LSE data
for the simulation was the data referred to in Section 2.2.1. A random noise with a Noise Equivalent
Temperature Difference (NE∆T) of 0.1 K was added to the simulated brightness temperature data at
TOA. Using the large simulation data, we determined the αi coefficients in Equation (2) with the least
square method.

The determined αi coefficients are shown in Figure 3. The αi (i = [1, 36]) coefficients vary over a
small range from ´1.5 to 2.0.
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3. Sensitivity Analysis

3.1. Sensitivity to Land Surface Emissivity

To analyze the sensitivity of the adapted method to LSE, we retrieved LSTs from independent
simulation data using the adapted method and analyzed the variation of the error of the retrieved LSTs
with the minimum LSE value in the spectral interval of 800–950 cm´1. The atmospheric profile data
and the LST data for the independent simulation can be found in [38]. The total precipitable water
vapor of the selected atmospheric profiles ranged from 0 g/cm2 to 5 g/cm2. The LSE data and the
instrumental noise for the simulation are those mentioned in Section 2. To compute the statistics of the
LST errors, we classified the simulation cases into four databases according to the minimum LSE value
for which the minimum LSE values are shown in Table 1. The errors of the retrieved LSTs for each
simulation database as a function of the minimum LSE value in the spectral interval of 800–950 cm´1

are shown in Figure 4.

Table 1. Minimum channel LSE values for the four databases for analysis of the sensitivity of the
adapted method to LSE.

No. of Database 1 2 3 4

Minimum channel LSE values [0.95, 0.96] [0.96, 0.97] [0.97, 0.98] [0.98, 0.99]
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Figure 4. The errors of the retrieved LSTs for each simulation database as a function of the minimum
LSE value in the spectral interval of 800–950 cm´1. (RMSE = Root Mean Square Error).

As the minimum LSE value in the spectral interval of 800–950 cm´1 grows from approximately
0.95 to approximately 0.98, the bias of the retrieved LSTs for the simulation database with the
corresponding LSE condition grows from ´0.2 K to 0.3 K and the corresponding Root Mean Square
Error (RMSE) of the retrieved LSTs decreases from 1.25 K to 0.85 K. The LST retrieved by the adapted
multi-channel method has larger errors when the minimum LSE value is low. Note that the RMSE of
the retrieved LSTs for the simulation data with a minimum LSE of 0.95 is less than 1.25 K.

The LST retrieved by the adapted multi-channel method is an increasing function of brightness
temperatures at TOA at the selected channels and brightness temperature at TOA at a channel i is also
an increasing function of LSE at this channel; as a result, the bias of the retrieved LST increases with
the growing of the minimum channel LSE in the trend.
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3.2. Sensitivity to Instrumental Noise

To conduct this sensitivity analysis, we created three simulation databases by adding noise to
noiseless IASI data with NE∆T = 0.1 K, 0.2 K, and 0.3 K. The noiseless IASI data were created using
the independent atmospheric profile data, the LST data, and the LSE data mentioned in Section 3.1.
The method for adding noise to the noiseless simulation data can be found in [38]. The adapted
multi-channel method was used to retrieve LST from the three simulation databases. Figure 5 depicts
the errors of the LSTs retrieved from each simulation database as a function of the instrumental noise.
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the instrumental noise.

When the NE∆T for the simulation database was equal to that used to develop the adapted
multi-channel method (0.1 K), the RMSE of the retrieved LSTs for the simulation database was 0.85 K.
When the NE∆T for the simulation database was increased by 0.1 K and 0.2 K, the RMSEs of the
retrieved LSTs for the corresponding simulation database increased by 0.35 K and 0.55 K, respectively.
Therefore, the accuracy of the LST retrieved using Equation (2) is not significantly affected by the
instrumental noise.

