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Abstract: If a Kalman Filter (KF) is applied to Global Positioning System (GPS) baseband signal
preprocessing, the estimates of signal phase and frequency can have low variance, even in highly
dynamic situations. This paper presents a novel preprocessing scheme based on a dual-filter structure.
Compared with the traditional model utilizing a single KF, this structure avoids carrier tracking
being subjected to code tracking errors. Meanwhile, as the loop filters are completely removed, state
feedback values are adopted to generate local carrier and code. Although local carrier frequency has a
wide fluctuation, the accuracy of Doppler shift estimation is improved. In the ultra-tight GPS/Inertial
Navigation System (INS) integration, the carrier frequency derived from the external navigation
information is not viewed as the local carrier frequency directly. That facilitates retaining the design
principle of state feedback. However, under harsh conditions, the GPS outputs may still bear large
errors which can destroy the estimation of INS errors. Thus, an innovative integrated navigation filter
is constructed by modeling the non-negligible errors in the estimated Doppler shifts, to ensure INS
is properly calibrated. Finally, field test and semi-physical simulation based on telemetered missile
trajectory validate the effectiveness of methods proposed in this paper.

Keywords: baseband signal preprocessing; dual-filter; state feedback; ultra-tight GPS/INS
integration; navigation filter with expanded dimension

1. Introduction

The navigation errors of GPS are not divergent with time, but a receiver usually performs less
well in highly dynamic situations because there are external signals to be dealt with. On the other
hand, though INS has the problem of error accumulation, it realizes autonomous navigation and is
robust to vehicle dynamics. Since GPS and INS have complementary advantages, their integration can
overcome each other's defects and provide a better navigation performance [1]. Unlike loose or tight
GPS/INS integration, in which GPS is just an aid to INS, the ultra-tight GPS/INS integration uses INS
to couple with GPS tracking channels. In this sense, the ultra-tight form is especially applicable to high
dynamic situations [2], and has gradually become the mainstream approach for designing GPS/INS
integrated systems.

The ultra-tight GPS/INS integration originates from vector tracking [3]. Its core concept is
using the known ephemeris and the corrected inertial navigation information to calculate tracking
parameters. Namely, satellite signal locking is assisted by the integrated navigation filter, and GPS
tracking channels no longer remain independent of each other. According to the structural design of
the filter models, the ultra-tight GPS/INS integration methods can be roughly divided into two types.
In one case, a single high-dimensional filter is used to estimate the GPS tracking parameters of each
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channel and navigation parameters together [4,5], and in the other case, each channel has a baseband
signal pre-filter which estimates the tracking parameters for itself, and the integrated navigation filter
just needs to estimate the navigation parameters. The second category is actually a form of federated
filtering, and usually has higher computational efficiency [6–8].

The baseband signal preprocessing realizes optimal estimation of signal characteristic quantities
by KF. Thus, under the application background of the ultra-tight GPS/INS integration, it can restrain
phase noise more effectively than the loop filter of the classical GPS tracking channel [9,10]. For each
channel, the baseband signal preprocessing is generally completed by a single pre-filter [11]. Both
carrier tracking errors and code tracking errors are included in the state vector, namely, these two
kinds of tracking errors are tightly coupled through the state and observation equations. However,
the precision of carrier and code loops do not have the same order of magnitude. The code loop has
great tolerance for tracking errors due to the long wavelength of CA code, while the carrier loop is
much more sensitive [12,13]. As preprocessing continues, the code tracking errors would be delivered
to the carrier loop and cause the degradation of carrier tracking precision or even loss of lock. In
addition, even if the baseband signal preprocessing is applied in a GPS receiver, the Doppler shifts
estimated under highly dynamic conditions may still contain significant errors. In the ultra-tight
GPS/INS integration, these incorrect GPS outputs eventually lead the estimation of INS errors to be
contaminated [14]. That generally means the whole system suffers performance degradation, or even
completely crashes.

To solve these problems, this paper makes creative contributions in both the tracking and
navigation domain. Two independent pre-filters with state feedback are constructed to replace the
classical loop filters. The advantages of decoupling between carrier tracking and code tracking are
analyzed in detail. Since the single-filter and dual-filter preprocessing models are constructed based on
the same principle, their comparison can be free from the influence of other factors. In fact, compared
with a popular error-state pre-filter, even the single-filter model has better tracking performance due
to the benefits of state feedback. In the ultra-tight GPS/INS integration, local carrier generation is
still controlled by state feedback, and the carrier frequency derived from the external navigation
information is just used to correct the state feedback value. Meanwhile, a specific integrated navigation
filter is presented by taking the pseudorange rate estimation error in each channel as the additional
state variable. This scheme ensures the estimation of original state variables, especially the INS errors,
is immune to these GPS tracking errors, and hence enables the integrated system to maintain high
accuracy even when GPS receiver operates under harsh conditions.

