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Abstract: With sparse and uneven site distribution, Global Positioning System (GPS) data is just
barely able to infer low-degree coefficients in the surface mass field. The unresolved higher-degree
coefficients turn out to introduce aliasing errors into the estimates of low-degree coefficients. To reduce
the aliasing errors, the optimal truncation degree should be employed. Using surface displacements
simulated from loading models, we theoretically prove that the optimal truncation degree should be
degree 6–7 for a GPS inversion and degree 20 for combing GPS and Ocean Bottom Pressure (OBP)
with no additional regularization. The optimal truncation degree should be decreased to degree 4–5
for real GPS data. Additionally, we prove that a Scaled Sensitivity Matrix (SSM) approach can be
used to quantify the aliasing errors due to any one or any combination of unresolved higher degrees,
which is beneficial to identify the major error source from among all the unresolved higher degrees.
Results show that the unresolved higher degrees lower than degree 20 are the major error source
for global inversion. We also theoretically prove that the SSM approach can be used to mitigate the
aliasing errors in a GPS inversion, if the neglected higher degrees are well known from other sources.

Keywords: optimal truncation degree; scaled sensitivity matrix approach (SSM); simulation study

1. Introduction

The Global Positioning System (GPS) can provide the high-quality and long-term observations
of surface displacements that are required for the study of surface mass redistributions, including
the mass of atmosphere, ocean and continental water [1–3]. However, GPS site distribution over the
land is sparse and uneven: few GPS stations are located at the Southern Hemisphere, and denser GPS
stations are built in Europe and North America than the other continents. Also few GPS observations
can be obtained over the ocean except for some stations located on small islands. Thus with a lack of
observations, GPS data alone is just barely able to infer low-degree coefficients in the surface mass field.
Therefore, previous studies usually truncate the estimated coefficients to low degrees in GPS-only
inversions [4–8]. The unresolved higher-degree coefficients turn out to introduce aliasing errors into
the low-degree coefficient estimates [9]. Additionally, most of the previous studies usually use various
degrees of truncation and do not mention how these truncation degrees are determined [4,6].

In this paper, two important questions for inferring surface mass variations from GPS data are
addressed: (1) the optimal truncation degree is investigated using simulated GPS displacements
and (2) we quantify and mitigate the aliasing errors induced by the neglected higher degrees using
a Scaled Sensitivity Matrix (SSM) approach. The structure of the paper is as follows: in Section 2,
GPS surface displacements are simulated from the sum of atmospheric, oceanic and hydrologic models.
In Section 3, the optimal truncation degree of the GPS inversion is determined by comparing the
estimated coefficients with the reference coefficients integrated from loading models. In Section 4,
we introduce the SSM approach, a quantitative approach for assessing the effects of unresolved
parameters, to quantify and then reduce the aliasing errors of unresolved higher degrees [2].
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2. GPS Surface Displacements

2.1. Simulated Data

The simulated GPS surface deformation is formed from the sum of atmospheric, oceanic and
hydrologic models. For atmospheric and oceanic data, we directly used the monthly Atmosphere
and Ocean De-aliasing Level-1B (AOD1B RL05) gravity coefficients up to degree 60 provided by Geo
ForschungsZentrum (GFZ) [10]. AOD1B (RL05) coefficients are deduced from European Centre for
Medium-Range Weather Forecasts (ECMWF) analysis data and the output from the baroclinic Ocean
Model for circulation and tides (OMCT). AOD1B is used for the correction of short-term non-tidal
atmospheric and oceanic mass variations for GRACE gravity products. We used the hydrologic data
derived from the NOAH 2.7.1 land hydrology model in the Global Land Data Assimilation System
(GLDAS) [11]. The monthly averaged snow and soil moisture is provided on a grid of 1.0˝ ˆ 1.0˝ in
form of equivalent water height from 2003 to 2010.

