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Abstract: The direction of arrival (DOA) tracking problem based on an angle sensor is an important
topic in many fields. In this paper, a nonlinear filter named the feedback M-estimation based robust
cubature Kalman filter (FMR-CKF) is proposed to deal with measurement outliers from the angle
sensor. The filter designs a new equivalent weight function with the Mahalanobis distance to combine
the cubature Kalman filter (CKF) with the M-estimation method. Moreover, by embedding a feedback
strategy which consists of a splitting and merging procedure, the proper sub-filter (the standard
CKF or the robust CKF) can be chosen in each time index. Hence, the probability of the outliers’
misjudgment can be reduced. Numerical experiments show that the FMR-CKF performs better than
the CKF and conventional robust filters in terms of accuracy and robustness with good computational
efficiency. Additionally, the filter can be extended to the nonlinear applications using other types
of sensors.

Keywords: angle sensor; DOA tracking; nonlinear system; cubature Kalman filter; robust estimation;
feedback strategy

1. Introduction

For the last several decades, the target tracking problem has been the subject of constant and
intensive interest in many fields, such as navigation, military applications, and sensors networks [1].
The aim of the target tracking problem is to estimate the position and the velocity of a target
from a set of measurements collected by sensors [2]. According to the types of sensors, target
tracking can be separated into range-only tracking, direction of arrival (DOA) tracking, and Doppler
effects tracking [3–5]. Among these methods, DOA tracking is a typical nonlinear problem whose
measurements are the basic information from an angle sensor [6,7]. Accordingly, this paper focuses on
the DOA tracking with a single angle sensor.

Various nonlinear filtering algorithms have been applied to the DOA tracking problem, such as the
extended Kalman filter (EKF) [8], the particle filter (PF) [9,10], the unscented Kalman filter (UKF), and
the cubature Kalman filter [11]. The UKF and the CKF are called the deterministically-sampled filters
(DSFs) which approximate the Gaussian posterior distribution by means of a set of deterministically
sampled points. When the discretization errors of practical systems are not considered, they perform
better than the EKF in terms of the accuracy and show better than the PF in terms of the computational
cost [11]. However, the UKF and the CKF are effective only under the Gaussian and white assumption
of the measurement noise. Actually, measurement outliers are almost inevitable from sensors
in practical applications. Owing to their potentially non-Gaussian or non-symmetric properties,
measurement outliers may lead to unstable, or even divergent performance. On the other hand, the
tracking performance is also concerned with the discretization of the practical system [12]. In this
paper, we focus on dealing with outliers, and the discretization errors are not considered.
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The hard decision method [13] may prevent outliers to a certain degree. However, it may lead
to misjudgment easily owing to the nonlinear property of the DOA tracking. Moreover, once the
misjudgment appears, the performance will be degraded significantly. Huber’s M-estimation [14] is an
important method to deal with measurement outliers from sensors. It combines the minimum l1 and l2
norm estimation technique, which exhibits robustness for contaminated measurements. Unfortunately,
the M-estimation is generally limited in linear cases. Indeed, it can be directly extended to nonlinear
systems with the help of the first-order Taylor expansion, but the accuracy is difficult to be ensured
because of enormous linearized errors in highly nonlinear cases. Recently, combining the DSFs with the
M-estimation has been taken into account. They usually reformulate the measurement update stage,
and the M-estimation method can be introduced according to a linear or nonlinear regression [15–19].
Nevertheless, the linear or nonlinear regression induces some complex operations such as the matrix
inversion and decomposition, which may lead to poor computational efficiency. Moreover, the outliers’
judgment variable in regression-based robust DSFs includes not only measurement errors, but also
predicted errors and nonlinear errors in nonlinear systems. Hence the outliers’ judgment threshold is
difficult to be determined. Additionally, the robust DSFs do not perform as well as their non-robust
versions such that the UKF and the CKF when no outliers appear from sensors, because the weights of
the normal measurements may be reduced improperly under Gaussian assumption.