The rest of this paper is organized as follows: first, a baseband signal preprocessing model
is designed based on a dual-filter structure, while the state feedback control values of carrier and
code loops are derived in detail. Then, the specific integrated navigation filter is proposed, and a
concrete approach to aid the tracking channel is elaborated. Furthermore, the results of field tests and
semi-physical simulation are given and discussed. Finally, the work in this paper is summarized.

2. Construction of Baseband Signal Preprocessing Model Based on Dual-filter Structure

The classical GPS tracking channel, which typically adopts second-order or third-order phase
control technology, has fixed loop bandwidth. Although a narrower bandwidth is helpful to reduce the
thermal noise, in highly dynamic situations, the tracking channel may not retain useful high frequency
information and suffers from significant dynamic stress error. These usually lead to signal distortion
and tracking loss. Thus, a trade-off between noise resistance and response to dynamics is required
while setting the loop bandwidth. In view of the abovementioned fact, the classical control approach
cannot cope well with high dynamics, and hence KF, which belongs to the modern control category, is
taken into account. KF is a kind of optimal estimator, which allows precise modeling of the tracking
loop. With its help, baseband signal preprocessing can achieve accurate control of the local signal
generation, even in highly dynamic situations [15].



Sensors 2016, 16, 627 3 of 22

The baseband signal preprocessing model constructed in this paper contains two pre-filters. In
this model, the estimation of carrier and code tracking errors are relatively separate, the same as
the manner adopted by classical GPS receiver. Figure 1 just takes carrier loop for example to show
the details of this model. It is observed that the loop filter in the classical tracking channel has been
replaced by a pre-filter equipped with state feedback. Obviously, designing a suitable KF is the key to
accurate carrier tracking.
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Figure 1. The carrier loop using pre-filter.
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k is the carrier phase error (unit: rad), f carr
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rate of the input carrier frequency. These state variables have the following recurrence relations:
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where Tcoh is the coherent integration time, ucarr
k´1 is the local carrier frequency at epoch k´ 1.

The output of carrier phase discriminator at epoch k, notated as ∆θcarr
k,k´1, is the average carrier

phase error over an integration interval, due to the presence of Doppler shift. Thus, this output can be
expanded as:
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Unfortunately, if Equation (2) is directly used to generate the observation model for pre-filter 1,
there will be a time lag between the state vector and observation [16]. Hence, by moving ∆θcarr

k´1, f carr
k´1

and
.
f carr

k´1 to the left side of the equal sign, Equation (1) is rewritten as follows (more details are available
in Appendix A):
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Substitution of Equation (3) into Equation (2) results in:

∆θcarr
k,k´1 “ ∆θcarr

k ´ π f carr
k Tcoh `

1
3

π
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k T2
coh ` πucarr

k´1Tcoh (4)
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Then, in terms of Equations (1) and (4), the state equation and observation equation of pre-filter 1
can be expressed as:

#

Xcarr
k “ Φcarr

k,k´1Xcarr
k´1 `Mcarr

k´1 `Wcarr
k´1

Zcarr
k “ Hcarr

k Xcarr
k ` Ncarr

k `Vcarr
k

(5)

where:

Φcarr
k,k´1 “

»

—

–

1 2πTcoh πT2
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0 1 Tcoh

0 0 1

fi

ffi

fl

(6)
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”
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ıT
(7)
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”
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1
3 πT2
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ı

(8)

Ncarr
k “ πTcohucarr

k´1 (9)

Zcarr
k is the observation, and can be directly obtained from carrier phase discriminator, namely:

Zcarr
k “ ∆θcarr

k,k´1 “ arctan
Qp

Ip
(10)

Wcarr
k´1, Vcarr

k represent the system noise and observation noise, respectively. Assume these two
noises have the following characteristics:
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where δkj is the Kronecker delta. Then, the corresponding iterative algorithm for pre-filter 1 is
given below:

X̂carr
k,k´1 “ Φcarr

k,k´1X̂carr
k´1 ` M̂carr

k´1 (12)

Pcarr
k,k´1 “ Φcarr

k,k´1Pcarr
k´1Φcarr,T

k,k´1 `Qcarr
k´1 (13)

Kcarr
k “ Pcarr

k,k´1Hcarr,T
k

´

Hcarr
k Pcarr

k,k´1Hcarr,T
k ` Rcarr

k

¯´1
(14)
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`
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k Hcarr

k
˘
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k

´
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k X̂carr

k,k´1

¯

(16)

