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Abstract: Quality control of essential oils is an important topic in industrial processing of medicinal
and aromatic plants. In this paper, the performance of Fuzzy Adaptive Resonant Theory Map
(ARTMAP) and linear discriminant analysis (LDA) algorithms are compared in the specific task of
quality classification of Rosa damascene essential oil samples (one of the most famous and valuable
essential oils in the world) using an electronic nose (EN) system based on seven metal oxide
semiconductor (MOS) sensors. First, with the aid of a GC-MS analysis, samples of Rosa damascene
essential oils were classified into three different categories (low, middle, and high quality, classes
C1, C2, and C3, respectively) based on the total percent of the most crucial qualitative compounds.
An ad-hoc electronic nose (EN) system was implemented to sense the samples and acquire signals.
Forty-nine features were extracted from the EN sensor matrix (seven parameters to describe each
sensor curve response). The extracted features were ordered in relevance by the intra/inter variance
criterion (Vr), also known as the Fisher discriminant. A leave-one-out cross validation technique was
implemented for estimating the classification accuracy reached by both algorithms. Success rates
were calculated using 10, 20, 30, and the entire selected features from the response of the sensor
array. The results revealed a maximum classification accuracy of 99% when applying the Fuzzy
ARTMAP algorithm and 82% for LDA, using the first 10 features in both cases. Further classification
results explained that sub-optimal performance is likely to occur when all the response features are
applied. It was found that an electronic nose system employing a Fuzzy ARTMAP classifier could
become an accurate, easy, and inexpensive alternative tool for qualitative control in the production of
Rosa damascene essential oil.
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1. Introduction

Essential oils are highly concentrated, volatile, hydrophobic mixtures of chemicals extracted from
plants [1]. These materials usually consist of a complex mixture from tens to hundreds of low molecular
weight terpenoids. Due to their flavor and fragrance properties, essential oils have many applications
in several fields including the food industry (e.g., soft drink, food additive, and confectionary), the
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cosmetic industry (e.g., perfume, skin, and hair care products) and the pharmaceutical industry
for their anti-HIV (Human Immunodeficiency Virus), anti-bacterial, anti-oxidation, and sedation
properties [2–4]. Despite their wide range of applications, about 90% of global essential oil production
is consumed by the flavor and fragrance industry, including perfumes and foods. Indeed, the higher
growths in the market of essential oils and extracts, estimated at more than 5% per year, are foreseen in
flavor and fragrance applications [1]. Also, the global trade of essential oils was valued to be around
five billion dollars in 2011 while a 11.67 billion dollar value is expected for this market by 2022 [5].

The most aromatic rose species, scientifically named as Rosa damascena Mill., known as
“Gol-e-Mohammadi” in Persian, is cultivated extensively in Iran, Turkey, and Bulgaria [6]. The essential
oil of Rosa damascene is the most market valuable essential oil in the world ($7,500/kg), and this is why
it is nicknamed “liquid gold” [7]. Its high price is due to the large amounts of rose petals typically
needed to extract adequate enough amounts of oils. For example, the production of 1 kg of rose
oil requires 4000 kg of rose petals [1]. This essential oil is vastly employed in the above mentioned
industries. The quality control of essential oils has a very important role in the industrial processes
related to the development of flavors and fragrances.

One quality monitoring method is the use of instrumental techniques such as gas chromatography
(GC), GC coupled with mass spectrometry (GC/MS), high performance liquid chromatography
(HPLC), and thin layer chromatography (TLC), which are objective and precise but expensive,
destructive, time-consuming, and need to be performed by well-trained operators [8,9]. Therefore, the
development of easy and low cost methods similar to those obtained by electronic noses (ENs) could
be of great applicability. For example, there are some reports about the use of EN methods and pattern
recognition (PARC) techniques for classification and quality evaluation of Medicinal and Aromatic
Plants (MAPs) in the literature [10–13].

In recent years, EN systems have been widely tested for quality control of products in the food
and aroma industries [14]. ENs are instruments which mimic the human olfactory perception through
an array of chemical sensors (e.g., metal oxide semiconductor sensors) with partial specificity and
overlapping sensitivity, combined with an appropriate PARC system for recognizing simple or complex
odors [15,16]. However, this sensor technology is still far from the sensitivity and selectivity of the
human nose [17]. Complex odors are evaluated by ENs as patterns or “fingerprints”, rather than
separating, identifying, and quantifying every single volatile compound present in the mixture [18,19].
In the case of the electronic olfactory systems, these patterns are the sensor array responses. From
these responses, features are pre-processed and extracted for every sensor. Then, these features are
used by machine learning algorithms, which allow artificial systems to infer in a non-destructive
manner typical parameters in the food industry such as quality, ripeness, and shelf life [20–22] or
to detect or identify adulterated products [23–25]. All of these applications are somehow related
to the common goal of classifying the unknown quality of samples in a simple, fast, and effective
way using an EN. In machine learning and multivariate statistics, classification consists of how to
assign a new observation to a given category defined during the calibration (or training phase) of a
particular application.