We first derive the spherical coefficients up to degree and order 60 (in terms of equivalent
water) by integrating GLDAS grids following [12]. Then we calculate the GPS surface deformation
from integrating both the AOD1B and GLDAS spherical coefficients up to degree and order 60
following [13]. No noise is simulated into the GPS displacements. The sum of AOD1B and GLDAS
spherical coefficients are used as reference values hereafter to investigate the optimal truncation degree
and assess the aliasing errors of unresolved higher-degree coefficients.

2.2. Real Data

The real GPS data used are the GPS residual time series provided by the Institut Géographique
National (IGN) as a by-product of ITRF2008 data processing. The International GNSS Service (IGS)
submitted solutions for ITRF2008 are the first reprocessing of GPS data collected by the IGS global
network since 1997, in a fully consistent way using the latest models and methodologies. Outliers
and offsets have also been detected and removed. A total of 560 GPS stations are included in the GPS
network spanning the time period from 1997.0 to 2009.5. For a more detailed discussion of the ITRF2008
products, the reader is referred to [14,15]. The weekly ITRF08-GPS residuals are averaged, in a weighted
sense, into monthly epochs. The variance matrixes are also propagated to form monthly variances.

3. Determination of the Optimal Truncation Degree

3.1. GPS Inversion

According to the loading theory [13], the three-dimensional GPS displacements (east, north, and
up) due to the surface mass loading can be expressed in a sum of normalized spherical harmonic
coefficients of surface mass density (∆TC

nm, ∆TS
nm):
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where ϕ and λ are latitude and longitude. ρE is the mean density of the Earth (5514 kg/m3). h1n and l1n
are the degree-n Love numbers [13]. Pnm is the normalized associated Legendre polynomials.

In this section, we use simulated GPS displacements to investigate the optimal truncation degree
nt in Equation (1). To investigate the effects of various site distribution on the choice of the optimal
truncation degree, two real site distribution are chosen to reflect the current real-data distribution of
GPS stations. One is the 232 reference stations (‘sta232’) of IGb08 [16], and the other is the 560 reference
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stations (‘sta560’) of ITRF08 [14], shown in Figure 1. These GPS reference stations have good quality and
long-term observations. GPS surface displacements for these two scenarios are simulated separately
following Section 2.1.
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Figure 1. Two site distribution: 232 reference stations of IGb08 (a), and 560 reference stations of ITRF08 (b).

Then the simulated displacements are used to invert harmonic coefficients with various truncation
degrees. The truncation degrees are ranged from degree 1 to degree 10 for both ‘sta232’ and ‘sta560’,
as the normal equations would be singular for a much higher truncation degree. Figure 2 shows
the degree Root Mean Square (RMS) differences between the estimated coefficients from simulated
GPS inversion and the reference values (mentioned in Section 2.1). Results show that the degree
RMS is prone to be stable (especially for degree-1 coefficients) when we estimate coefficients up to
about degree 6. The optimal truncation degrees are degree 6 for ‘sta232’ and degree 7 for ‘sta560’,
respectively. Comparisons between ‘sta232’ and ‘sta560’ indicate that higher degrees can be resolved
and higher-quality estimates can therefore be derived with denser site distribution.
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Figure 2. Degree RMS differences between coefficients inverted from GPS displacements and the
reference values discussed in Section 2.1. The d1–d10 curves denote the degree RMS differences
of degree 1-degree 10 coefficients inverted with different truncation degrees. Three scenarios of
GPS displacements are used: The simulated displacements of 232 IGb08 stations (a) and 560 ITRF08
stations (b), and the real ITRF08-GPS residuals of 560 stations (c).