The carrier loop is in essence a Phase Lock Loop (PLL), and aims to achieve the elimination
of the carrier phase error. Since ∆θcarr

k`1 “ ∆θcarr
k ` 2π

`

f carr
k ´ ucarr

k
˘

Tcoh ` π
.
f carr

k T2
coh, by assuming

∆θcarr
k`1 “ 0, the feedback at epoch k can be obtained as:

ucarr
k “

∆θ̂carr
k

2πTcoh
` f̂ carr

k `
1
2

.̂
f carr

k Tcoh (17)

It can be seen that ucarr
k is not exactly equivalent to the estimated input carrier frequency f̂ carr

k .
And further discussions about ucarr

k and f̂ carr
k can be found in Sections 3 and 4.1.
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Similarly, the state vector of pre-filter 2 is set to Xcode
k “

”

∆θcode
k f code

k

.
f code

k

ıT
, where ∆θcode

k is the

code phase error (unit: chip), f code
k is the input code frequency, and

.
f code

k is the changing rate of the
input code frequency. Meanwhile, in consideration of the following formula:

fd “ f carr ´ f IF “
fL1

fCA
p f code ´ fCAq (18)

where fd is the Doppler shift, f IF is the Intermediate Frequency (IF), fL1 (1575.42 MHz) is the L1 carrier
frequency, fCA (1.023 MHz) is the nominal code frequency, the state equation and observation equation
of pre-filter 2 can be written as:

#
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k,k´1Xcode
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Zcode
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Wcode
k´1 , Vcode

k are respectively the system and observation noises of pre-filter 2, while the
observation ∆θcode

k,k´1 obtained from code phase discriminator can be denoted by:

∆θcode
k,k´1 “

1
2
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L `Q2

L
b

I2
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(25)

ucode
k´1 is the local code frequency at epoch k´ 1. Moreover, at epoch k, the local code frequency,

namely the feedback for code tracking, can be expressed as:

ucode
k “

∆θ̂code
k

Tcoh
` f̂ code

k `
1
2

.̂
f code

k Tcoh (26)

Since code estimation is processed after carrier stripping, its errors have no effect on carrier
tracking. At the same time, once these two pre-filters are skillfully tuned, they can accurately track
GPS signals in high dynamic situations. Taking pre-filter 1 for example, its equivalent bandwidth can
be calculated from the elements of the gain matrix Kcarr

k and is proportional to Qcarr
k p1, 1q, Qcarr

k p2, 2q
and Qcarr

k p3, 3q [17]. Herein, Qcarr
k p1, 1q, Qcarr

k p2, 2q and Qcarr
k p3, 3q are the diagonal elements of Qcarr

k .
Qcarr p1, 1q and Qcarr p2, 2q (the epoch k is omitted to reveal these two values are constant) can be
obtained from the receiver clock model [11], while Qcarr

k p3, 3q is related to the vehicle dynamics. If
Qcarr

k p3, 3q is estimated in real-time by any efficient adaptive algorithm, the loop bandwidth will vary
in a time-varying optimal manner. This paper uses another more practical method: Qcarr p3, 3q is
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set to a large constant value based on the general knowledge of vehicle dynamics. Since Qcarr p1, 1q
and Qcarr p2, 2q are unchanged, the low variances of ∆θ̂carr

k and f̂ carr
k can be maintained [3]. In other

words, although the variance of
.̂
f carr increases, phase and frequency estimations which normally

deserve concern can hardly be affected. Additionally, Rcarr is set according to the knowledge of
the phase noise variance, while Pcarr

0 is usually larger than Qcarr to leave space for state corrections.
In this case, pre-filter 1 gradually settles down to a wide bandwidth, and hence is robust to high
dynamics. Benefiting from the above mentioned advantages, this baseband signal preprocessing
model can be appropriate for highly dynamic situations and make GPS have better tracking and
navigation performance.

3. Realization of the Specific Ultra-tight GPS/INS Integration

The carrier tracking loop employing pre-filter 1 is in essence equivalent to a third-order loop.
However, a N-th order phase locked loop cannot correctly track the signal whose phase varies
by time to the Nth or higher-order power (the estimates of signal parameters can still have low
variance, but not low bias) [18]. That indicates, even improved by baseband signal processing, an
independent GPS receiver is vulnerable to extreme high dynamics, and may give inaccurate tracking
and navigation results.