Classification problems can be divided into two groups: binary and multiclass problems. In binary
problems, measurements need to be classified only into two classes, whereas multiclass classification
involves assigning an object to one of several classes [26]. The binary problems have specific algorithms
that tend to be simpler and more robust. Also, many classification methods have been developed
specifically for binary problems. Using these algorithms for multiclass classification often requires the
combined use of multiple binary classifiers.

Many multivariate analysis techniques have been applied to ENs for PARC analyses, which
are divided typically into two categories: Supervised and unsupervised learning (see Figure 1).
In supervised learning, data are divided into training and evaluation datasets during the calibration
and validation phases, respectively. The training set has specified inputs (predictors or variables) and
outputs (targets or classes) but the evaluation dataset has only input vectors. The PARC algorithm
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gives an output which is used then for model verification and evaluation giving a classification
accuracy figure (validation). Unsupervised learning methods do not need a priori knowledge about
class membership because they cluster the measurements into different classes using only the sensor
matrix responses as input vectors [27].
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In the experimentation stage, 10 genotypes of Rosa were selected and their petals were gathered 
from a field at the Research Institute of Forests and Rangelands (RIFR), Iran. The essential oils were 
extracted by hydro-distillation using a Clevenger type apparatus for 2 h [28,29]. The collected samples 
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Figure 1. Grouping of classifier algorithms applied to electronic noses (ENs). ANN refers to
Artificial Neural Network. ART refers to Adaptive Resonant Theory neural network. ARTMAP
refers to Adaptive Resonant Theory Map. DFA refers to Discriminant Factor Analysis. HCA refers to
Hierarchical Cluster Analysis. LDA refers to Linear Discriminant Analysis. LVQ refers to Learning
Vector Quantization. K-NN refers to K Nearest Neighbors. MLP refers to Multi-Layer Perceptron. PNN
refers to Probabilistic Neural Network. QDA refers to Quadratic Discriminant Analysis. RBF refers to
Radial Basis Function neural network. SIMCA refers to Soft Independent Modelling of Class Analogies.
SOM refers to Self-Organizing Map. SVM refers to Support Vector Machine.

In this paper, we envisage two goals. Initially, in order to have an independent reference method
for classifying the different samples, analyzed, samples were subject to a GC-MS characterization
to identify their constituents. This study was further used to define a set of different classes, based
on the total percent of the most important constituents identified, according to which samples were
classified. In other words, three objective quality categories were created in the first stage and each
sample was assigned to one of the three categories. The second goal was to implement an EN system
based on metal oxide semiconductor sensors (MOS) and to find a suitable PARC method to optimize
the EN performance in the particular task of quality classification of Rosa damascene essential oils.
Our investigation has been focused on two classifier algorithms, LDA (linear discriminant analysis)
and Fuzzy ARTMAP (Adaptive Resonant Theory Map) (both PARC techniques), and on finding which
subset of the features extracted from the sensor matrix responses has to be employed for improving
the performance of the system.

2. Materials and Methods

2.1. Sample Preparation

In the experimentation stage, 10 genotypes of Rosa were selected and their petals were gathered
from a field at the Research Institute of Forests and Rangelands (RIFR), Iran. The essential oils were
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extracted by hydro-distillation using a Clevenger type apparatus for 2 h [28,29]. The collected samples
were stored in a dark room at 4 ˝C until analyzed by GC-MS.

2.2. GC-MS

The analysis of the volatile constituents was done on a Hewlett-Packard Agilent 6890 gas
chromatograph equipped with an automatic liquid sampler (HP7683 Series) and an analytical column
HP-5MS (5% phenyl methyl siloxane, 30 m length ˆ 0.25 mm in diameter, film thickness of 0.25 µm),
connected to a Hewlett-Packard mass spectrometer (5973 Agilent Technologies, Santa Clara, CA,
USA). Oven temperature programming started at 80 ˝C for 0.5 min and then increased at the rate of
5 ˝C/min to 200 ˝C. Next, the temperature was increased to 300 ˝C at a rate of 15 ˝C/min and held
for 10 min; injected volume and split ratio were 1 µL and 200:1, respectively; ionization voltage was
70 eV and the monitored mass range was 35–600 amu; helium was used as gas carrier with a flow
rate of 1.2 mL¨min´1 and the mass spectroscopy detector (MSD) transfer line temperature was 250 ˝C.
The sample was prepared by dilution of the oil with 200 mL of dichloromethane and direct injection to
the GC-MS; 200 µL of essential oil were diluted in 100 µL dichloromethane for injection.