Considering the problems above, the feedback M-estimation based robust cubature Kalman filter
(FMR-CKF) is proposed for the single sensor based DOA tracking. Unlike regression-based methods,
we introduce the M-estimation to the CKF by means of the equivalent weight function, and the
complex computational operations can be avoided. A feedback strategy is also proposed to improve
the misjudgment in different cases. When an outlier from the angle sensor is detected, the filter is
split into two sub-filters: the standard CKF and the robust CKF. They are simultaneously updated and
the sub-filter whose outliers’ judgment variable is smaller at the next time index can be chosen. The
FMR-CKF takes full advantage of the accuracy of the CKF and the robustness of the M-estimation and
simulation results show that the proposed algorithm performs better than the conventional algorithms
whether outliers appear. It should be noted that the proposed filter is different from the gating method
in multi-target tracking problem [20,21]. A gating method is used in multi-target tracking problem
because the measurement origin is uncertain and it is a binary decision method. On the contrary, the
proposed filter is to reduce the influence of the outliers according to the equivalent weight function.

The rest of the paper is organized as follow. Section 2 describes the nonlinear system model of
DOA tracking based on an angle sensor. The nonlinear robust filter which is called the MRCKF is
presented in Section 3. Section 4 introduces the feedback strategy for DOA tracking. Section 5 yields
the performance comparison of the proposed algorithm with conventional algorithms. Conclusions
are drawn in Section 6.

2. System Model and Cubature Kalman Filter

The target is assumed to be in linear motion with nearly constant velocity for convenience.
Of course, the CKF-based method can also handle the condition when the velocity varies. The state

vector of the target at time index k (k “ 1, 2, ¨ ¨ ¨ , n) can be given by xt
k “ rxt

k, yt
k,

.
xt

k,
.
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ks
T
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. Thus, the state vector in the relative

own-ship reference at time index k is defined as xk “ xt
k ´ xo

k “ rxk, yk,
.
xk,

.
yks

T .
The dynamic model of DOA tracking can be written as:

xk “ Fxk´1 ´ uk´1,k ` vk (1)
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where F is the transformed matrix, uk´1,k is a vector of deterministic inputs that accounts for the effects
of observer accelerations [22], and vk represents the process noise, which is generally assumed to be
Gaussian distributed such that N p0, Qq. F, uk´1,k, and the covariance matrix Q are given by [2]:

uk´1,k “

»

—

—

—

–

xo
k ´ xo

k´1 ´ ∆
.
xo

k´1
yo

k ´ yo
k´1 ´ ∆

.
yo
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k ´
.
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k´1.
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k ´
.
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, F “

»

—

—

—
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»

—

—
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0 ∆3{3 0 ∆2{2

∆2{2 0 ∆ 0
0 ∆2{2 0 ∆

fi
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ffi

fl

¨ q

where ∆ is the measurement interval and q represents the intensity of the process noise.
The measurement model is:

zk “ hpxkq “ arctan
xk
yk
`wk (2)

where zk represents the angle measurement at time index k that is obtained by a single angle sensor.
wk represents the measurement noise which is generally assumed to be independent and identically
Gaussian with a covariance matrix Rk.

The CKF uses the third-degree spherical-radial rule to numerically approximate the
multi-dimensional integral involved in nonlinear Bayesian filtering. The cubature points can be
expressed as: ξ j “

?
nx

”

Inx ´Inx

ı

j
, where Inx is the nx ˆ nx dimensional identity matrix, and r¨sj

represents the jth column of r¨s (j “ 1, 2, ¨ ¨ ¨ , 2nx).
At the time update stage, the dynamic model of DOA tracking is typically linear; thus, the mean

and associated covariance of the Gaussian predictive density can be directly written as:

x̂k|k´1 “ Fx̂k´1 ´ uk´1,k (3)

Pk|k´1 “ FPk´1FT `Q (4)

At the measurement update stage, the predicted covariance is first factorized as Pk|k´1 “ Sk|k´1ST
k|k´1.

We then evaluate the cubature points:

x˚k|k´1,j “ Sk|k´1ξj ` x̂k|k´1 (5)

The cubature points are propagated through the nonlinear measurement equation:

z˚k|k´1,j “ hpx˚k|k´1,jq (6)

Accordingly, the predicted measurement can be estimated through:

ẑk|k´1 “
1

2nx

2nx
ÿ

j“1

z˚k|k´1,j (7)

The Kalman gain is given by:
Kk “ Pxz,k|k´1P´1

zz,k|k´1 (8)

where the innovation covariance matrix Pzz,k|k´ 1 and the cross covariance matrix Pxz,k|k´1 are:

Pzz,k|k´1 “
1

2nx

2nx
ÿ

j“1

pz˚k|k´1,j ´ ẑk|k´1,jqpz
˚
k|k´1,j ´ ẑk|k´1,jq

T
` Rk (9)
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Pxz,k|k´1 “
1

2nx

2nx
ÿ

j“1

px̂k|k´1 ´ x˚k|k´1,jqpẑk|k´1 ´ z˚k|k´1,jq
T (10)

Therefore, the state estimate and the corresponding covariance can be updated as:

x̂k|k “ x̂k|k´1 `Kkpzk ´ ẑk|k´1q (11)

Pk|k “ Pk|k´1 ´KkPzz,k|k´1KT
k (12)

3. Robust Cubature Kalman Filter Based on the M-Estimation

Without regard to the discretization errors, the CKF will be accurate and stable if the measurement
noise follows Gaussian distribution exactly. However, measurements are easily contaminated by the
outliers in practical applications [17]. The outliers will lead to inaccurate performance if we do nothing
about them. Accordingly, the contaminated distribution is introduced:

G “ p1´ εqD` εM (13)

where D is the dominated distribution, M is the interference distribution, and ε is the contaminated
rate. In general, the Gaussian distribution is widely adopted to be the dominated distribution D
because it is tractable. The outlier can be regarded as the measurement noise from the interference
distribution M. In order to obtain accurate and robust results, both D and M should be considered.

The key of the M-estimation is to keep the weights of normal measurements and to reduce
the weights of contaminated measurements. Generally, the weight of the normal measurement is
considered the inverse matrix of the measurement covariance such that pk “ pRkq

´ 1. Thus, the
innovation covariance matrix of the CKF Pzz,k|k´1 can be rewritten as:

Pzz,k|k´1 “
1

2nx

2nx
ÿ

j“1

pz˚k|k´1,j ´ ẑk|k´1qpz
˚
k|k´1,j ´ ẑk|k´1q

T
` p´1

k (14)

The covariance of the outlier which comes from the unknown interference distribution is denoted
as Rk, and the equivalent weight matrix of the contaminated measurement can be expressed as
pk “

`

Rk
˘´ 1. Consequently, the equivalent innovation covariance matrix Pzz,k|k´1 is obtained by:

Pzz,k|k´1 “
1

2nx

2nx
ÿ

j“1

pz˚k|k´1,j ´ ẑk|k´1,jqpz
˚
k|k´1,j ´ ẑk|k´1,jq

T
` p´1

k (15)

According to Equation (13), the outliers can be regarded as the data coming from the interference
distribution, where the covariance is p´ 1

k .
The corresponding equivalent Kalman gain Kk is given by:

Kk “ Pxz,k|k´1P´1
zz,k|k´1 (16)

Therefore, the estimate state and the corresponding covariance can be updated as:

x̂k|k “ x̂k|k´1 `Kkpzk ´ ẑk|k´1q (17)

Pk|k “ Pk|k´1 ´KkPzz,k|k´1KT
k (18)

It can be seen from Equations (14) and (15) that the only difference between the CKF and
the M-estimation based robust CKF (MRCKF) is the weight matrix, which implies that handling
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measurement outliers is actually transformed into designing of the equivalent weight matrix pk, i.e.,
the Huber’s weight function can be expressed as [14]:

pk “

$

&

%

R´1
k , |rrk| ď c

R´1
k ¨c
|rrk|

, |rrk| ą c
(19)

where rrk is the standardized residual at time index k and the threshold c is usually chosen as
c P r1.3, 2s [23]. When pk “ R´ 1

k , the MRCKF turns into the CKF, which means the CKF is a special
case of the MRCKF with ε “ 0.

It is noted that the outliers’ judgment threshold c is difficult to be determined because the
standardized residual includes not only measurement errors, but also predicted errors and nonlinear
errors in the DOA tracking problem. In this respect, we consider the standardized innovation:

ek “
´

zk ´ ẑk|k´1

¯

{Szz,k|k´1 (20)

where Szz,k|k´ 1 is a square factor of the innovation covariance matrix such that Pzz,k|k´1 “ Szz,k|k´1ST
zz,k|k´1.