We also simulate surface displacements on 5˝ ˆ 5˝ and 10˝ ˆ 10˝ global grids as the ideal cases
for homogenous observations of surface displacements. Truncation degrees of degree 10, degree 20
and degree 30 are tested for the two global grids. The quality of harmonics coefficients inverted from
homogenous grids are more than one order of magnitude better than those from real site distribution,
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by comparing the degree RMS in Figures 2 and 3. For 5˝ ˆ 5˝ grids, the quality of the estimated
coefficients (except degree 19, 20) with a truncation degree of 20 is comparable to these with a truncation
degree of 30. The reason for the larger degree RMS of degree 19/20 with the truncation degree of 20
(fringe effect) will be discussed in Section 4.3.
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Figure 3. Degree RMS differences between coefficients inverted from various inversion schemes and
reference values discussed in Section 2.1. Simulated data at global 5˝ ˆ 5˝ (‘grid5’) and 10˝ ˆ 10˝

(‘grid10’) grid points as well as simulated GPS/OBP (‘gps/obp’) are used. Different truncation degrees
(‘d10’, ‘d20’ and ‘d30’) are tested for the three simulated scenarios.

To investigate whether the above optimal truncation degrees derived from simulation studies are
applicable to the real GPS data, we use ITRF08 residuals of 560 stations (‘itrf08_sta560’) mentioned in
Section 2.2 to invert harmonic coefficients. These coefficients are then compared with the reference
coefficients. Figure 2 shows that the optimal truncation degree is degree 4–5.

The optimal truncation degree of ‘itrf08_sta560’ is lower than ‘sta560’, which can be attributed to
two potential reasons: (1) data gaps of ‘itrf08_sta560’ and (2) differences of the displacements observed
by GPS and simulated by loading models. To analyze which is the major one, we first investigate the
effects of data gaps involved in the real ITRF08-GPS residuals which are not considered for ‘sta560’.
GPS displacements with the same data gaps as the real ITRF08-GPS data are simulated following
Section 2.1. Results shows that degree 7 is still the optimal truncation degree for ‘sta560’ with data gaps
(close to ‘sta560’ in Figure 2). And the degree RMS of ‘sta560’ with and without data gaps are very
close (Figure 4). Data gaps have little effects on the determination of the optimal truncation degree.
We therefore conclude the differences between the displacements observed by GPS and simulated by
loading models are the major reason for the lower optimal truncation degrees of real GPS data.
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3.2. GPS/OBP Inversion

Previous studies usually add OBP data to provide additional constraints of the mass variations
over the ocean and therefore improve the quality of coefficients inferred from GPS observations [17–19].
However, we cannot estimate up to high enough degrees when no additional regularization is applied.
Thus we still need to explore the optimal truncation degree for a GPS/OBP inversion in this case to
improve the quality of the estimated coefficients as much as possible.

Simulated GPS displacements are referred to Section 2.1. As no original OMCT grid data are
available, we use AOD1B (RL05) gravity coefficients to calculate the variations of OBP grids in form
of equivalent water height over the ocean. Then the 6-hourly converted OBP grids are averaged to
monthly data at a resolution of 5˝ ˆ 5˝. GPS and OBP data are combined in least square approach and
the truncation degrees of degree 10 and degree 20 are tested here.

From Figure 3, we observe that the degree RMS of GPS/OBP inversion is unexpectedly larger than
those of global grid inversion, although the number of observations of GPS/OBP are much more than
10˝ ˆ 10˝ grids. One potential reason is that the complex combination of irregular GPS displacements
over the land and some islands as well as homogenous grids (ocean bottom pressure) over the ocean
in the GPS/OBP inversion. Some signals over the ocean may be enhanced and some signals over the
land may be suppressed in such a complex combination.

Figure 3 also shows that the estimated coefficients with a truncation degree of 20 from the
GPS/OBP inversion is obviously better than these with a truncation degree of 10, which is not the
case for the homogenous grids. For homogenous grids, the quality of low degrees inverted with a
lower truncation degree of 10 is close to those with a lower truncation degree of 20 (except fringe
effect). The reason is that homogenous site distribution is more beneficial for recovering lower-degree
coefficients, as homogenous site distribution can provide better long-wavelength signals and less
short-wavelength signals than uneven site distribution. Thus a higher truncation degree is needed to
resolve lower-degree coefficients from the uneven coverage of GPS and OBP observations.