On the contrary, INS is robust to vehicle dynamics. Based on this fact, INS can be used to assist
GPS, which usually means baseband signal processing is connected closely with the estimation of
navigation parameters. In the ultra-tight GPS/INS integration shown in Figure 2, the integrated
navigation filter is responsible for obtaining corrected inertial navigation information, and delivering
them back to GPS tracking channels. Because the feedback from the corrected inertial navigation
information has the advantage of high accuracy in a short time, GPS tracking channel can perform better
under highly dynamic conditions. The detailed work procedure of this ultra-tight GPS/INS integration
is as follows: in each GPS tracking channel, in-phase and quadrature signals are processed by phase
discriminators and pre-filters to estimate tracking parameters, such as carrier frequency and code
phase; the observations of the integrated navigation filter can be converted from tracking parameters
as well as deduced from inertial navigation information and satellite ephemeris, and then the corrected
inertial navigation information can be obtained; finally, auxiliary tracking parameters, carrier frequency,
for example, can be deduced from these external navigation information and satellite ephemeris, and
then be applied to assist signal tracking. Through the above analysis, it can be seen that identifying
conversion relations between tracking parameters and navigation parameters as well as finding a
rational way to assist tracking are the keys to designing a good ultra-tight GPS/INS integration.
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In the ideal situation, pseudorange rate and variation of pseudorange output by GPS tracking
channel can be respectively derived from:

.
ρG “ ´ fd

c
fL1

(27)

∆ρG “ ∆θcode c
fCA

(28)

where c is the speed of light. But in fact, under highly dynamic conditions, the carrier phase of satellite
signal may be proportional to time to the power of N or higher value, and hence the estimated carrier
frequency may contain a large error δ f carr. Since the incorrect GPS outputs could destroy the estimation
of INS errors, it is necessary to analyze this error in detail. Therefore Equation (27) is rewritten as:

.
ρG “ ´

´

f̂ carr ´ f IF

¯

c
fL1

“ ´p fd ` δ f carrq c
fL1

(29)

On the other hand, Equation (28) can remain unchanged due to the fact that the code loop
dynamic stress error is usually small. ρG, which represents the current pseudorange output by the GPS
tracking channel, can be calculated from ∆ρG and the previous pseudorange. Then, in Earth Centered
Earth Fixed (ECEF) coordinate system, the observation equation of integrated navigation filter can be
expressed as:

#

δρ “ ρI ´ ρG “ e1δx` e2δy` e3δz´ δtu ` vρ

δ
.
ρ “

.
ρI ´

.
ρG “ e1δ

.
x` e2δ

.
y` e3δ

.
z´ δtru ` δvG ` v .

ρ
(30)

where ρI ,
.
ρI respectively represent the pseudorange and pseudorange rate deduced from inertial

navigation information and satellite ephemeris, δx, δy, δz, δ
.
x, δ

.
y, δ

.
z are vehicle position errors and

velocity errors in ECEF coordinate system, e1, e2, e3 are unit vectors in the x, y, and z direction, δtu,
δtru represent clock bias and drift respectively, δvG is the error of pseudorange rate output by the GPS
tracking channel and equals to δ f carrc{ fL1, vρ, v .

ρ are observation noises. It is noted that Equation (30)
should usually be transformed into the geodetic coordinate system to facilitate INS error correction.
Then, taking all the available tracking channels into consideration, the observation matrix rH can be
obtained naturally, where the superscript "„" denotes the navigation filter designed in this paper.

If there are m satellites being locked by tracking channels, the state vector of the integrated
navigation filter can be expressed as:

rX “
”

X δvG,1 δvG,2 ¨ ¨ ¨ δvG,m

ıT
(31)

where X is the transpose of the state vector adopted by a traditional integrated navigation filter, namely

X “
”

ϕE ϕN ϕU δvE δvN δvU δL δλ δh εbx εby εbz ∇bx ∇by ∇bz δtu δtru

ı

(32)

and the first 15 variables of X represent three INS error states each in attitude, velocity, position, gyro
bias, accelerometer bias. Accordingly, the state transition matrix Φ and the noise matrix G of the
traditional integrated navigation filter can be expanded to:

rΦ “

«

Φ17ˆ17 017ˆm
0mˆ17 Imˆm

ff

(33)

rG “

«

G17ˆ8 017ˆm
0mˆ8 Imˆm

ff

(34)
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In addition, rH can also be written as:

rH “

«

H2mˆ17

«

0mˆm

Imˆm

ff ff

(35)

where H is the traditional observation matrix. The specific information of Φ, G and H can be easily
found in many references [19–22] and will not be discussed in detail here.

