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Abstract: In this work we demonstrate the ability of a multifaceted N,N1-disubstituted urea to
selectively recognize fluoride anion (F´) among other halides. This additional function is now added
to its already reported organocatalytic and organogelator properties. The signaling mechanism
relies on the formation of a charge-transfer (CT) complex between the urea-based sensor and F¯ in
the ground state with a high association constant as demonstrated by absorption and fluorescence
spectroscopy. The nature of the hydrogen bonding interaction between the sensor and F¯ was
established by 1H-NMR studies and theoretical calculations. Moreover, the recovery of the sensor
was achieved by addition of methanol.

Keywords: fluoride; anion recognition; sensor; N,N1-disubstituted urea; charge-transfer complex;
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1. Introduction

Anion sensing and, as consequence, the design, synthesis and development of new sensors
constitute nowadays a highly active research field [1–5]. It is well established that anion-sensor
coordination takes place usually by hydrogen bonding and/or electrostatic interactions. Among
others, sensors with an optical response (i.e., fluorescence) have been found to be the most suitable
and attractive tools for anion recognition mainly due to their high sensitivity at low analyte
concentration [6]. Within this context, different signaling mechanisms such as photoinduced electron
transfer (PET) [7–11], excimer/exciplex formation [12,13], intramolecular charge transfer (ICT) [14,15],
and excited-state proton transfer [16,17] have been previously reported in the literature.

After Wilcox [18] and Hamilton [19] discovered the interaction between urea-derivatives and
phosphonates, sulphates or carboxylates forming stable 1:1 complexes, the urea moiety has played
an essential role as one of the most suitable binding sites in the vast field of anion receptor chemistry.
In general, recognition and detection of other anions such as fluoride (F¯) have attracted considerable
interest because of its established role in dental care [20], treatment of osteoporosis [21] and its
association with chemical weapons (e.g., nerve gases such as sarin, soman and GF chemical warfare
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agents) or terrorism (e.g., sarin gas was released in the Tokyo subway attack killing 12 people and
injuring 5500 in May, 1995) [22,23]. Examples of fluorescent sensors with urea-containing receptor
that detect selectively fluoride anion have been reported [24–33] and explored by computational
techniques [34–41].

Recently, we have reported the self-assembly properties of a well-known chiral N,N1-disubstituted
urea-based organocatalyst [42,43] 1 that lead to the formation of multiresponsive, hierarchical
supramolecular organogels at low concentrations driven mainly by hydrogen bonding and π-π
interactions (Figure 1) [44]. In general, multifunctional molecular structures have received great
attention during the last decade due to their potential use in advanced materials and devices [45].
Herein, we describe a new facet of this versatile urea 1 as a selective fluoride anion receptor among
other halides.
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photophysical data obtained for compound 1 in different solvents (for a comparison with various 

urea analogues, see Figures S2–S9 and Tables S1–S3). A red-shifted emission of 21 nm as well as an 

increase in the Stokes shift values when increasing solvent polarity (DMSO vs. CHCl3) was observed. 

On the other hand, a protic solvent provided practically the same results than a polar aprotic solvent 

(MeOH vs. MeCN, respectively). These results suggested an enhancement of the overall dipole 

moment on excitation albeit almost independent of the solvent. 

Table 1. Photophysical data of sensor 1. 1 

Solvent 
λabs (nm) 

(ππ*/nπ*) 

log ε (M−1·cm−1) 

(ππ*/nπ*) 
λem (nm) Stokes (cm−1) Singlet Energy (eV) 

CHCl3 243/287 4.39/3.34 324 3149 4.07 

DMSO -/297 -/3.50 345 4237 3.87 

MeCN 249/291 4.38/2.80 332 3324 3.98 

MeOH 249/291 4.42/3.09 335 3640 3.99 
1 Sensor concentration, [1] = 0.01 mM. 