An outliers’ judgment variable can be constructed as:

λk “
´

zk ´ ẑk|k´1

¯

P´1
zz,k|k´1

´

zk ´ ẑk|k´1

¯

“ e2
k (21)

λk is the Mahalanobis distance [24] between the actual measurement zk and the predicted
measurement ẑk|k´ 1 at time index k. From a statistical perspective, the Mahalanobis distance provides
an inconsistency degree between the actual measurement and the predicted measurement. When the
process noise vk´1 and the measurement noise wk are both Gaussian, the predicted measurement will
be statistically close to the actual measurement. Otherwise, when a measurement outlier appears, λk
will become abnormal. It is difficult to verify the real distribution of ek due to nonlinear property of
the measurement equation. Here, ek is approximately considered Gaussian and λk will approximately
follow Chi-square distribution, such that:

λk “ χ2 p1q (22)

where χ2 pmq represents the Chi-square distribution with m degrees of freedom.
Denoting the significance level as α, we obtain:

p pλk ą γαq “ 1´ α (23)

where p p¨q is probabilistic computation operator and γα represents the α-quantile.
When a measurement outlier appears, λk will generally deviate from Chi-square distribution. In

other words, if λk ą γα and 1´ α is chosen as a small value, the measurement can be regarded as an
abnormal measurement which is contaminated by the outlier. Consequently, the outliers’ judgment
threshold γα can be chosen according to the significance level α from Chi-square distribution tables.

When the filter is modified by the equivalent weight, the new judgment variable should be not
exceeded γα, otherwise the robust method will be failure. i.e.:

λk “
´

zk ´ ẑk|k´1

¯

P´1
zz,k|k´1

´

zk ´ ẑk|k´1

¯

ď γα (24)

Substituting Equations (14) and (15) into Equation (24), we have:

p´1
k ě

λkPzz,k|k´1

γα
´ Pzz,k|k´1` Rk (25)
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Therefore, a new equivalent weight function can be described as:

pk “

$

’

’

&

’

’

%

R´1
k , λk ď γα

´

λkPzz,k|k´1
γα

´ Pzz,k|k´1` Rk

¯´1
, λk ą γα (26)

Compared with Equation (19), the outliers’ judgment threshold of Equation (26) is determined
naturally according to confidence level of λk, and improper experiential value can be avoided.
From a computational complexity perspective, iterations and regression procedure are not required,
which implies that the MRCKF shows better than the regression-based robust DSFs in terms of the
computational efficiency. Although the M-estimation is introduced to the CKF based on the DOA
problem, the MRCKF can be extended to other nonlinear filtering system.

4. Feedback Strategy for DOA Tracking

If there are no measurement outliers from the angle sensor (the measurement noise follows the
Gaussian distribution exactly), the performance of the CKF is generally better than that of its robust
versions (such as the MRCKF). This is because the MRCKF do not always minimize the l2 norm in
that case, and the weights of normal measurements may be reduced improper during the filtering
update. What is worse, nonlinear property of the DOA tracking system would make λk deviate from
Chi-square distribution, which further increases the misjudgment rate. Of course, increasing the
number of the measurements in each time index may improve the problem above. Unfortunately,
there is only one measurement in the DOA tracking problem at each time index, which implies that
the DOA filters are more sensitive to the measurement outliers and the misjudgment occurs easily.
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Figure 1. The flow diagram of the FMR-CKF.

Here, we do not consider continuous outliers and propose a feedback strategy to solve the
problem. When the outliers’ judgment variable λk exceeds the threshold at time index k, the filter is
split into two sub-filters: the standard CKF and the MRCKF. Then they are updated according to their
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solution frameworks. At time index k + 1, the outliers’ judgment variables of the sub-filters can be
obtained. If λk`1,MRCKF ă λk`1,CKF, the MRCKF is chosen, otherwise the CKF is chosen. The new
filtering algorithm with the feedback strategy is named the feedback MRCKF (FMR-CKF). The flow
diagram of the FMR-CKF can be summarized in Figure 1.

Smaller λk` 1 means the predicted information which is obtained according to the corresponding
sub-filter at time index k is closer to the actual measurement at time index k + 1. That is, the sub-filter
with a smaller λk`1 performs better at time index k. The better sub-filter can be chosen according to the
judgment variables at the next time index. Meanwhile, the probability of misjudgment can be reduced.