4. Evaluation

4.1. With Independent Simulation Data

We evaluated the accuracy of the adapted multi-channel method with the independent simulation
data mentioned in Section 3.1. The central wavenumbers of the channels and the αi coefficients
calculated in Section 2 were used to retrieve LST from the independent simulation data. The
atmospheric profiles for the independent simulation were different from the atmospheric profiles
mentioned in Section 2.

The errors of the LSTs retrieved using Equation (2) for the independent simulation data are shown
in Figure 6. The RMSE of the retrieved LSTs for the independent simulation data is 0.90 K. The error of
the retrieved LST is consistent with the LST errors mentioned in other recent studies [21,35].
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4.2. With Satellite Data

The simulation model itself has uncertainty; therefore, we evaluated its accuracy by comparing
the LST retrieved by the adapted multi-channel method from Metop-A/IASI with the LST product
from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on Meteosat.

The target areas were the Sahara Desert, the Iberian Peninsula, and a forest area in the southwest
of France and the north of Spain (Figure 7). The Sahara Desert has latitudes ranging from 7.0 W to
29.2 E and longitudes ranging from 17.2 N to 33.5 N. The desert surface is a homogeneous land surface.
The Sahara Desert was selected because LST retrieved from hyperspectral thermal infrared data over
desert surfaces have large uncertainties [28]. The Iberian Peninsula has longitudes ranging from 9.6 W
to 0.6 E and latitudes ranging from 36.1 N to 44.0 N. The land surfaces in this area are mainly soil
surfaces and sparsely vegetated land surfaces. This area was selected because (1) the sky is frequently
clear over this area; and (2) various land surface types can be used for the evaluation. The targeted
forest area has latitudes ranging from 42.7 N to 45.4 N and longitudes ranging from 3.4 W to 0.3 E.

Sensors 2016, 16, 687 8 of 14 

 

 

Figure 6. The error of the LST retrieved using Equation (2) from the independent simulation data 
(LST_retrieved = the retrieved LST and LST_true = the true LST). 

4.2. With Satellite Data 

The simulation model itself has uncertainty; therefore, we evaluated its accuracy by comparing 
the LST retrieved by the adapted multi-channel method from Metop-A/IASI with the LST product 
from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on Meteosat. 

The target areas were the Sahara Desert, the Iberian Peninsula, and a forest area in the southwest 
of France and the north of Spain (Figure 7). The Sahara Desert has latitudes ranging from 7.0 W to 
29.2 E and longitudes ranging from 17.2 N to 33.5 N. The desert surface is a homogeneous land surface. 
The Sahara Desert was selected because LST retrieved from hyperspectral thermal infrared data over 
desert surfaces have large uncertainties [28]. The Iberian Peninsula has longitudes ranging from 9.6 
W to 0.6 E and latitudes ranging from 36.1 N to 44.0 N. The land surfaces in this area are mainly soil 
surfaces and sparsely vegetated land surfaces. This area was selected because (1) the sky is frequently 
clear over this area; and (2) various land surface types can be used for the evaluation. The targeted 
forest area has latitudes ranging from 42.7 N to 45.4 N and longitudes ranging from 3.4 W to 0.3 E. 

 
(a) 

Figure 7. Cont.



Sensors 2016, 16, 687 9 of 14
Sensors 2016, 16, 687 9 of 14 

 

 
(b) 

Figure 7. The target areas and target points in (a) Europe and in (b) North Africa used to evaluate the 
adapted multi-channel method with satellite data plotted on a land cover type map. 

The L1c data from Metop-A IASI has 8461 thermal infrared channels in the spectral interval of 
645–2760 cm−1 with a spectral sampling frequency of 0.25 cm−1. The spatial resolution of an IASI image 
at the nadir point is 12 km. The scan angle at the end of each scan line is 48.98°. IASI on Metop-A 
scans the Mediterranean area in mid-morning orbits every day. Only IASI data with a viewing zenith 
angle less than 15° was used in this study. 