Individual compounds were detected and identified by comparing their retention indices
and recorded mass spectra with the National Institute of Standards and Technology (NIST 11.0)
mass-spectral library, Wiley MS data system library (Wiley, Chichester, UK) and previous literature.
The retention indices were calculated from all of the volatile constitutes using a homologous series of
n-alkanes (Sigma–Aldrich Trading Co., Ltd., Shanghai, China) [30,31].

2.3. Electronic Nose Design and Operation

An EN system was designed based on seven MOS TGS and FIS sensors [32,33]. These sensors
were arranged in a chamber with 0.25 L in volume and an inlet and outlet path. The electronic circuitry
schematics of the system and sensor characteristics are shown in Figure 2 and Table 1, respectively.
The response pattern of sensors (i.e., their resistance change) was recorded by a data acquisition card
(Agilent, LXI-34972A) during three different phase periods: baseline response (60 s), injection response
(200 s), and recovery response (500 s), as illustrated in Figure 3. In the baseline phase, dry air is
pumped into the sensors’ chamber through valve 1 with a rate of 1 mL¨min´1. During this phase, the
sensors show a stable status. Then, their response signal changes by the injection of the headspace
of the samples to the sensors’ chamber through valve 2. After the measurement, a purging phase
of the sensors’ chamber employing dry air results in a recovery step in which sensors return to a
stable baseline resistance. Eleven measurements were acquired every day followed by an ethanol
calibration to reset the medium to its original state. Each measurement cycle lasted 760 s and the whole
experimentation took 15 days to be completed.
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Table 1. Sensor array used in the electronic nose system.

Sensor Number Sensor Name Target Gas

S1 TGS *-822 Organic Solvent Vapors
S2 TGS-842 Methane
S3 SP **-15A LP gas (butane-propane)
S4 SP-32 Alcohol
S5 SP-53 Ammonia
S6 TGS-2610 LP gas (butane-Propane)
S7 TGS-2620 Organic Solvent Vapors

* Figaro Engineering (Osaka, Japan); ** FIS (Hyogo, Japan).

2.4. PARC Techniques (LDA and Fuzzy ARTMAP)

The LDA classifier models the difference between sample categories by finding a discriminant
function (DF), which is a linear combination of the original variables (features of the sensor responses)
that tries to maximize the variance between classes and minimize the variance within classes [22,34].
Many applications of these techniques have been reported in the literature [35,36].

In the case of artificial neural networks (ANN) for PARC, the back-propagation multilayer
perceptron (MLP) neural network has been the most widely used in EN applications [37,38]. MLP
neural network has a slow learning and calculation-intensive training procedure, since a number
of hidden neurons must be set by the user. Setting this value too low or too high may lead to an
under fitted or over fitted model, respectively [39]. Off-line training is another important drawback
since MLPs are unable to adapt autonomously, in real time, to changes in the environment [27] while
measurements are done on routine operation. On the other hand, the Fuzzy ARTMAP machine
learning algorithm is a self-organizing model that can be adapted or re-calibrated online with
changing conditions coming from new measurements, even those made during routine operation
of the instrument. Another advantage is that while in MLP networks the number of hidden layer(s)
and nodes must be determined before training, the Fuzzy ARTMAP algorithm does not need the
predetermination of most of its parameters such as the number of hidden neurons. Moreover, the
Fuzzy ARTMAP classifier performs much faster compared to MLP networks, both during training and
during evaluation, since it requires far less computations. Thus, it is appropriate for PARC functions in
dynamic environments that are subjected to the presence of new patterns [40]. The fuzzy ARTMAP
network has become a successful pattern recognition method for processing binary and analogue
input patterns in EN applications. This is due to its special learning method characterized by the
stability–plasticity dilemma, which more closely emulates human learning [41–44]. This model is
based on adaptive resonance theory (ART) and Fuzzy set theory, and was introduced by Carpenter
in [45]. For more details on fuzzy set theory and the ART neural network the reader is referred to the
referenced literature [46–48]. The fuzzy ARTMAP is a supervised version of Fuzzy ART and is based
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on the use of two Fuzzy ART modules (ARTa and ARTb) interconnected by an associative memory
(the “mapfield”, Fab) and some internal control structures as a match tracking system that regulates
the complexity of the network (like the number of hidden neurons in MLPs) through the so-called
vigilance parameter (ρ). Every module includes three fields, namely F0, F1, and F2, which are specified
by superscripts a and b for ARTa and ARTb, respectively [45] (see Figure 4). The description of the
Fuzzy ARTMAP theory is beyond the scope of this paper and therefore, for more information the
reader is referred to the corresponding literature [27,45]. These characteristics confer this algorithm
a great capability to learn from relatively small training sample sets that do not need to be balanced
(have the same example inputs for each category outputs).