According to the conversion relations indicated by Equations (27) and (28), the corrected inertial
navigation information can in turn feed back into GPS tracking channels. The corresponding carrier
frequency estimate is usually accurate enough, and can be used to directly control local carrier
generation. However, in the new baseband signal preprocessing model, it is hoped that the phase
error can return to 0 in the shortest amount of time, so the external information assists in local carrier
generation through correcting the state feedback value, and the input carrier frequency estimated
output by pre-filter 1 can be expected to remain relatively stable and accurate. In other words, instead
of being given by Equation (17), the local carrier frequency ucarr

k is calculated from:

ucarr
k “

∆θ̂carr
k

2πTcoh
`

"

´
fL1

c

”

e1 pvs
x ´ vxq ` e2

´

vs
y ´ vy

¯

` e3 pvs
z ´ vzq

ı

` f IF

*
ˇ

ˇ

ˇ

ˇ

k
`

1
2

.̂
f carr

k Tcoh (36)

where vx, vy, vz are the corrected vehicle velocity components in ECEF coordinate system, vs
x, vs

y, vs
z are

the satellite velocity components. Meanwhile, because vehicle dynamics have less effect on the code
loop, generation of local code is still based upon the state feedback value ucode given by Equation (26),
namely, the structure of the code loop is unchanged.

4. Results and Discussion

This paper carried out static field tests and semi-physical simulations based on a telemetered
missile trajectory to verify the validity of the proposed methods. In the static field test, the integration
of GPS and INS is not involved, and only GPS is utilized to compare the performance of the baseband
signal preprocessing models based on signal-filter and dual-filter structures. In the simulation, the
navigation results of the ultra-tight GPS/INS integration are analyzed, and special attention is given
to the further improvement of carrier frequency tracking accuracy.

4.1. Static Field Test

Although the baseband signal preprocessing model and the ultra-tight GPS/INS integration
can both restrain noise better, the field test is carried out in an open-sky area (N : 39

˝
57136.16” ,

E : 116
˝
1911.58” , Hgt : 32.9m) and does not involve the weak signal problem. After collecting signals

with a radio frequency front-end, seven satellites are chosen according to their high Carrier-to-Noise
Ratio pC{N0q listed in Table 1. The sky plot of these satellites is shown in Figure 3, and the elevation of
each satellite is always greater than 10

˝
during the test.

Table 1. C{N0 of selected satellites.

Satellite C{N0(dB¨Hz) Satellite C{N0(dB¨Hz)

PRN22 48.881 PRN14 45.612
PRN31 48.025 PRN32 45.693
PRN25 45.987 PRN12 45.202
PRN18 48.086
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proposes a 59.3 percent reduction in Doppler shift tracking error. Staying with the PRN25 example, 

Figure 5 shows the difference between the code phase tracking errors obtained by these two 
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Since weak signals are beyond the scope of this contribution, there is no need to employ INS
to aid GPS tracking in static field tests. Hence this part just compares the performance of GPS
receivers equipped with single pre-filter (pre-filter-S) and double pre-filters (pre-filter-D). First of all,
in the tracking domain, the reference Doppler shifts can be provided by cubic spline fit interpolation.
Then, taking PRN25 for example, Figure 4 shows the difference between Doppler shift tracking
errors obtained by these two aforesaid methods. According to the statistical analysis, the Root Mean
Square (RMS) value of the Doppler shift tracking errors corresponding to pre-filter-S is 0.487 Hz. For
pre-filter-D, this value is 0.198 Hz. Obviously, pre-filter-S has a bad Doppler shift estimation outcome
due to the influence of code phase error, while pre-filter-D achieves a significantly higher degree of
precision. The decoupling between carrier tracking and code tracking proposes a 59.3 percent reduction
in Doppler shift tracking error. Staying with the PRN25 example, Figure 5 shows the difference between
the code phase tracking errors obtained by these two methods. It is observed that the new model
proposed in this paper has slightly better performance. Specifically, the RMS values of code phase
tracking errors corresponding to pre-filter-S and pre-filter-D are respectively 1.55 ˆ10´ 2 chip and
1.43 ˆ10´2 chip. The decoupling reduces the code phase tracking error by 7.7 percent.
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Figure 5. Code phase tracking error for PRN25 in field test.

To analyze the impact of tracking parameters on position and velocity detection, receiver
implements navigation through Least Squares (LS). The position estimation errors in the ECEF
coordinate system are shown in Figure 6, while their corresponding RMS values are listed in Table 2. It
can be seen that pre-filter-D makes positioning more precise. Then, Figure 7 illustrates the velocity
estimation errors in ECEF frame, and Table 3 lists their RMS values. Obviously, there are multiple
glitch impulses in the velocity estimation result output by the receiver employing pre-filter-S, which is
quite similar to the situation in Doppler shift tracking. Sometimes the velocity errors in the y and z
direction are even close to 0.3 m/s. On the contrary, the other receiver achieves comparatively stable
and accurate outcomes. The absolute maximum values of the velocity errors are smaller than 0.1, 0.13
and 0.12 m/s, respectively.
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Table 2. RMS of position estimation errors.