3.3. Discussions

To obtain high-quality surface mass coefficients, we should balance between a higher truncation
degree and a non-ill-conditioned normal equation. In case of a non-ill-conditioned normal equation,
the effects of unresolved higher degrees on estimates are indeed reduced with a higher truncation
degree. The condition of the normal equation depends on both the number of the observations and
the spatial coverage of the site distribution. To obtain higher-quality estimates, denser and more
homogenous site distribution should be chosen.

Considering the current status of IGS GPS site distribution and data length, for the GPS-only
inversion, we suggest the truncation degree should be ranging from degree 4 to degree 7. For the GPS/OBP
inversion, degree 20 is the reasonable truncation degree when no additional regularization is applied.

4. Assessment of Aliasing Errors Using SSM Approach

4.1. Introudction of SSM Approach

From Section 3, we know that better quality of harmonic coefficients can be derived from global
inversion, if the optimal truncation degrees are used. However, the neglected higher-degree coefficients
would still introduce errors into the estimates of low-degree coefficients. In this section, we use a SSM
(Scaled Sensitivity Matrix) approach [2] to calculate and mitigate the aliasing errors of unresolved
higher degrees. The SSM approach is a quantitative approach for assessing the effects of unresolved
parameters. Chen, et al. [20] use the SSM approach to propose a simplified and unified model of
multi-GNSS precise point positioning:

L “
”

A1 A2

ı

«

X1

X2

ff

` ∆ (2)
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where X1 and X2 are the estimated low-degree coefficients and higher-degree coefficients, respectively.
A1 and A2 are the design matrixes for the respective coefficients.

Then the normal equation can be written as follows:
«

N11 N12

N21 N22

ff«

X1

X2

ff

“

«

W1

W2

ff

(3)

However, X2 cannot be directly or well resolved from L due to the sparse and uneven GPS site
distribution. So X2 are usually neglected in the normal equation. The estimated coefficients should be
truncated to about degree 4–7 according to the site distribution as discussed above. In this case the
estimated X̂1 are:

X̂1 “ N´1
11 W1 (4)

Replacing W1 in Equation (4) by Equation (3), the aliasing errors ∆X̂1 introduced by unresolved
X2 are obtained:

∆X̂1 “ N´1
11 N12X2 (5)

N´1
11 N12 is the scaled sensitivity matrix. Wu [9] use the scaled sensitive matrix to investigate the

aliasing errors in geocenter motion. We here extend Wu’s study by using Equation (5) to determine the
magnitude of aliasing errors of unresolved higher degrees in ∆X̂1 providing that X2 is well known
from external information.

4.2. Assessment of Aliasing Errors

We first use Equation (5) to calculate the aliasing errors in the simulated GPS inversion with
a truncation degree of 7. The scaled sensitivity matrix is constructed using 560 stations. And the
unresolved higher degrees are obtained from the reference values (mentioned in Section 2.1). From the
degree RMS differences between the low-degree estimates and the reference values shown in Figure 5 ,
we find that the quality of estimated coefficients from the GPS inversion is significantly improved after
removing the aliasing errors (black solid vs. black dashed). As an example, Figure 6 shows the time
series of the aliasing errors in degree-1 terms (‘ssm’), and the differences between the inverted values
and the reference values of degree-1 terms (‘inv’). We compute percentage of ‘inv’ variance explained
by ‘ssm’, which are more than 99% for all the coefficients. In sum, we conclude that the unresolved
higher degrees are the major error source for inverting low degrees. Other minor error sources may
include the calculation errors and insufficient input data.