Figure 1. Illustration of the formation of the supramolecular organogel made of urea 1 in chloroform
(c = 8 g¨L´1) and its observed disruption upon addition of fluoride. The fibrillar nature of the gel was
observed by scanning electron microscopy of the corresponding xerogel.

2. Materials and Methods

2.1. Materials

All commercially available solvents and reagents for synthesis and analysis (p.a. grade) were
used as received. Urea derivatives were synthesized and characterized as previously described
and showed identical spectroscopic data to those reported [44]. Briefly, urea 1 was easily
synthesized by an equimolar reaction of commercial (1S,2R)-1-amino-2,3-dihydro-1H-inden-2-ol
and 3,5-bis(trifluoromethyl)phenyl isocyanate in methylene chloride at room temperature [44].
The organogel was prepared as following: urea 1 (8 mg, 0.02 mmol) was weighed and placed into
a screw cap vial (4.5 cm length ˆ 1.2 cm diameter) and 1 mL of CHCl3 was added. The closed vial
was gently heated with a heat gun until the solid compound was completely dissolved. The obtained
isotropic solution was cooled down spontaneously to room temperature affording the gel formation.
No flow of the material was observed upon turning the vial upside-down at room temperature.
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2.2. Methods

2.2.1. Absorption and Fluorescence Spectroscopy

Absorption spectra were recorded using a Cary 50 Bio UV-visible spectrophotometer (Varian,
Palo Alto, CA, USA). Fluorescence and excitation spectra were carried out using a Fluoromax-4
spectrofluorometer (Horiba, Kyoto, Japan). The excitation and emission slit widths were 5 nm.
The samples were placed into quartz cells of 1 cm path length. All measurements were performed at
room temperature and compound concentrations were fixed as indicated.

2.2.2. Theoretical Calculations

Chemical structures were optimized with the GAUSSIAN09 program package [46] and the
density functional theory (DFT) method. B3LYP functional [47] together with the standard basis set
6–31G(d) [48] and the CPCM-SCRF method [49,50] were used to model the solvent (acetonitrile). NMR
shifts were computed on the optimized structures using the GIAO method [51].

2.2.3. NMR Spectroscopy

NMR spectra were recorded at 400 MHz on an AVANCE-II instrument (Bruker, Billerica,
MA, USA).

2.2.4. Electron Microscopy

Electron microscopy images were obtained with a Merlin field emission scanning electron
microscope (FESEM, resolution = 0.8 mm resolution, Carl Zeiss, Jena, Germany) equipped with a
digital camera and operating at 10 kV (accelerating voltage) and 10 mA (emission current). The sample
was prepared by freeze-drying the corresponding organogel. Prior to imaging, a 5 nm sized Pt film
was sputtered (40 mA, 30 s) on the sample placed on carbon tape.

3. Results and Discussion

As mentioned above, urea-based compound 1 can not only function as a good organocatalyst for
Friedel-Crafts alkylations [42,43], but also as a molecular building block for the bottom-up preparation
of multiresponsive supramolecular gels in several organic solvents at concentrations ranging from
3 to 50 g¨L´1 (Figure 1) [44]. During our preliminary studies we observed that a gel made from 1 in
chloroform (c = 8 g¨L´1) collapsed in the presence of fluoride anions (Figure 1). Similar behavior has
been already reported with other gels, in which the addition of halide anions causes the disruption of
intermolecular hydrogen bonding leading to either gel-to-sol transitions and/or colorimetric gel-to-gel
transitions [52–58]. Furthermore, changes in the absorption spectra of 1 in the presence of halides
in chloroform solution clearly appeared (Figure S1), confirming the host-guest binding in all cases.
At this point, we decided to focus our attention on the complete photophysical characterization of the
potential molecular interaction between 1 and halide anions, as well as on the anion sensing signaling
mechanism and selectivity of the process.