Method
RMS of Position Error (m)

X Y Z

Pre-filter-S 0.359 0.585 0.519
Pre-filter-D 0.171 0.367 0.315
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Table 3. RMS of velocity estimation errors.

Method
RMS of Velocity Error (m/s)

X Y Z

Pre-filter-S 0.044 0.085 0.072
Pre-filter-D 0.026 0.036 0.036

It can be drawn from the analysis above that, using the new preprocessing model based on
dual-filter makes GPS receiver behave better in the static field tests. Furthermore, it is worth mentioning
that the frequency difference between input and local carrier is shown in Figure 8. Although the
GPS tracking channel generates a local carrier with a high fluctuation from the input carrier, it can be
interpreted as resulting from the design principle that ∆θcarr

k`1 must return to 0 in the shortest amount
of time. The analysis of Figure 4 indicates the precision of Doppler shift tracking is not reduced, that is,
pre-filter 1 is insensitive to the wide fluctuation of local carrier frequency.
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4.2. Semi-Physical Simulation Based on Telemetered Missile Trajectory

Highly dynamic conditions, which are needed for validating the effectiveness of the ultra-tight
GPS/INS integration, are extremely difficult to achieve in practice. To simulate this condition, in
this paper, a missile trajectory lasting 180.23 s is derived from Fiber Optic Gyroscope (FOG) and
accelerometer data, which are telemetered during a missile test, and is treated as the reference trajectory.
The position of the missile relative to the launch site in geodetic coordinate system, and the velocity of
the missile in ECEF coordinate system are shown in Figure 9. Figure 10 shows the (strapdown) INS
used in the missile test. The statistical characteristics of the FOG and accelerometer are listed in Table 4.
If the same errors in turn are added to the original FOG and accelerometer data, a set of new data can
be generated. The trajectory corresponding to these new inertial measurements can be used as the INS
navigation result, which needs to be calibrated by the ultra-tight GPS/INS integration. In addition,
based on the reference trajectory as well as the satellite configuration at the missile launch site shown
in Figure 11, the IF signal can be simulated.
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Table 4. Gyro and accelerometer specifications.

Gyros Accelerometers

In-Run Bias Error 0.5˝{h 2 ˆ10´4 g
Noise (1σ, smoothing window: 10 ms) 15˝{h 2 ˆ10´2 g
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Figure 12 provides a close look at the absolute acceleration of the missile following the reference
trajectory. It is observed that this value does not remain unchanged during the missile ascent phase.
Indeed, this value has abrupt changes at about 4 s and 9 s. That usually means that even baseband
signal preprocessing cannot ensure the carrier frequency estimation accuracy. Taking PRN5 as example,
the Doppler shift tracking error obtained from the independent GPS receiver equipped with pre-filter-D
is shown in Figure 13. Obviously, the rapid variation of acceleration introduces a significant error
into the estimated Doppler shift after 4 s, and the sudden reversal of jerk at 9 s causes the sign of this
error to change. As a comparison, the same dynamic simulation is also performed with the ultra-tight
GPS/INS integration. The local carrier generation can be directly controlled by the frequency derived
from the external navigation information (GPS/INS-f), but even so, the carrier tracking loop is still
equivalent to a third-order phase locked loop. Hence, in the integrated system, the Doppler shift
tracking error follows the same trend as the absolute acceleration. However, the absolute maximum
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value of this error drops to 5 Hz from 15 Hz, and the whole tracking process goes more smoothly.
According to Equation (36), the external navigation information can also be used to correct the state
feedback value. In this case, local carrier generation is controlled by state feedback (GPS/INS-u), and
the absolute maximum value of the Doppler shift estimation error is 3 Hz. The following discussions
focus on GPS/INS-u. It can be seen from Equation (29) that δvG is proportional to the estimation
error of input carrier frequency, so Figure 13 also shows that the estimation of δvG,1 (PRN5 is locked
by channel #1) is accurate. In this sense, the proposed navigation filter can ensure INS is properly
calibrated. If the traditional 17-dimensional filter is applied, in fact, the significant Doppler shift
tracking error caused by missile ascent will lead the navigation results to gradually deviate from the
reference trajectory until the whole integrated system cannot work.
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Figure 13. Doppler shift tracking error for PRN5 and the estimation of δvG,1.