Another important point is that the SSM approach can be used to calculate not only the sum of
the aliasing errors of the unresolved higher degrees, but also the aliasing errors of any one or any
combinations of the unresolved higher degrees. Thus the SSM approach is beneficial for us to identify
the major error source from all the unresolved parameters. As an example, Figure 7 shows that the
aliasing errors of various combinations of unresolved higher degrees in ∆TC

10 using the SSM approach.
We observe that the major aliasing errors are caused by the unresolved degrees lower than degree 30
(especially lower than degree 20), while the higher degrees (degree 40–50) have little effects in ∆TC

10.
Similar conclusions can be drawn for other low-degree estimates, indicated by the reduction of degree
RMS after removing the cumulative aliasing errors of d8–d10, d11–d20, d21–d30, d31–d40, d41–d50
and d51–d60, respectively (Figure 5).
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We also use the SSM approach to calculate and then remove the aliasing errors in the grid
inversion and the GPS/OBP inversion truncated up to degree 20, shown in Figure 5. For 5˝ ˆ 5˝

grid inversion, the improvement of estimates lower than degree 10 is limited, as the aliasing errors of
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unresolved higher degrees are small enough when we can estimate up to degree 20. Except for some
low-degrees, certain improvements of estimates are observed after removing the aliasing errors in the
GPS/OBP inversion.

From the above simulation studies, we theoretically conclude that the unresolved higher degrees,
especially lower than degree 20, are the major error source for low-degree estimates. However, for real
GPS data, experiments show that removing aliasing errors derived from the SSM approach cannot
obviously improve the low-degree estimates (little improvement are still observed). One potential
reason is the relatively larger amplitude of coefficients derived from real GPS data than from the loading
models. Another potential reason is that the higher degrees (integrated from loading models) adopted
to calculate the aliasing errors are not so consistent with these involved in real GPS observations, as
the short-wavelength signals involved in loading models are smoothed. Thus, higher degrees that are
more consistent with GPS observations should be known, if we want to improve low-degree estimates
using SSM approach.

4.3. Discussionson Fringe Effects

We here use the scaled sensitivity matrix in Equation (5) to investigate why degree 19/20 from
5˝ ˆ 5˝ grid inversion truncated up to degree 20 have larger RMS (fringe effects shown in Figure 3)
than other estimated degrees. The scaled sensitivity matrix in fact represents the correlation of the
unresolved higher degrees with the estimated degrees. High correlations are only observed between
degree 19/20 and their adjacent unresolved higher degrees in Figure 8. So the larger degree RMS of
degree 19/20 are caused by the adjacent unresolved higher degrees.

Sensors 2016, 16, 679 8 of 10 

 

observations, as the short-wavelength signals involved in loading models are smoothed. Thus, higher 

degrees that are more consistent with GPS observations should be known, if we want to improve 

low-degree estimates using SSM approach. 

4.3. Discussionson Fringe Effects 

We here use the scaled sensitivity matrix in Equation (5) to investigate why degree 19/20 from 

5° × 5° grid inversion truncated up to degree 20 have larger RMS (fringe effects shown in Figure 3) 

than other estimated degrees. The scaled sensitivity matrix in fact represents the correlation of the 

unresolved higher degrees with the estimated degrees. High correlations are only observed between 

degree 19/20 and their adjacent unresolved higher degrees in Figure 8. So the larger degree RMS of 

degree 19/20 are caused by the adjacent unresolved higher degrees.  

 

Figure 8. The scaled sensitivity matrix of 5° × 5° grid inversion with a truncation degree of 20. The 

horizontal axis is arranged in order of ∆T
C 

21,0, ∆T
C 

21,1, ∆T
S 

21,1, …, ∆T
C 

30,30, ∆T
S 

30,30 and the vertical axis is 

arranged in order of ∆T
C 

10, ∆T
C 

11, ∆T
S 

11, …, ∆T
C 

20,20, ∆T
S 

20,20 (from up to bottom). 

However, no obvious fringe effects are observed in GPS inversion shown in Figure 2. Although 

the correlations of degree 6/7 with the adjacent unresolved higher degrees are still higher, the 

correlations of degree 6/7 with other unresolved higher degrees and the correlation of degree 1–5 

with the unresolved higher degrees are not negligible, shown in Figure 9. The effects of the 

unresolved higher degree adjacent to the truncation degree are not the only major error source in this 

case, so no obvious fringe effects are observed. In sum, if we can estimate up to high degrees (e.g., 

degree 20), the aliasing errors of the unresolved higher degrees on all estimates are generally 

suppressed and therefore the fringe effects would be highlighted. 