The absorption spectrum of sensor 1 in the absence of halide anions was first measured in different
solvents and showed two bands that corresponded to the two characteristic electronic transitions,
ππ* at higher energy and nπ* transition at lower energy. Table 1 summarizes the photophysical data
obtained for compound 1 in different solvents (for a comparison with various urea analogues, see
Figures S2–S9 and Tables S1–S3). A red-shifted emission of 21 nm as well as an increase in the Stokes
shift values when increasing solvent polarity (DMSO vs. CHCl3) was observed. On the other hand, a
protic solvent provided practically the same results than a polar aprotic solvent (MeOH vs. MeCN,
respectively). These results suggested an enhancement of the overall dipole moment on excitation
albeit almost independent of the solvent.
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Table 1. Photophysical data of sensor 1. 1

Solvent λabs (nm) (ππ*/nπ*) log ε (M´1¨ cm´1) (ππ*/nπ*) λem (nm) Stokes (cm´1) Singlet Energy (eV)

CHCl3 243/287 4.39/3.34 324 3149 4.07
DMSO -/297 -/3.50 345 4237 3.87
MeCN 249/291 4.38/2.80 332 3324 3.98
MeOH 249/291 4.42/3.09 335 3640 3.99

1 Sensor concentration, [1] = 0.01 mM.

Having established the photophysical data of compound 1 in different solvents, we tested its
ability to recognize halide anions in a suitable solvent. In this sense, DMSO possesses an absorption
band in the range of 200–280 nm, which would interfere with the excitation in the fluorescence
experiments (250 nm). MeOH was discarded because it is usually used for checking the reversibility of
the recognition process. Thus, we decided to do the next studies in MeCN because it is a relatively inert
solvent without any absorption band in the region between 210 and 600 nm and it is commonly used in
photochemical/photophysical investigations. On the other hand, we used tetrabutylammonium (TBA)
halides for our studies because they have good solubility in MeCN and TBA is one of the most common
counterions used in this field [59–61]. Other counterions such as K+ and Na+ were not suitable for
these studies because they can also be coordinated with the urea moiety [61].

The UV-vis absorption spectra of 1 in MeCN in the absence of F¯ showed two bands centered at
249 nm and 290 nm. Upon titration with F¯, the ground state was affected; a bathochromic shift due to
anion recognition on the two absorption maxima together with the appearance of an isosbestic point
at 252 nm, clearly pointed out to the formation of new species (Figure 2). The reverse was true for
other halide anions (i.e., Cl¯, Br¯, I¯) as slight-to-negligible changes in the UV-vis spectra in MeCN were
observed upon addition of these species (Figure S10).
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Figure 2. Absorption spectra of 1 (c = 0.04 mM) in the absence and with increasing amounts of F¯
(c = 0, 0.07 mMÑ1 mM) in acetonitrile at room temperature. Inset: Difference UV-spectra of [1 + F¯] – 1
in the long wavelength region.

The absorbance intensity of the ππ* transition decreased, whereas nπ* transition band remarkably
enhanced. These changes confirmed the formation of a new species, named charge-transfer (CT)
complex with new photophysical properties after the anion recognition. To examine the formation
of the CT complex, difference spectra (i.e., Abs[1+F¯]–Abs1) were obtained. The results showed
the emerging of a new band at ca. 310 nm (Figure 2, inset), which was attributed to the CT
complex absorption maximum. The formation constant of a CT complex (KCT) was estimated
spectro-photometrically by the Benesi–Hildebrand procedure (Equation (1)) [62]:

r1s{AbsCT “ r1{pKCT εCT [F¯]qs ` p1{εCTq (1)
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The corresponding absorbance/concentration plot is shown in Figure 3. From Equation (1),
AbsCT and εCT represent the absorbance due to the CT band at 300 nm at different concentrations
of F¯ and the molar absorption coefficient of the CT complex, respectively. A value of
3721 M´1¨ cm´1 ˘ 340 M´1¨ cm´1 for the εCT was obtained from the intercept in acetonitrile
(log εCT = 3.6). Consequently, the corresponding KCT (slope) was found to be 4826 M´1 ˘ 111 M´1.
This moderate-high value of KCT indicates a strong intermolecular interaction between 1 and F¯ in the
ground state. This behavior was not observed in the presence of other halides such as Cl¯, Br¯ and I¯
(vide infra).Sensors 2016, 162016, 16, 658 
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Figure 3. Benesi-Hildebrand plot used to determine the association constant of the CT complex formed
by sensor 1 and F¯ (λmax = 300 nm) at different fluoride concentrations ([1] = 0.02 mM).