Sensors 2016, 16, 636 6 of 15 

 

referenced literature [46–48]. The fuzzy ARTMAP is a supervised version of Fuzzy ART and is based 
on the use of two Fuzzy ART modules (ARTa and ARTb) interconnected by an associative memory 
(the “mapfield”, Fab) and some internal control structures as a match tracking system that regulates 
the complexity of the network (like the number of hidden neurons in MLPs) through the so-called 
vigilance parameter (ρ). Every module includes three fields, namely F0, F1, and F2, which are specified 
by superscripts a and b for ARTa and ARTb, respectively [45] (see Figure 4). The description of the Fuzzy 
ARTMAP theory is beyond the scope of this paper and therefore, for more information the reader is 
referred to the corresponding literature [27,45]. These characteristics confer this algorithm a great 
capability to learn from relatively small training sample sets that do not need to be balanced (have 
the same example inputs for each category outputs). 

 

Figure 4. Fuzzy ARTMAP structure, a is the input vector (features obtained from the sensors’ 
response) and b is corresponding class to measurement described by input vector a (during training 
or calibration). For more information about other parameters, the reader is referred to the cited 
literature [27,45]. 

2.5. Statistical Analysis 

One of the most important steps in classification problems is the extraction of meaningful 
features from raw data (e.g., the response of the sensors in EN applications). Feature extraction has 
been implemented employing different techniques and, clearly, choosing the appropriate features 
has a very important impact on the classification accuracy reached with ENs [49]. Feature extraction 
is often a very important aspect of the so-called data pre-processing step in EN applications. Selection 
of the appropriate feature extraction method heavily depends on the underlying sensor technology 
and the nature of any interfering signal [27]. For example, in the case of MOS, literature shows that 
the fractional change in conductance (Gf-Gi)/Gi helps both to linearize the sensor response vs. 
concentration and to reduce its temperature sensitivity [50,51]. 

As none of the extracted features alone may give a good description of the pattern generated by 
each sensor, seven features (five parameters based on resistance or conductance, and the other two 
based on response time) were extracted from every single measurement in this research. This is 
shown graphically in Figure 3 and a list of these features can be found in Table 2. 
  

Figure 4. Fuzzy ARTMAP structure, a is the input vector (features obtained from the sensors’ response)
and b is corresponding class to measurement described by input vector a (during training or calibration).
For more information about other parameters, the reader is referred to the cited literature [27,45].

2.5. Statistical Analysis

One of the most important steps in classification problems is the extraction of meaningful features
from raw data (e.g., the response of the sensors in EN applications). Feature extraction has been
implemented employing different techniques and, clearly, choosing the appropriate features has a
very important impact on the classification accuracy reached with ENs [49]. Feature extraction is
often a very important aspect of the so-called data pre-processing step in EN applications. Selection
of the appropriate feature extraction method heavily depends on the underlying sensor technology
and the nature of any interfering signal [27]. For example, in the case of MOS, literature shows
that the fractional change in conductance (Gf-Gi)/Gi helps both to linearize the sensor response vs.
concentration and to reduce its temperature sensitivity [50,51].

As none of the extracted features alone may give a good description of the pattern generated
by each sensor, seven features (five parameters based on resistance or conductance, and the other
two based on response time) were extracted from every single measurement in this research. This is
shown graphically in Figure 3 and a list of these features can be found in Table 2.

Since our EN comprised seven sensors, 49 features were obtained from every measurement.
Fifteen replicate measurements were performed on the 10 different samples of Rosa damascene essential
oils, and hence the database contained 150 measurements in total. All the features were scaled between
0 and 1 in order to normalize different resistance ranges and response times between several sensors.
To do so, each column of the resulting matrix (each feature is a column) was divided by the maximum
value present in that given column. Moreover, the Fuzzy ARTMAP algorithm needs inputs scaled
between 0 and 1. In order to reduce the number of variables and select an optimal subset of features,
an intra/inter variance criterion [52], also known as a Fisher ratio, according to Equation (1), was used:
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Vr “ pExternal Varianceq{pInternal Varianceq (1)

The external variance is defined as the between-category centroids’ variance and the internal
variance is the average variance inside each category, which is calculated for the repetitions performed
on each class. The number of classes is determined by GC-MS results so that every class may include
several genotypes. A higher external variance is better since it means a good separation capability,
and a lower internal variance is better because it means that the measurements in each class are
closer together and there is a better reproducibility. Therefore, a higher value for Vr means better
discrimination capability for a given variable [41]. After ordering features based on this criterion
(from highest to lowest), the classification accuracy was calculated by LDA and Fuzzy ARTMAP
classifiers with input vectors including 10, 20, 30, or 49 features. A leave-one-out cross validation
(LOOCV) approach was used for testing the algorithms. This approach implies a calculation for
each measurement (i.e., 150 times). Each time, training is performed with 149 measurements and the
remaining one is used only for evaluation purposes, so that all of measurements participate eventually
in training and testing processes. This strategy maximizes the confidence about the figures of merit
(the combination of PARC method and features) that each approach obtains, given the limited number
of samples.