  

Figure 9. The scaled sensitivity matrix of simulated GPS inversion with a truncation degree of 7. The 

horizontal axis is arranged in order of ∆T
C 

80, ∆T
C 

81, ∆T
S 

81, …, ∆T
C 

30,30 ∆T
S 

30,30, and the vertical axis is arranged 

in order of ∆T
C 

10, ∆T
C 

11, ∆T
S 

11, …, ∆T
C 

77  ∆T
S 

77 (from up to bottom). 

Figure 8. The scaled sensitivity matrix of 5˝ ˆ 5˝ grid inversion with a truncation degree of 20.
The horizontal axis is arranged in order of ∆TC

21,0, ∆TC
21,1, ∆TS

21,1, . . . , ∆TC
30,30, ∆TS

30,30 and the vertical
axis is arranged in order of ∆TC

10, ∆TC
11, ∆TS

11, . . . , ∆TC
20,20, ∆TS

20,20 (from up to bottom).

However, no obvious fringe effects are observed in GPS inversion shown in Figure 2. Although the
correlations of degree 6/7 with the adjacent unresolved higher degrees are still higher, the correlations
of degree 6/7 with other unresolved higher degrees and the correlation of degree 1–5 with the
unresolved higher degrees are not negligible, shown in Figure 9. The effects of the unresolved higher
degree adjacent to the truncation degree are not the only major error source in this case, so no obvious
fringe effects are observed. In sum, if we can estimate up to high degrees (e.g., degree 20), the aliasing
errors of the unresolved higher degrees on all estimates are generally suppressed and therefore the
fringe effects would be highlighted.
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Figure 9. The scaled sensitivity matrix of simulated GPS inversion with a truncation degree of 7.
The horizontal axis is arranged in order of ∆TC

80, ∆TC
81, ∆TS

81, . . . , ∆TC
30,30, ∆TS

30,30 and the vertical axis
is arranged in order of ∆TC

10, ∆TC
11, ∆TS

11, . . . , ∆TC
77, ∆TS

77 (from up to bottom).

5. Conclusions

Using surface displacements simulated from loading models, two important questions for
inferring surface mass variations from GPS data are answered in this paper: (1) the optimal truncation
degree and (2) the magnitude and mitigation of the aliasing errors induced by the unresolved
higher degrees.

Using the SSM approach, we have demonstrated that the unresolved degrees lower than degree
30 (especially degree 20) are the major error source for the lower-degree estimates. Thus the aliasing
errors can be effectively suppressed and good quality coefficients can be derived from global inversion
truncated up to degree 20, considering that the current data coverage is not enough to estimate up
to degree 30. This confirms the conclusions of the optimal truncation degrees for homogenous grids
or GPS/OBP in Section 3. However, global inversion with data provided by sparsely and unevenly
distributed GPS stations should be truncated to degree 4–7 to ensure the condition of the normal
equation. Additionally, dense and even site distribution help to derive better quality of estimates.

From the scaled sensitivity matrix, we find the high correlations between the adjacent degrees
which induces the so-called fringe effects. Therefore, another important thing for choosing the optimal
truncation degree is that the truncation degree should not be close to the interested degrees to avoid
the fringe effects.

We also have theoretically proved that the SSM approach can be used to mitigate the aliasing
errors in the GPS inversion with low truncation degrees, if the neglected higher degrees are well
known from other sources. However, due to the inconsistencies of the middle-high degrees between
GPS and loading models as well as GRACE [21], we currently cannot use the SSM approach to improve
the low-degree estimates inferred from real GPS observations. However, the SSM approach is still a
potential way to improve the estimates from the GPS inversion in the future, provided the consistency
of the middle-high degree signals between GPS and other sources are improved.
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