5. Numerical Experiments

The algorithms are compared in this section. System model is described as Equations (1) and (2).
We assume that the measurement interval ∆ = 1 min and the process noise intensity q = 10´10 km2/s3.
To satisfy the target observability requirements, a single observer is assumed to be maneuvering where
the start coordinate is (0,0). From 0 min to 12 min, the observer is in uniform linear motion, where
the speed is 4 knots and the course is 140˝. From 13 min to 17 min, the observer is in uniform turning
motion, where the speed is 4 knots and the turn rate is 30˝. From 18 min to 30 min, the observer is in
uniform linear motion, where the speed is 4 knots and the course is 290˝.

The initialization method is the same as [2,25]. For fair comparison, the same initial condition
are set for different algorithms. The initial range from the target to the angle senor r = 5 km and
the estimated standard deviation σr = 1.5 km. The standard deviation of the angle estimate σz = 1˝;
Similarly, the initial velocity of the target s = 4 knots and the estimated standard deviation σs = 2 knots.
The true target course c =´120˝, and the estimated standard deviation σc = π/

?
12. The initial state and

covariance of the algorithms can be estimated according to [2]. In the nonlinear regression based novel
robust UKF (NRUKF), the scale parameter κ = 0 and the other parameters are initialized according
to [17]. In the MRCKF and FMR-CKF, α = 95% and Υa is 3.841.

The root mean square error in position (RMSEpos) at time index , and the mean squared error in
position (MSEpos) for each Monte Carlo runs are, respectively, defined as:

RMSEpos,k “

g

f

f

e

1
L

L
ÿ

i“1

px̂t
k,i ´ xt

k,iq
2
`pŷt

k,i ´ yt
k,iq

2 (27)

MSEpos,i “
1
n

n
ÿ

k“1

„

´

xt
k ´ x̂t

k|k,i

¯2
`

´

yt
k ´ ŷt

k|k,i

¯2


(28)

where L = 500 is Monte-Carlo times and i “ 1, 2, ¨ ¨ ¨ , L.
Two cases are considered for illustrating the performance of the algorithms.
Case 1: No outliers in angle measurements. The measurement noise follows Gaussian distribution

exactly, and contaminated rate ε “ 0.
Case 2: The dominated distribution is Gaussian. The outliers exist at 20 min, 25 min, 30 min, and

the true values of the outliers are 6σz. A large outlier exists at 35 min, and the true value is 30σz.
The RMSEpos of the various filtering algorithms in Case 1 and Case 2 are described in Figures 2

and 3 respectively.
The EKF and gating rule-based method often fails to yield meaningful results. Hence, we do

not present the results of the EKF and the gating rule-based method. As shown in Figure 2, when
the measurement noise follows Gaussian distribution exactly, the NRUKF and the MRCKF is inferior
to that of the CKF, because the normal measurement errors may be misjudged as the outliers in the
NRUKF and the MRCKF under Gaussian assumption. On the contrary, the FMR-CKF outperforms
the CKF because the FMR-CKF can select the better sub-filter (the CKF or the MRCKF) according
to the feedback strategy in each time index. For instance, when a large measurement error appears
(follows Gaussian distribution), the FMR-CKF selects the MRCKF to reduce the influence of the large
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measurement error, but the CKF neglects it and then the performance is degraded. Hence the FMR-CKF
performs the best in this case.
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As shown in Figure 3, when measurement outliers appear, the results of the CKF become
unreliable due to non-robust property. Among the robust filters, the MRCKF outperforms the
NRUKF because the MRCKF introduces the M-estimation without linearization and approximate
regression procedures, which makes better use of the accuracy of the CKF and the robustness of
the M-estimation. Meanwhile, the outliers’ judgment threshold of the MRCKF is naturally obtained
according to Chi-square distribution, but that of the NRUKF is generally experiential, which may lead
to more misjudgments. Compared with the MRCKF, the FMR-CKF further avoids the misjudgment
based on the feedback strategy and, hence, it performs better than the MRCKF.

The average MSEs in position of the filters are shown in Figure 4a and the corresponding variances
are shown in Figure 4b.

As can be seen in Figure 4, the average MSEspos and the corresponding variances of the
FMR-CKF change smaller in different cases and are obviously lower than those of the other algorithms.
It demonstrates that the FMR-CKF is more numerically stable and consistent than the other algorithms.
The judgment variable of the NRUKF, i.e., the measurement residual, includes both predicted error
and nonlinear error, which leads to unstable performance and, hence, the variances of the NRUKF are
significantly higher than those of the other algorithms in different cases.
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To compare the computational cost, the computational time of the algorithms investigated relative
to that of the CKF in Case 2 are shown [2]. Of course, some errors may exist because coding of
each method may not be equivalently optimized in the simulation, but it can be seen that FMR-CKF
significantly outperforms the NRUKF in terms of the computational time.

