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Abstract: Diabetic individuals need to tightly control their blood glucose concentration.
Several methods have been developed for this purpose, such as the finger-prick or continuous
glucose monitoring systems (CGMs). However, these methods present the disadvantage of being
invasive. Moreover, CGMs have limited accuracy, notably to detect hypoglycemia. It is also known
that physical exercise, and even daily activity, disrupt glucose dynamics and can generate problems
with blood glucose regulation during and after exercise. In order to deal with these challenges,
devices for monitoring patients’ physical activity are currently under development. This review
focuses on non-invasive sensors using physiological parameters related to physical exercise that were
used to improve glucose monitoring in type 1 diabetes (T1DM) patients. These devices are promising
for diabetes management. Indeed they permit to estimate glucose concentration either based solely
on physical activity parameters or in conjunction with CGM or non-invasive CGM (NI-CGM) systems.
In these last cases, the vital signals are used to modulate glucose estimations provided by the CGM
and NI-CGM devices. Finally, this review indicates possible limitations of these new biosensors and
outlines directions for future technologic developments.

Keywords: diabetes; T1DM; exercise; sensor; physiological parameters; vital signs; blood glucose
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1. Introduction

The careful control of glucose concentration is important for diabetic patients. This is particularly
true for patients with type 1 diabetes mellitus (T1DM), where glucose monitoring reduces the risk
of hypoglycemia, of cardiovascular disease with microvascular and macrovascular problems and of
neurological abnormalities [1,2]. Controlling blood sugar also prevents patient death [2,3], which could
result from loss of consciousness and heart failure. Glucose measurements are traditionally performed
by skin punctures regularly throughout the day. However this method is invasive and results in pain
to the patient. It is also well established that the finger-prick method affects patient compliance with
glucose measurements [4].

Continuous glucose monitoring devices (CGMs) were developed to infer blood glucose levels
in real-time, based on measurements of interstitial fluid glucose concentrations. They constitute
point-of-care tests [5] that have enabled some improvements in the self-management of diabetes with
reduced hypoglycemia and increased time spent in euglycemia [6–8]. However, these benefits are
more evident in patients with poorly controlled diabetes who have recently used an insulin pump,
in combination with the CGM [9]. More generally, the devices still present a number of limitations.
First, the accuracy and reliability of CGMs are limited [3,10,11], notably during hypoglycemia [12].
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As a consequence, the devices cannot fully replace the finger-stick monitoring but are better suited to
complement it. Second, these systems involve the use of cannula inserted in the subcutaneous tissue
of the abdomen and are accordingly still invasive.

A number of technologies have been proposed for noninvasively estimating blood glucose
concentration. Termed “minimally invasive CGM” or “non-invasive continuous glucose monitoring”
(NI-CGM), they were created with the hope of generating more regular, or even real-time, glucose
measurements and thus allowing a more efficient self-monitoring. These technologies exploit the
changes in the chemical and physical tissues properties caused by the presence of glucose molecules.
These changes can be detected based on optical, chemical or electrical phenomena, for example via
Raman spectroscopy, fluorescence technology [13], optical coherence tomography [14,15], optical
polarimetry or reverse iontophoresis in the case of the Glucowatch Biographer [16]. These devices
and their underlying technologies have been extensively reviewed in the literature (e.g., [15,17–20]).
The accuracy of each of these technologies for estimating blood glucose is low [15,16,19] and challenges
still lie ahead concerning the portability of the devices, their safety and their cost [15,19].

So far, NI-CGM technologies have generally only been used in very standardized conditions,
such as experimental laboratories of hospitals (e.g., [14,21–23]). Yet, to be useful and widely usable,
the devices must be precise and accurate in the conditions of daily living [20]. Accordingly, their
measurements must be robust to sweating and variations in body temperature. These factors have often
been cited as disruptive for non-invasive systems. The proper functioning of the device in everyday
life and especially during periods of physical activity is essential because even a low physical activity
after a meal affects significantly glucose variability in diabetic patients [24]. Moreover, hypoglycemia
can occur during exercise, even moderate, or few hours later [25–27]. Being able to cope with these
challenges is an important attribute of NI-CGM technologies, because participation in physical activity
is recommended for T1DM without complications [28], resulting in both psychological and clinical
benefits with improvements in cardiovascular function [29].

Currently, a number of biosensors, mostly non-invasive ones, have been developed for monitoring
patients’ physical activity and cardiac data (e.g., electrocardiograms–ECGs). They have proved
valuable for detecting the onset and the end of physical activity in T1DM patients. The combination
of two sensors devices, an ActiGraph wGT3X-BT activity monitor (ActiGraph, Pensacola, FL, USA)
and a heart rate monitor (Polar® Electro Inc., Lake Success, NY, USA) can be used to detect the
onset of physical activity within about five minutes by which time glucose levels measured by CGM
is only ˘1 mg/dL on average [30]. Similarly, a model applied to data from an accelerometer and
heart rate monitor (Zephyr Biopatch, Zephyr Technology, Annapolis, MD, USA) worn by 13 T1DM
inpatients have been shown to detect a moderate exercise with a good sensitivity (97.2%) and specificity
(99.5%) [31].