In order to observe changes in the excited state, the fluorescence of 1 in the presence of increasing
amounts of anions was investigated. In agreement with the marked variations detected in the ground
state, emission of 1 was fully quenched by the presence of F¯ (Figure 4a), whereas a new comprehensive
band with a maximum at ca. 460 nm appeared with the formation of an isoemissive point at 383 nm.
On the other hand, the maximum emission intensity of 1 showed no changes in the presence of Cl¯, Br¯
and I¯ (Figure 4b, Figure S11 and Figure S12), which demonstrated the preference of sensor 1 for F¯.
Furthermore, the detection limit of fluoride anion was established at around 0.003 mg¨L´1 (see ESI,
Figure S13); this fluoride concentration is categorized as low-fluoride water (up to 0.5 mg¨L´1) [63].
Other related ureas, albeit lacking gelation ability, were found to be also suitable for sensing selectively
fluoride anion among other halides (Figure S14). These results suggest that, at least in this case,
the self-assembly tendency of the sensor does neither hinder nor favor its anion sensing properties.
In addition, sensor 1 showed high affinity for other anions such acetate and phosphate, while the
reverse was true for hydrosulfate (Figure S15).

A static fluorescence quenching of sensor 1 seemed to occur since the Stern–Volmer plot
presented a non-linear behavior at high amounts of fluoride (Figure S16). For comparison, a strong
non-nucleophilic base such as 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) was also used. In this case,
fluorescence quenching followed a clearly fitted-linearity, in contrast than the one found for fluoride
(Figure S16). In addition, 1H-NMR experiments showed that urea protons completely disappeared
in the presence of DBU (Figure S17). Therefore, the different effects obtained for the emission and
1H-NMR of 1 in the presence of DBU and fluoride, support the formation of a CT complex between
sensor 1 and fluoride.
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Figure 4. (a) Emission spectra of 1 (c = 0.04 mM, λexc = 252 nm) in the presence of increasing amounts
of F¯ (c = 0, 0.02 mMÑ2 mM) in acetonitrile; (b) Changes in the emission at 332 nm upon titration with
different halides.

In order to establish the formation of [1---F]¯ complex, steady-state fluorescence measurements
were performed with a solution of 1 and F¯ in acetonitrile (Figure 5). Upon selective CT complex
excitation at 320 nm (sensor 1 does not absorb in this region), its emission was detected, with a
maximum at ca. 468 nm. In good agreement with the UV-absorption measurement, the corresponding
excitation spectrum showed a maximum at 308 nm.
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Figure 5. Normalized absorption band of 1 (black line, left), excitation (red line, centered, λem = 468 nm)
and emission (blue line, right, λexc = 320 nm) spectra of a mixture of 1 (c = 0.04 mM) and F¯ (c = 2 mM)
in acetonitrile under aerobic conditions.