Table 1 shows that the NRUKF runs much slower than the other existing algorithms as it requires
iterations and complex operations, such as matrix decomposition and inversion in the regression
procedure. The FMR-CKF introduces computational time in the equivalent weight computation and
the splitting procedure, which shows a major computational advantage over the NRUKF.

Table 1. Relative computation times of the algorithms.

CKF NRUKF MRCKF FMR-CKF

Relative computation times 1 2.41 1.13 1.32

6. Conclusions

We have proposed the FMR-CKF to deal with the DOA tracking problem when measurement
outliers appear from the angle sensor. Compared with the DSFs such as the CKF and UKF, the
FMR-CKF can solve measurement outliers effectively. Compared with the regression-based robust
DSFs, the new filter takes fully advantage of the robustness of the M-estimation and the accuracy
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of the CKF by means of the equivalent weight function and the feedback strategy. Additionally,
the CKF solution framework is retained, which implies that the FMR-CKF is a derivative-free and
computationally-efficient filter. Simulation results show that the proposed algorithm exhibits the best
performance (both in filter accuracy and stability) whether the measurement outliers appear. While the
example was the 2-dimensional DOA problem in this paper, the FMR-CKF has potential applications
in higher dimensional problems or other nonlinear situations.

Acknowledgments: This work was partially supported by Grants No. 51377172 and 51577191 from the National
Natural Science Foundation of China.

Author Contributions: Hao Wu and Shuxin Chen proposed the algorithm. Hao Wu, Shuxin Chen and
Binfeng Yang designed the experiments, performed the experiments and analyzed the data. Hao Wu and
Kun Chen wrote the paper.

Conflicts of Interest: authors declare no conflict of interest.

References

1. Enayet, A.; Razzaque, M.; Hassan, M.; Almogren, A.; Alamri, A. Moving Target Tracking through Distributed
Clustering in Directional Sensor Networks. Sensors 2014, 14, 24381–24407. [CrossRef] [PubMed]

2. Leong, P.H.; Arulampalam, S.; Lanahewa, T.A.; Abhayapala, T.D. A Gaussian-Sum Based Cubature Kalman
Filter for Bearings-Only Tracking. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 1161–1176. [CrossRef]

3. Clark, J.M.C.; Kountouriotis, P.A.; Vinter, R.B. A Gaussian Mixture Filter for Range-Only Tracking. IEEE Trans.
Autom. Control 2011, 56, 602–613. [CrossRef]

4. Li, X.; Sun, H.; Jiang, L.; Shi, Y.; Wu, Y. Modified Particle Filtering Algorithm for Single Acoustic Vector
Sensor DOA Tracking. Sensors 2015, 15, 26198–26211. [CrossRef] [PubMed]

5. Le, Y.; Ming, S.; Ho, K.C. Doppler-Bearing Tracking in the Presence of Observer Location Error. IEEE Trans.
Signal Process. 2008, 56, 4082–4087.

6. Wang, D.; Zhang, L.; Wu, Y. The structured total least squares algorithm research for passive location based
on angle information. Sci. China Ser. F: Inf. Sci. 2009, 52, 1043–1054. [CrossRef]

7. Banjevic, M.; Furrer, B.; Blagojevic, M.; Popovic, R.S. High-speed CMOS magnetic angle sensor based on
miniaturized circular vertical Hall devices. Sens. Actuators A Phys. 2012, 178, 64–75. [CrossRef]

8. Peach, N. Bearings-only tracking using a set of range-parameterised extended Kalman filters. IEE Proc.
Control Theory Appl. 1995, 142, 73–80. [CrossRef]

9. Sangjin, H.; Jinseok, L.; Athalye, A.; Djuric, P.M.; We-Duke, C. Design methodology for domain specific
parameterizable particle filter realizations. IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 2007, 54, 1987–2000.