Table 2. Features extracted from sensors response.

Features Calculation

f1 Ri
R f

f2 ∆R “ Ri ´ R f

f3 Ri´R f
Ri

f4 ∆G “ G f ´ Gi

f5 G f ´Gi
Gi

f6 Ti “ t0.9∆R ´ tRi

f7 Tr “ t0.9∆R ´ tR f

The Fuzzy ARTMAP parameters were chosen according to a strategy previously employed in the
analysis of EN data [41]. The baseline vigilance parameter (ρa) was set to 0. This is the recommended
value for the vigilance, since it allows for very coarse categories and the match tracking system will only
refine these categories if necessary [53]. In this way, the network learns 100% of the training samples
compromising to a minimum the generalization ability of the system. On the other hand, the normal
way to proceed with the vigilance parameter for the ARTMAP B is to set it to 1, since the categories
have to be exactly defined during training and different “label values” should be clearly separated
in different ART B output neurons. The interpretation given to the network in the implementation
used in this report requires the vigilance parameter for the map field ρab to be set to nearly 1 (0.99).
The value of the choice parameter (α) was set to 0.001; a value well below 1 is recommended to
prevent a tie outcome in competitions between neurons. The Fuzzy ARTMAP was used in fast learning
mode (β = 1), meaning that a single training measurement allows the mode to create and learn a new
category (hence the name “fast learning”). This is also possible because the measurements are not
noisy, otherwise a slow recode procedure would have been proposed. Matlab v8.5 (The Mathworks,
Natick, MA, USA) and R v3.2.1 were used for data analysis.

3. Results and Discussion

3.1. GC-MS Results

As it can be seen in Table 3, the result of the GC-MS measurements showed that numerous volatile
components co-exist in an essential oil sample. In other words, the headspace (or aroma) of these types
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of samples is considered a complex odor with many compounds, generally in the order of hundreds or
thousands. Among these components, the most influencing constituents on the quality determination
of Iranian Rosa essential oil are phenyl ethyl alcohol, trans rose oxide, citronellol, nerol, geraniol,
and geranial [3,29]. Therefore, the qualitative classification of samples was implemented based on
the total percent concentration of the first six constituents that are specified in Table 3. A coarse and
straightforward quality classification was established. Low quality (class 1) corresponded to genotypes
in which the total percent of the six relevant constituents was below 10% (i.e., samples labelled g1,
g2, g3, and g4). Middle quality (class 2) corresponded to genotypes in which this total percent was
higher than 10% and lower than 50% (i.e., samples g5, g6, and g7). Finally, high quality (class 3) was
attributed to samples in which the amount of the relevant constituents accounted for more than 50% of
the total (g8, g9, and g10).

Table 3. Chemical constituents of Iranian Rosa essential oils determined by GC-MS analysis.