The [1---F]¯ complex formation through H-bonding interaction between F¯ and the urea moiety
was further confirmed by 1H-NMR titration experiments in CD3CN. The urea protons Ha and Hb
appeared at 5.94 ppm and 7.92 ppm (Figure S18). In the presence of increasing equivalents of F¯,
the urea resonances were gradually shifted to downfield by ca. 2 ppm and ca. 4 ppm, respectively,
reflecting H-bond formation between receptor and anion. In addition, some effects on aromatic
substituents (for instance, polarization-induced of the C-H bonds via a through-space effect) obtaining
downfield shift due to deshielding effect by partial positive charge formed onto the proton [32], could
be induced by this H-bonding interaction. In fact, this electrostatic effect was also detected in aromatic
protons H2 and H3 showing a weak downfield shift upon addition of F¯ equivalents (Figure S18),
in good correlation with literature data [30,60]. Moreover, deprotonation was not involved in the
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signaling mechanism, as reflected by the incomplete disappearance of the Ha signal, even at high
anion concentration. This suggests that the N-H amide bonding length increased during the anion
recognition, which was confirmed by the multiplicity of H1, which changed from a double doublet in
the absence of F¯ to a doublet upon addition of one equivalent of F¯ (Figure S18). Furthermore, the
effect of protic solvent on the fluorescence of [1---F]¯ complex also confirmed the H-bonding nature of
this interaction. The addition of methanol to a mixture of 1 and F¯ in acetonitrile led to the recovery of
the emission band (Figure 6), which clearly supported the reversibility of the process by the interaction
between the urea moiety and the protic solvent (see Figure S17 for additional 1H-NMR experiments).
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The foregoing experimental results pointed out that the signaling mechanism involved a CT
complex formation through H-bonding interaction between 1 and F¯. To further support this conclusion,
computational calculations at the B3LYP/6-31G(d) level of theory using the CPCM method (acetonitrile
as solvent) were carried out. Optimization of the geometries in the absence and presence of F¯ was
performed (Figure 7) and the corresponding N-H bond distances were calculated. The values for
N-Ha and N-Hb bond lengths without anion were found to be 1.017 Å and 1.010 Å, respectively. After
fluoride binding complex optimization, the values of these bond distances were 1.043 Å for N-Ha

bond and 1.081 Å for N-Hb bond. Although, bond-elongation was observed in both cases, it seemed
not to be sufficient for hydrogen abstraction by F¯. The H---F distances were 1.686 Å (Ha---F) and
1.467 Å (Hb---F), which were close to the experimental values reported in the literature [60,64] for
complexation of analogous compounds with F¯ ions. Similar results were obtained for the analogous
ureas (Figures S19–S21).

Moreover, both N-Ha and N-Hb GIAO-NMR shifts (δ) were also calculated in the
absence/presence of fluoride anion. Upon addition of F¯, a strong shift to downfield was found
for both hydrogen atoms, especially for Hb. The computed signal for Ha appeared at 9 ppm, while the
computed signal for Hb appeared at 13 ppm. These data are in good agreement with those observed
experimentally. Thus, the qualitative picture of the molecular recognition is well represented by
the computational data. Overall, these computational results are in concordance with experimental
observations where the formation of a complex between sensor 1 and F¯ in the ground state prevails
over a possible deprotonation of the urea moiety.
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Figure 7. Geometries of sensor 1 fluoride bonded (a) and non-bonded fluoride (b).