Since there is no loss of lock in dynamic simulation, the independent GPS receiver equipped with
the new preprocessing model can implement navigation. However, in navigation domain, if KF is
applied, the large error contained in the estimated Doppler shift may lead to inaccurate positioning
results. Hence the independent GPS receiver still uses LS to obtain navigation results. Figures 14
and 15 respectively show its position and velocity estimation errors in ECEF coordinate system.
And Figures 16 and 17 show the INS navigation errors in the same coordinate system. Meanwhile,
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navigation errors of the ultra-tight GPS/INS integration, namely the difference between the corrected
inertial navigation information and reference values are shown in Figures 18 and 19. Obviously, the
velocity components estimated by the independent GPS receiver have large errors, which are on the
order of 3 m/s, during the missile ascent phase. This is consistent with the carrier tracking result. For
the case of INS, there is no sudden change in navigation errors. That is because INS is robust to vehicle
dynamics. However, INS has the problem of error accumulation. At 180 s, the position errors are 76.3,
´21.1 and ´60.4 m, while the velocity errors are 0.6, 0.2 and ´0.5 m/s. On the other hand, employing
the navigation filter with expanded dimension, the ultra-tight GPS/INS integration can provide more
accurate navigation results. The absolute maximum values of position errors and velocity errors are
smaller than 0.5 m and 0.1 m/s, respectively.
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As mentioned before, the traditional navigation filter cannot maintain the estimation accuracy
of INS errors when the GPS receiver operates under harsh conditions. Once the incorrect navigation
information is utilized to generate local carrier frequency, the Doppler shift tracking error will further
increase, so it can be concluded that the proposed navigation filter elegantly avoids this vicious circle.
Here, a tight GPS/INS integration based on the traditional navigation filter is realized to show the
harmful effect of carrier tracking errors in detail. The corresponding navigation errors are shown
in Figures 20 and 21. It can be observed that the tight integration gradually achieves acceptable
navigation accuracy as time goes on, but during the missile ascent phase, the velocity errors of this
integration are on the order of 2 m/s, and are much larger than those of INS.
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5. Conclusions

This paper proposes a baseband signal preprocessing model, which has two pre-filters and
uses state feedback values to control the generation of local carrier and code. Compared with
the conventional approach based on a single-filter structure, this model limits the impact of code
phase error on carrier tracking, and hence enables the receiver to achieve better navigation precision.
Furthermore, this model can ensure the stationarity of the estimation of input carrier frequency, even in
the case of local carrier frequencies with wide fluctuation. In fact, compared with a popular error-state
pre-filter, even pre-filter-S proposed in this paper performs better in the tracking domain due to the
benefits of state feedback.

To further promote the tracking and navigation performance, a specific ultra-tight GPS/INS
integration is designed on the basis of the new preprocessing model. Since the pseudorange rate
estimation error in each channel has been treated as the additional state variable, the proposed
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navigation filter ensures the estimation of INS errors will not be contaminated. Moreover, in this
integration, although the corrected inertial navigation information is used to estimate the carrier
frequency, the tracking channel still aims to make the phase error return to 0 in the shortest amount of
time. The results of the semi-physical simulation based on a telemetered missile trajectory indicate
that navigation solutions with higher accuracy can be achieved. Meanwhile, because tracking is
assisted by external navigation information, the error contained in the estimated Doppler shift can be
reduced substantially.
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Appendix A

First, the items in Equation (1) are numbered as follows:

∆θcarr
k “ ∆θcarr

k´1 ` 2π f carr
k´1Tcoh ` π

.
f carr

k´1T2
coh ´ 2πucarr

k´1Tcoh (A1)

f carr
k “ f carr

k´1 `
.
f carr

k´1Tcoh (A2)
.
f carr

k “
.
f carr

k´1 (A3)

Obviously, Equation (A3) can be rewritten as:

.
f carr

k´1 “
.
f carr

k (A4)

Substitution of Equation (A4) into Equation (A2) results in:

f carr
k “ f carr

k´1 `
.
f carr

k Tcoh

then:
f carr
k´1 “ f carr

k ´
.
f carr

k Tcoh (A5)

and substitution of Equations (A4) and (A5) into Equation (A1) results in:

∆θcarr
k “ ∆θcarr

k´1 ` 2π
´

f carr
k ´

.
f carr

k Tcoh

¯

Tcoh ` π
.
f carr

k T2
coh ´ 2πucarr

k´1Tcoh

“ ∆θcarr
k´1 ` 2π f carr

k Tcoh ´ π
.
f carr

k T2
coh ´ 2πucarr

k´1Tcoh

then:
∆θcarr

k´1 “ ∆θcarr
k ´ 2π f carr

k Tcoh ` π
.
f carr

k T2
coh ` 2πucarr

k´1Tcoh (A6)

Finally, Equation (3) can be obtained by combining Equations (A4)–(A6) together.