No. Cons. Name Formula
Constituent Percentage for Each Genotype

g10 g9 g8 g7 g6 g5 g4 g3 g2 g1

1 Phenyl ethyl alcohol C8H10O 0.64 0.18 0.61 0.37 0.3 0.3 0.21 - - -

2 Trans rose oxide C10H18O 1.25 0.61 0.5 0.61 0.4 0.23 0.12 0.32 0.18 0.4

3 Citronellol C10H20O 28.18 53.1 33.7 24.1 13.35 8.48 2.14 4.73 0.48 1.25

4 Nerol C10H18O 16.2 2.01 3.56 0.1 0.1 0.6 - - - -

5 Geraniol C10H18O 30.02 15.16 26.05 12.1 7.25 6.15 6.33 2.66 3.25 0.5

6 Geranial C10H16O 0.48 0.26 0.27 0.1 0.21 0.2 0.1 0.14 0.15 -

7 α-Eudesmol C15H26O 0.72 - 0.61 - 3.15 2.18 - 2.35 2.86 1.73

8 β-Eudesmol C15H26O - - 0.67 - 2.84 2.52 2.01 2.77 4.33 1.9

9 γ-Eudesmol C15H26O - - 0.57 - 2.68 2.43 - 1.4 1.77 1.48

10 Cyclohexanemethanol C15H26O - - - - 1.25 0.53 - 0.17 0.62 0.44

11 Dioctyl Phthalate C24H38O4 - - - - - - - - - 15.9

12 Farnesol C15H26O - - 0.27 1.53 - - - 0.9 0.95 -

13 Octyl phthalate C24H38O4 2.48 - 0.28 - - 0.22 3.91 - 12.0 -

14 Geranyl acetate C12H20O2 2.05 0.44 1.12 1.24 0.71 - 0.5 0.1 - -

15 Methyleugenol C11H14O2 - 0.28 0.25 0.75 - - - 0.15 - -

16 Diisooctyl phthalate C24H38O4 - 5.16 - - - - - 4.88 - -

17 Linalool C10H18O - - 0.53 0.31 - - 0.83 - - -

18 Neral C10H16O 1.3 1.0 0.94 0.9 0.78 0.7 0.66 0.34 0.23 0.1

19 3-Methyl-4-isopropylphenol C10H14O - 0.53 - 0.3 - - - - - -

20 Eugenol C10H12O2 - - - 0.4 - - - - - -

21 Apilo C12H14O4 - - 0.23 0.42 - - - - - -

22 Nonacosane C29H6O - - 0.37 0.56 - - - - - -

23 Nonanal C9H18O - - 0.13 - - - - - - -

24 Anethole C10H12O - 0.55 0.5 - - - - - - -

25 Chavibetol C10H12O2 - 0.22 0.28 - - - - - - -

26 Docosane C22H46 - 3.82 4.0 0.53 4.05 4.83 6.51 5.0 0.55 -

27 Pentacosane C25H52 - 2.25 - 2.06 1.65 - - - 2.44 -

28 z-5-Nonadecene C19H38 - 2.93 - - - 6.35 6.33 6.35 5.35 5.6

29 Nonadecane C19H40 10.94 12.76 14.2 17.6 35.9 40.3 37.2 33.7 30.5 33.1

30 Eicosane C20H42 1.9 2.48 2.28 3.12 2.73 3.76 4.15 5.4 3.43 3.28

31 Hexadecane C20H42 - - - - - - - - - 4.48

32 1-Tetradecene C14H28 - - - - - - - 0.13 - -

33 9-Eicosene C20H40 - - 0.2 - - - - 0.18 - -

34 9-Nonadecene C19H38 - 0.21 0.33 - - - 0.35 0.37 - -

35 cis-9-Tricosene C23H46 - 0.46 - 0.55 - - - 0.28 - -

36 Bicyclo[10.8.0]eicosane-cis C20H38 - - - - - - - - - 0.13

37 Hexacosane C26H54 - - - - - 0.2 - 0.2 - -

38 Octacosane C28H58 - - 0.09 - - - - 0.07 - -
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Table 3. Cont.

No. Cons. Name Formula
Constituent Percentage for Each Genotype

g10 g9 g8 g7 g6 g5 g4 g3 g2 g1

39 Heneicosane C21H44 10.0 9.66 11.2 11.6 17.34 20.7 25.7 19.6 20.2 20.0

40 Tetracosane C24H50 0.5 2.6 0.33 0.41 - 2.42 0.27 0.6 3.68 2.87

41 Neopentylidenecyclohexane C11H20 - - - - - 1.35 - - - -

42 1,21-Docosadiene C22H42 - - - - - 0.15 - - - -

43 1-Octadecene C18H36 - - - - 6.03 - - - - -

44 8-Heptadecan C17H34 - - 0.35 - 1.5 1.84 - 1.16 0.86 0.52

45 2,6-Octadiene, 2,6-dimethyl C10H18 - 0.36 0.37 0.35 - - - - - -

46 Heptacosane C27H56 - 0.24 2.4 2.13 2.0 0.07 3.37 2.66 - 2.91

47 Bergamoten C15H24 - - - 0.84 - - - - - -

48 Teriacontane C30H62 1.78 0.4 - - - - - - - 0.31

49 1-Nonadecane C19H38 - - - 3.5 - - - - - -

50 Tricosane C23H48 - - - 3.75 - - - - - -

51 1,19-Eicosadiene C20H38 - - 0.16 - - - - - - -

52 5-Eicosene, (E) C20H40 3.96 - - - - - - - - -

53 Pentadecane C15H32 - 0.21 0.21 - 0.28 - - 0.4 - 0.36

54 Heptadecane C17H36 - 1.6 1.78 1.56 2.1 3.67 2.51 3 2.17 2.93

55 7-Tetradecyne C14H26 - - - - - - - - - 0.4

56 Octadecane C18H38 - 0.6 2.16 0.4 - 0.4 2.68 0.27 5.0 0.25

Total Percent for first six constituents 76.77 71.32 64.69 37.4 21.61 15.96 8.9 7.85 4.06 2.15