SEVIRI on the Meteosat has eight infrared channels in the spectral interval of 769 cm−1 to  
2564 cm−1. SEVIRI scans the hemispheric Earth surface every 15 min in geostationary orbit with a 
spatial resolution of 3 km. The SEVIRI/Meteosat LST product is used as a reference to evaluate the 
accuracy of the LST retrieved by the adapted multi-channel method from the IASI data. The 
SEVIRI/Meteosat LST product is retrieved using the generalized split-window method [49] with LSE 
as input data. The retrieval of LSE is based on the Vegetation Cover Method [50]. 

The five-minute Metop-A IASI L1c images on three clear days for each target area and their 
matched SEVIRI/Meteosat images were used for this evaluation. The sensing time of the selected IASI 
images for the Sahara Desert, for the forest areas, and for the Iberian Peninsula is shown in Table 2. 
The difference between the sensing time of an IASI image and that of the matched SEVIRI image was 
less than five minutes. IASI pixels with more than 95% clear-sky SEVIRI pixels were used for this 
evaluation. The criteria for spatially matching SEVIRI pixels and IASI pixels is that the distance 
between the center of IASI pixels and the center of SEVIRI pixels is less than 6 km. The matched 
points and the land cover type map are shown in Figure 7. The land cover types of the matched area 
in the Iberian Peninsula were primarily soil surfaces and sparsely vegetated surfaces. The land cover 
type of the targeted forest area was mainly evergreen needleleaf forest. In total, 1542 matched cases 
were used for the evaluation with the satellite data. 

Table 2. The sensing time of the selected IASI images for the three target areas. 

Target Area Sensing Time 1 Sensing Time 2 Sensing Time 3 
the Sahara desert 2014-08-01 08:15 2014-05-03 09:15 2014-11-02 09:30 
the forest areas 2015-04-05 21:00 2015-08-09 20:55 2015-10-25 21:02 

the Iberian Peninsula 2014-05-05 10:10 2014-08-09 10:30 2014-11-10 10:00 

The comparison of the LST retrieved by the adapted multi-channel method from the IASI data 
with the LST product from SEVIRI is shown in Figure 8. The root mean square difference between 
the LST retrieved from the IASI data and the LST product from SEVIRI is 1.66 K, and the mean 
difference between the two LST datasets is 0.1 K. On the whole, there is no large difference between 

Figure 7. The target areas and target points in (a) Europe and in (b) North Africa used to evaluate the
adapted multi-channel method with satellite data plotted on a land cover type map.

The L1c data from Metop-A IASI has 8461 thermal infrared channels in the spectral interval of
645–2760 cm´1 with a spectral sampling frequency of 0.25 cm´1. The spatial resolution of an IASI
image at the nadir point is 12 km. The scan angle at the end of each scan line is 48.98˝. IASI on Metop-A
scans the Mediterranean area in mid-morning orbits every day. Only IASI data with a viewing zenith
angle less than 15˝ was used in this study.

SEVIRI on the Meteosat has eight infrared channels in the spectral interval of 769 cm´1 to
2564 cm´1. SEVIRI scans the hemispheric Earth surface every 15 min in geostationary orbit with
a spatial resolution of 3 km. The SEVIRI/Meteosat LST product is used as a reference to evaluate
the accuracy of the LST retrieved by the adapted multi-channel method from the IASI data. The
SEVIRI/Meteosat LST product is retrieved using the generalized split-window method [49] with LSE
as input data. The retrieval of LSE is based on the Vegetation Cover Method [50].