4. Conclusions

In summary, urea 1 was found to selectively recognize fluoride anion among other halides as
demonstrated by means of absorption as well as fluorescence spectroscopic data. The signaling
mechanism relies on the formation of a CT complex between sensor 1 and F¯ in the ground state
(Figure 8). In this sense, upon recognition of the anion, new absorption and fluorescence bands of this
CT complex at longer wavelengths were clearly detected together with a high association constant. The
nature of the H-bonding interaction between 1 and fluoride was unambiguously proven by 1H-NMR
studies and theoretical calculations. Finally, the recovery of the sensor was achieved using protic
solvents such as methanol.Sensors 2016, 162016, 16, 658 
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Supplementary Materials: The following are available online at www.mdpi.com/link: Figure S1: Absorption
spectra of 1 (0.04 mM) in chloroform in the presence of increasing amounts of the corresponding halide.
Figure S2: Absorption spectra of 1 (0.01 mM) in chloroform, acetonitrile, methanol and dimethylsulfoxide at room
temperature under aerobic conditions. Figure S3: Normalized excitation and emission spectra of 1 (0.01 mM) in
chloroform, acetonitrile, methanol and dimethylsulfoxide at room temperature under aerobic conditions. Figure
S4: Absorption spectra of 2 (0.01 mM) in dichloromethane, acetonitrile, methanol and dimethylsulfoxide at room
temperature under aerobic conditions. Figure S5: Normalized excitation and emission spectra of 2 (0.01 mM) in
dichloromethane, acetonitrile, methanol and dimethylsulfoxide at room temperature under aerobic conditions.
Figure S6: Absorption spectra of 3 (0.01 mM) in dichloromethane, acetonitrile, methanol and dimethylsulfoxide at
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room temperature under aerobic conditions. Figure S7: Normalized excitation and emission spectra of 3 (0.01 mM)
in dichloromethane, acetonitrile, methanol and dimethylsulfoxide at room temperature under aerobic conditions.
Figure S8: Absorption spectra of 3 (0.01 mM) in dichloromethane, acetonitrile, methanol and dimethylsulfoxide at
room temperature under aerobic conditions. Figure S9: Normalized excitation and emission spectra of 3 (0.01 mM)
in dichloromethane, acetonitrile, methanol and dimethylsulfoxide at room temperature under aerobic conditions.
Table S1: Photophysical data of sensor 2 (c = 10´5 M). Table S2: Photophysical data of sensor 3 (c = 10´5 M).
Table S3: Photophysical data of sensor 4 (c = 10´5 M). Figure S10: Absorption spectra of 1 (c = 0.04 mM) in the
absence and with increasing amounts of Cl¯, Br¯ and I¯ (c = 0, 0.03 mMÑ1 mM) in acetonitrile at room temperature.
Figure S11: Emission spectra of 1 (0.04 mM) in the presence of increasing amounts of chloride (λexc = 252 nm),
bromide (λexc = 252 nm) and iodide (λexc = 300 nm) in acetonitrile. Figure S12: Emission spectra of 1 (c = 0.04 mM,
λexc = 252 nm) in the presence of increasing amounts of a mixture of halide anions (c = 0, 0.004 mMÑ0.48 mM)
in acetonitrile. Figure S13: Emission spectra of 1 (c = 0.04 mM, λexc = 252 nm) in the presence of increasing
amounts of fluoride (c = 0, 0.004 mMÑ 0.02 mM) in acetonitrile. Figure S14: Changes in the maximum emission
of sensors 2–4 upon titration with different halides in acetonitrile at room temperature. Figure S15: Changes in the
emission of 1 (c = 0.04 mM, λexc = 252 nm) at 332 nm upon titration with different anions in acetonitrile. Figure
S16: Stern-Volmer plots for the fluorescence of 1 (c = 0.04 mM, λexc = 252 nm) upon fluoride (�) and DBU ( )
titration (c = 0, 0.004 mMÑ 0.32 mM) in acetonitrile. Figure S17: Changes in the 1H-NMR (400 MHz) spectra in
CD3CN. A: sensor 1 (0.02 mmol); B: sensor 1 + 0.75 eq. of fluoride; C: sensor 1 + 0.75 eq. of fluoride + one drop
of MeOH; D: sensor 1 + one drop of DBU, Cartesian coordinates for Compounds 1–4. Figure S18: Changes in
the 1H-NMR (300 MHz) spectra of 1 in CD3CN upon addition of F¯. Figures S19–S21: Geometries of sensors 2–4
fluoride bonded and non-bonded fluoride.
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Abbreviations

The following abbreviations are used in this manuscript:

CPCM Conductor-like polarizable continuum model
CT Charge-transfer
DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene
DMSO Dimethyl sulfoxide
FESEM Field emission scanning electron microscopy
GIAO Gauge-independent atomic orbital
ICT Intramolecular charge transfer
MeCN Acetonitrile
MeOH Methanol
NMR Nuclear magnetic resonance
PTET Photoinduced electron transfer
SCRF Self-consistent reaction field
UV-vis Ultraviolet-visible
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