3.2. Classification Results

The classification results of the new measurements on the coordinates based on first linear
discriminant (LD1) and second linear discriminant (LD2) are shown in Figure 5a–d as score plots.
These variables are linear combinations of 10, 20, 30, or 49 extracted features. According to the results,
LD1 proved to separate the first and second classes (C1, C2) from class 3 (C3), but did not discriminate
class 1 from class 2. On the other hand, when categorizing precisely the first and second classes,
the LD2 performed better than LD1, although it could not correctly discriminate C1 and C2 when
49 features were used. Since LD2 explains the higher amount of variance when the first 10 features
are used (0.8% in Figure 5a), a histogram plot was obtained for the first 10 features (Figure 6) and
confirmed that each of the linear discriminant functions (LD1 and LD2) could not correctly classify
all categories alone. The results of classification accuracy and confusion matrixes for the selected
features are shown in Table 4. Regarding the confusion matrices, each column specifies the predicted
category of each sample by the algorithm and each row specifies the actual number of samples that
were tested by the EN. According to Table 4, the classification accuracy reached by the LDA method is
relatively low, since the number of misclassified samples is rather high, especially for C2. Therefore,
our study shows that LDA performs poorly in this 3-category classification. According to these results,
the success rate of classification decreases from 82% to 62% when the number of selected features
increases from 10 to 49 in LDA analysis. Therefore, the highest success rate was achieved when
selecting the best 10 variables according to the Vr parameter. These first 10 selected variables ae listed
in Table 5. The results show that the best features extracted from sensor responses are based on f5, f7,
f3, and f4 (listed in Table 2). f5, in particular, is very effective in the classification process, since the
first five variables selected are feature 5 for five different sensors. Also, sensors S1, S6, S7, S4, and S3
seem to be more informative than S2 and S5 for sample classification. Taking into consideration that
effective quality components in Iranian Rosa are alcohols and terpenoids, sensors more sensitive to
these components would be more advantageous in the classification process, as is the case.



Sensors 2016, 16, 636 10 of 15

Sensors 2016, 16, 636 10 of 15 

 

Table 4. Success rates in classification and confusion matrices for selected features by LDA and Fuzzy 
ARTMAP. 

 
Analysis

LDA Fuzzy ARTMAP 

No. Features 
Real Predicted 

Success Rate 
Real Predicted 

Success Rate 
 C1 C2 C3 C1 C2 C3

 C1 60 0 0  C1 59 1 0  
10 C2 18 17 10 82% C2 0 45 0 99% 
 C3 0 0 45  C3 0 0 45  
 C1 59 0 1  C1 58 2 0  

20 C2 21 11 13 73% C2 0 44 1 98% 
 C3 6 0 39  C3 0 0 45  
 C1 57 0 3  C1 58 2 0  

30 C2 23 10 12 67% C2 0 43 2 97% 
 C3 12 0 33  C3 0 0 45  
 C1 57 0 3  C1 58 2 0  

49 C2 25 7 13 62% C2 1 41 3 96% 
 C3 16 0 29  C3 0 0 45  

Table 5. The first 10 variables selected. 

Variables NO. Variables Name
1 S1f5 
2 S6f5 
3 S7f5 
4 S4f5 
5 S3f5 
6 S3f7 
7 S4f7 
8 S3f3 
9 S4f3 

10 S6f4 

 
Figure 5. Score plots of LDA analyses based on 10 (a); 20 (b); 30 (c); and 49 (d) features. Figure 5. Score plots of LDA analyses based on 10 (a); 20 (b); 30 (c); and 49 (d) features.

Sensors 2016, 16, 636 11 of 15 

 

 
Figure 6. Histogram plots for first 10 features based on discriminant functions (LD1 and LD2). 

The classification results using the Fuzzy ARTMAP neural paradigm are also shown in Table 4. 
According to the results, the success rate increases to 99% when the best 10 variables were selected 
based on the Vr parameter. Therefore, the Fuzzy ARTMAP algorithm is very successful at performing 
the 3-category classification of essential oil samples employing EN response patterns. The number of 
misclassified samples is very low and remains quite stable, no matter the number of features used. 
For example, there is only one misclassified measurement when 10 features are selected. It is  
well-known that the response of MOS is rather nonlinear and the fact that the Fuzzy ARTMAP 
learning paradigm is more suited to deal with non-linear data than LDA (which is a linear method) 
could explain the better results obtained by the former. Additionally, experimental data are subject 
to some degree of uncertainty (e.g., due to noise) and the Fuzzy ARTMAP is also more suited to deal 
with noise [27]. Finally, the Fuzzy ARTMAP has stable learning and is able to carry out on-line 
learning without forgetting previously learnt patterns, which helps this method to be quite resilient 
to the presence of sensor drift [27]. 