Appendix B

The filter, whose state vector is
”

∆θcarr
k ∆ f carr

k ∆
.
f carr

k ∆θcode
k

ıT
, is a popular baseband signal

preprocessing model. Herein, ∆ f carr
k “ f carr

k ´ ucarr
k , ∆

.
f carr

k “
.
f carr

k ´ 0. To focus on analyzing
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the benefits of decoupling between carrier tracking and code tracking, this filer should be further
improved. First, consider the equations derived from Equation (18):

f code “ β f carr ` β p fL1 ´ f IFq (B1)

.
f code “ β

.
f carr (B1)

where β “
fCA
fL1

. The new state variables ∆θcarr
k , f carr

k ,
.
f carr

k and ∆θcode
k have the following

recurrence relations:
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

∆θcarr
k “ ∆θcarr

k´1 ` 2π f carr
k´1Tcoh ` π

.
f carr

k´1T2
coh ´ 2πucarr

k´1Tcoh

f carr
k “ f carr

k´1 `
.
f carr

k´1Tcoh
.
f carr

k “
.
f carr

k´1

∆θcode
k “ ∆θcode

k´1 ` β f carr
k´1Tcoh `

1
2 β

.
f carr

k´1T2
coh ´ ucode

k´1Tcoh ` β p fL1 ´ f IFq Tcoh

(B3)

The relation between the observation ∆θcarr
k,k´1 and state variables can still be represented by

Equation (4), while ∆θcode
k,k´1 is written as:

∆θcode
k,k´1 “ ∆θcode

k ´
1
2

β f carr
k Tcoh `

1
6

β
.
f carr

k T2
coh `

1
2

ucode
k´1Tcoh ´

1
2

β p fL1 ´ f IFq Tcoh (B4)

Then, the state equation and observation equation of pre-filter-S can be expressed as:

#

Xcaco
k “ Φcaco

k,k´1Xcaco
k´1 `Mcaco

k´1 `Wcaco
k´1

Zcaco
k “ Hcaco

k Xcaco
k ` Ncaco

k `Vcaco
k

(B5)

where:

Φcaco
k,k´1 “

»

—

—

—

—

–

1 2πTcoh πT2
coh 0

0 1 Tcoh 0

0 0 1 0

0 βTcoh
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fi
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fl

(B6)

Mcaco
k´1 “

”

´2πTcohucarr
k´1 0 0 β p fL1 ´ f IFq Tcoh ´ Tcohucode
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1
3 πT2
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0 ´ 1
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1
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ff
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k “

”
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1
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k´1

ıT
(B9)
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k “
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k,k´1

∆θcode
k,k´1

ff

(B10)

while the feedback for carrier tracking is still represented by Equation (17), the feedback for code
tracking is expressed as:

ucode
k “

1
Tcoh

∆θ̂code
k ` β f̂ carr

k `
1
2

β
.̂
f carr

k Tcoh ` β p fL1 ´ f IFq (B11)
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Furthermore, it is noted that ∆θcode
k,k´1 is uncorrelated with ∆θcarr

k,k´1 [15]. In fact, based on statistical
analysis, it can be drawn that the correlation coefficient between ∆θcarr

k,k´1 and ∆θcode
k,k´1 is usually smaller

than 0.01. The measurement covariance matrix Rcaco
k , therefore, is set as:

Rcaco
k “

«

σ2
1 0

0 σ2
2

ff

(B12)

where σ2
1 and σ2

2 are the variances at the outputs of the carrier and code discriminators respectively. In
general, σ2

1 and σ2
2 can be calculated as follows [10]:

σ2
1 “

1
2C{N0Tcoh

ˆ

1`
1

2C{N0Tcoh

˙

(B13)

σ2
2 “

d
4C{N0Tcoh

„

1`
2

p2´ dqC{N0Tcoh



(B14)

where d is the early-late correlator spacing.
Pre-filter-S usually has better performance than the popular error-state filter (pre-filter-E). Taking

PRN25 for example, Figure A1 shows the differences between tracking errors obtained by pre-filter-E
and pre-filter-S. According to statistic analysis, the RMS values of Doppler shift and code phase
tracking errors corresponding to pre-filter-E are respectively 1.028 Hz and 1.62 ˆ10´ 2 chip. For
pre-filter-S, these two values are 0.487 Hz and 1.55 ˆ10´2 chip.
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