The five-minute Metop-A IASI L1c images on three clear days for each target area and their
matched SEVIRI/Meteosat images were used for this evaluation. The sensing time of the selected IASI
images for the Sahara Desert, for the forest areas, and for the Iberian Peninsula is shown in Table 2.
The difference between the sensing time of an IASI image and that of the matched SEVIRI image
was less than five minutes. IASI pixels with more than 95% clear-sky SEVIRI pixels were used for
this evaluation. The criteria for spatially matching SEVIRI pixels and IASI pixels is that the distance
between the center of IASI pixels and the center of SEVIRI pixels is less than 6 km. The matched points
and the land cover type map are shown in Figure 7. The land cover types of the matched area in the
Iberian Peninsula were primarily soil surfaces and sparsely vegetated surfaces. The land cover type of
the targeted forest area was mainly evergreen needleleaf forest. In total, 1542 matched cases were used
for the evaluation with the satellite data.

Table 2. The sensing time of the selected IASI images for the three target areas.

Target Area Sensing Time 1 Sensing Time 2 Sensing Time 3

the Sahara desert 2014-08-01 08:15 2014-05-03 09:15 2014-11-02 09:30
the forest areas 2015-04-05 21:00 2015-08-09 20:55 2015-10-25 21:02

the Iberian Peninsula 2014-05-05 10:10 2014-08-09 10:30 2014-11-10 10:00

The comparison of the LST retrieved by the adapted multi-channel method from the IASI data
with the LST product from SEVIRI is shown in Figure 8. The root mean square difference between the
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LST retrieved from the IASI data and the LST product from SEVIRI is 1.66 K, and the mean difference
between the two LST datasets is 0.1 K. On the whole, there is no large difference between the two LST
datasets. Our finding is consistent with a recently reported finding on this LST difference [44].
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The spatial pattern of the difference between the LST retrieved from the IASI data by the adapted
multi-channel method and the LST product from SEVIRI on 2 November 2014 over the Sahara Desert
is shown in Figure 9. The larger LST differences are near the cloud-contaminated area, and the
maximum LST difference is 11 K. As expected, the adapted multi-channel method cannot be applied
to cloud-contaminated hyperspectral thermal infrared data. The large error of the LST retrieved from
IASI for cloudy atmospheric conditions is also reported in a recent study [30].
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Figure 9. Difference between the LST retrieved by the adapted multi-channel method from IASI and
the LST product from SEVIRI (IASI-SEVIRI) plotted on a quality map of the SEVIRI/Meteosat LST
product over a typical part of the Sahara Desert on 2 November 2014 (LST IASI = the retrieved LST (K)
and LST SEVIRI = the SEVIRI LST product (K)).
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5. Conclusions

Assuming the channel LSEs have large values in the spectral interval of 800–950 cm´1, we adapted
the multi-channel method to retrieve LST from hyperspectral thermal data for natural land surfaces
using 36 channels centered in the spectral interval of 800–950 cm´1 with simulation data. Then, we
analyzed its sensitivity to LSE and instrumental noise using simulation data. Finally, we evaluated the
accuracy of the adapted multi-channel method using simulation data at nadir and satellite data near
nadir. This work draws the following conclusions:

(1) LST can be retrieved by the adapted multi-channel method from the simulation data with an
RMSE of 0.90 K using hyperspectral thermal infrared data from only 36 channels.

(2) As the minimum LSE in the spectral interval of 800–950 cm´1 decreases from 0.98 to 0.95, the
error of the LSTs retrieved by the adapted multi-channel method for the simulation data with
the corresponding LSE condition increases from 0.85 K to 1.25 K. In addition, the impact of the
instrumental noise is approximately three times its magnitude.

(3) The difference between the LST retrieved by the adapted multi-channel method from the
IASI/Metop-A data and the LST product from the SEVIRI/Meteosat is approximately 1.6 K
on average.

The adapted multi-channel method can be used for near-real-time retrieval of LST from
hyperspectral thermal infrared data and to provide the physical method to simultaneously retrieve
atmospheric profiles, LST, and LSE with first-guess LST value in the future. The limitations of the
adapted multi-channel method are that it requires minimum channel LSE in the spectral interval of
800–950 cm´1 has value larger than 0.95 and it has not been extended for off-nadir measurements yet.
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