4. Conclusions 

The chemical constituents of Iranian Rosa damascene essential oils were characterized by GC-MS 
analysis. According to these results, the samples were divided into three qualitative categories (low, 
middle, and high quality) based on the total percent of six constituents that are known to be relevant 
in the determination of the quality of the essential oil of Rosa damascene. The algorithms Fuzzy 
ARTMAP and linear discriminant analysis (LDA) were used to classify samples of essential oils from 
Rosa damascene by an electronic nose system whose design was based on seven metal oxide sensors. 
When the samples were measured by the EN, 49 features were extracted from the sensor matrix 
response patterns and ordered (from highest to lowest) by an intra/inter variance criterion. Then, 
classification accuracy was calculated when the best 10, 20, 30, or 49 features extracted were used for 
training and validating Fuzzy ARTMAP and LDA algorithms via a leave-one-out approach. The best 
success rates obtained were 99% and 82% for Fuzzy ARTMAP and LDA analysis, respectively. These 
rates were obtained when the best 10 features were input to the classifiers in both cases. These results 
show that Fuzzy ARTMAP performs much better than LDA in all feature selection scenarios. 
Therefore, Fuzzy ARTMAP is a much better technique for pattern recognition and classification of 
Rosa essential oils measured with an electronic nose. On the other hand, for both techniques, the best 
results were achieved when only the best 10 features were selected, meaning that a more 
parsimonious (simple) PARC model with fewer input variables achieves a better generalization 
performance than a more complicated model. Therefore, we conclude that an EN can be used as an 
easy, low cost, accurate, and rapid method for the qualitative classification of Iranian Rosa damascene 
essential oils. 
  

Figure 6. Histogram plots for first 10 features based on discriminant functions (LD1 and LD2).

Table 4. Success rates in classification and confusion matrices for selected features by LDA and
Fuzzy ARTMAP.

Analysis

LDA Fuzzy ARTMAP

No. Features
Real Predicted

Success Rate
Real Predicted

Success Rate
C1 C2 C3 C1 C2 C3

C1 60 0 0 C1 59 1 0
10 C2 18 17 10 82% C2 0 45 0 99%

C3 0 0 45 C3 0 0 45
C1 59 0 1 C1 58 2 0

20 C2 21 11 13 73% C2 0 44 1 98%
C3 6 0 39 C3 0 0 45
C1 57 0 3 C1 58 2 0

30 C2 23 10 12 67% C2 0 43 2 97%
C3 12 0 33 C3 0 0 45
C1 57 0 3 C1 58 2 0

49 C2 25 7 13 62% C2 1 41 3 96%
C3 16 0 29 C3 0 0 45
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Table 5. The first 10 variables selected.

Variables NO. Variables Name

1 S1f5
2 S6f5
3 S7f5
4 S4f5
5 S3f5
6 S3f7
7 S4f7
8 S3f3
9 S4f3

10 S6f4

The classification results using the Fuzzy ARTMAP neural paradigm are also shown in Table 4.
According to the results, the success rate increases to 99% when the best 10 variables were selected
based on the Vr parameter. Therefore, the Fuzzy ARTMAP algorithm is very successful at performing
the 3-category classification of essential oil samples employing EN response patterns. The number
of misclassified samples is very low and remains quite stable, no matter the number of features
used. For example, there is only one misclassified measurement when 10 features are selected. It is
well-known that the response of MOS is rather nonlinear and the fact that the Fuzzy ARTMAP learning
paradigm is more suited to deal with non-linear data than LDA (which is a linear method) could
explain the better results obtained by the former. Additionally, experimental data are subject to some
degree of uncertainty (e.g., due to noise) and the Fuzzy ARTMAP is also more suited to deal with
noise [27]. Finally, the Fuzzy ARTMAP has stable learning and is able to carry out on-line learning
without forgetting previously learnt patterns, which helps this method to be quite resilient to the
presence of sensor drift [27].

4. Conclusions

The chemical constituents of Iranian Rosa damascene essential oils were characterized by GC-MS
analysis. According to these results, the samples were divided into three qualitative categories (low,
middle, and high quality) based on the total percent of six constituents that are known to be relevant
in the determination of the quality of the essential oil of Rosa damascene. The algorithms Fuzzy
ARTMAP and linear discriminant analysis (LDA) were used to classify samples of essential oils from
Rosa damascene by an electronic nose system whose design was based on seven metal oxide sensors.
When the samples were measured by the EN, 49 features were extracted from the sensor matrix
response patterns and ordered (from highest to lowest) by an intra/inter variance criterion. Then,
classification accuracy was calculated when the best 10, 20, 30, or 49 features extracted were used
for training and validating Fuzzy ARTMAP and LDA algorithms via a leave-one-out approach. The
best success rates obtained were 99% and 82% for Fuzzy ARTMAP and LDA analysis, respectively.
These rates were obtained when the best 10 features were input to the classifiers in both cases. These
results show that Fuzzy ARTMAP performs much better than LDA in all feature selection scenarios.
Therefore, Fuzzy ARTMAP is a much better technique for pattern recognition and classification of
Rosa essential oils measured with an electronic nose. On the other hand, for both techniques, the best
results were achieved when only the best 10 features were selected, meaning that a more parsimonious
(simple) PARC model with fewer input variables achieves a better generalization performance than a
more complicated model. Therefore, we conclude that an EN can be used as an easy, low cost, accurate,
and rapid method for the qualitative classification of Iranian Rosa damascene essential oils.
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