10. Guo, C.; Shen, J.; Sun, Y.; Ying, N. RB Particle Filter Time Synchronization Algorithm Based on the DPM
Model. Sensors 2015, 15, 22249–22265. [CrossRef] [PubMed]

11. Arasaratnam, I.; Haykin, S. Cubature Kalman Filters. IEEE Trans. Autom. Control 2009, 54, 1254–1269.
[CrossRef]

12. Kulikov, G.Y.; Kulikova, M.V. The Accurate Continuous-Discrete Extended Kalman Filter for Radar Tracking.
IEEE Trans. Signal Process. 2016, 64, 948–958. [CrossRef]

13. Bar-Shalom, Y.; Li, X.R.; Kirubarajan, T. Estimation with Applications to Tracking and Navigation; John Wiley
& Sons, Inc.: New York, NY, USA, 2001.

14. Huber, P.J.; Ronchetti, E.M. Robust Statistics, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009.
15. Karlgaard, C.D.; Schaub, H. Huber-Based Divided Difference Filtering. J. Guid. Control Dyn. 2007, 30,

885–891. [CrossRef]
16. Wang, X.; Cui, N.; Guo, J. Huber-based unscented filtering and its application to vision-based relative

navigation. IET Radar Sonar Navig. 2010, 4, 134–141. [CrossRef]
17. Chang, L.; Hu, B.; Chang, G.; Li, A. Huber-based novel robust unscented Kalman filter. IET Sci. Meas. Technol.

2012, 6, 502–509. [CrossRef]
18. Chang, L.; Hu, B.; Chang, G.; Li, A. Robust derivative-free Kalman filter based on Huber’s M-estimation

methodology. J. Process Control 2013, 23, 1555–1561. [CrossRef]
19. Karlgaard, C.D. Nonlinear Regression Huber-Kalman Filtering and Fixed-Interval Smoothing. J. Guid.

Control Dyn. 2015, 38, 322–330. [CrossRef]

http://dx.doi.org/10.3390/s141224381
http://www.ncbi.nlm.nih.gov/pubmed/25529205
http://dx.doi.org/10.1109/TAES.2013.6494405
http://dx.doi.org/10.1109/TAC.2010.2072590
http://dx.doi.org/10.3390/s151026198
http://www.ncbi.nlm.nih.gov/pubmed/26501280
http://dx.doi.org/10.1007/s11432-009-0114-9
http://dx.doi.org/10.1016/j.sna.2012.02.019
http://dx.doi.org/10.1049/ip-cta:19951614
http://dx.doi.org/10.3390/s150922249
http://www.ncbi.nlm.nih.gov/pubmed/26404291
http://dx.doi.org/10.1109/TAC.2009.2019800
http://dx.doi.org/10.1109/TSP.2015.2493985
http://dx.doi.org/10.2514/1.27968
http://dx.doi.org/10.1049/iet-rsn.2009.0170
http://dx.doi.org/10.1049/iet-smt.2011.0169
http://dx.doi.org/10.1016/j.jprocont.2013.05.004
http://dx.doi.org/10.2514/1.G000799


Sensors 2016, 16, 629 11 of 11

20. Pengfei, L.; Jingxiong, H.; Lixin, Y.; Yi, W.; Zhijun, L.; Dongwei, L. Directional Fuzzy Data Association Filter.
J. Softw. 2012, 7, 2286–2293.

21. Macagnano, D.; de Abreu, G.T.F. Gating for Multitarget Tracking with the Gaussian Mixture PHD and CPHD
filters. In Proceedings of the 2011 8th Workshop on Positioning, Navigation and Communication (WPNC),
Dresden, Germany, 7–8 April 2011; pp. 149–154.

22. Ristic, B.; Arulampalam, S.; Gordon, N. Beyond the Kalman Filter-Particle Filters for Tracking Applications; Artech
House: Norwood, MA, USA, 2004.

23. Yang, Y.; He, H.; Xu, G. Adaptively robust filtering for kinematic geodetic positioning. J. Geod. 2001, 75,
109–116. [CrossRef]

24. Torra, V.; Narukawa, Y. On a comparison between Mahalanobis distance and Choquet integral:
The Choquet-Mahalanobis operator. Inf. Sci. 2012, 190, 56–63. [CrossRef]

25. Leong, P.H.; Arulampalam, S.; Lamahewa, T.A.; Abhayapala, T.D. Gaussian-Sum Cubature Kalman Filter
with Improved Robustness for Bearings-only Tracking. IEEE Signal Process Lett. 2014, 21, 513–517. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s001900000157
http://dx.doi.org/10.1016/j.ins.2011.12.005
http://dx.doi.org/10.1109/LSP.2014.2307075
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	
	
	
	
	
	