Moreover recent studies used physical activity and vital sign sensors to maintain euglycemia and
predict hypoglycemia. Some of these devices can directly estimate the blood glucose concentration
based on physiological variables. The algorithms used to achieve this have been designed based on
research demonstrating changes in cardiac characteristics, such as heart rate and QT interval, during
hypoglycemia and hyperglycemia (e.g., [32–39]). Other devices integrate the parameters related to the
physical activity and/or cardiac function in the estimation of blood glucose level provided by CGM
or NI-CGM.

The aim of this article is review biosensors based on physiological parameters related to physical
activity, that were used to improve glucose monitoring in T1DM patients. Section 2 provides
beforehand an overview of biosensors used to analyze the influence of physical activity on glucose
levels and the information they provide on glucose variations in T1DM individuals. Section 3 considers
the estimation of glucose levels based solely on physiological signals, related to exercise, and provided
by biosensors. Sections 4 and 5 review the combined use of sensors monitoring physical activity and
glucose tracking via CGMs and NI-CGMs, respectively. In each section the underlying designs of these
technological advances are highlighted and their benefits and weaknesses discussed. Research studies
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evaluating these sensors on T1DM patients are detailed and assessed with regard to clinical outcomes
(blood glucose level control) but, where data is available, also patient satisfaction. Based on the analysis
of these emerging technologies we outline, in Section 6, directions for improvements in the design and
performance of current and future devices.

2. Glucose Dynamic during Sensor-Monitored Physical Exercise

Predicting precise blood glucose concentration during active everyday life and physical exercise
requires detailed information on the influence of physical activity on glucose level. To our knowledge,
only two studies have addressed the precise relationship between exercise and glucose trends with
biosensors, in T1DM patients. They performed a tight temporal tracking of vital signs during physical
activity following a meal [24] and during moderate physical activity mimicking daily activities [40].
The technology used in both cases was the Physical Activity Monitoring System (PAMS; Table 1).
This sensor combines two tri-axial accelerometers (CXL02LF3-R; Crossbow Technology, San Jose, CA,
USA) and four inclinometers (CXTA02; Crossbow Technology) for determining body posture and the
individual’s movements. Data were collected every half second. The system is quite cumbersome
with the two accelerometers placed at the base of the spine and four inclinometers fastened on each
side of the body at the trunk and thigh levels, and special underwear required for fitting them.
Moreover, because the PAMS only provided data relating to physical activity, three devices were
needed: the PAMS, the CGM and the insulin pump, if necessary for the patient.

In their research, Zecchin et al. [40] gathered data on control patients (N = 20) and T1DM patients
(N = 19) over four days. For control and diabetic patients, the authors showed that moderate physical
activity, corresponding to a daily activity, was associated with changes in glucose level, estimated by
the first- and second-order glucose concentration time derivatives. Correlation degrees were stronger
for diabetic patients but occurred 5–10 min later. For these individuals the decrease in glycemic
concentration following exercise was maximal after 15 min. The increase in glucose level following
the beginning of the rest period peaked after about 15 min. From a clinical point of view the slower
glucose decline with physical activity should be taken into account by T1DM subjects when adjusting
their basal insulin.

Physical activity was also found to significantly reduce postprandial glucose excursions in T1DM
and healthy participants [24]. Thus, based on data collected in T1DM patients between 30 min before to
4.5 h after a meal, the excursions, estimated by the incremental glucose area above basal, was reduced
by 59% (from 18.4 mmol/L/270 min for meals followed by inactivity to 7.5 mmol/L/270 min for meals
followed by walking). For control participants, the decrease was 53% (from 9.6 mmol/L/270 min for
meals followed by inactivity to 4.5 mmol/L/270 min for meals followed by walking). These results
provide thorough quantitative evaluations of the effect of physical activity on glucose dynamic.
For future research, this information should be added to the algorithm of closed-loop system for a
better prediction of insulin infusion and a tighter control of glucose level when exercising.

3. Sensors Estimating Glucose Level Based on Physical Activity Signals

The glucose concentration can be directly estimated from physiological parameter values.
This has been done using the multisensory device SenseWear® Pro Armband (SWA [41]; Table 1).
This multisensory technology was developed by the firm BodyMedia (Pittsburgh, PA, USA). As its
name indicates, it is worn around the arm, and two ECG electrodes are placed on the arm and shoulder.
The SenseWear® collects physiological data from five types of in-built sensors. A two dimension
accelerometer registers the position and movement of the arm and of the body, a heat-flux sensor
and a thermistor measure the dissipated heat from the body, as well as the body and surrounding
temperature, a galvanic sensor measures the conductivity of the skin, and two ECG electrodes measure
the cardiac electrical activity.
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Table 1. Sensors tested in relation with physical activity in T1DM patients and their specific use in research articles.

General Purpose Product Company Sensors Specific Use in the Articles

Monitoring glucose dynamic
during physical exercise

Physical Activity Monitoring
System (PAMS)

Crossbow Technology, San
Jose, CA, USA

-2 tri-axial accelerometers (CXL02LF3-R) Evaluation of glucose dynamic during physical
exercise [24,40]-4 inclinometers (CXTA02)

Physiological signals to estimate
glucose level

BodyMedia SenseWear®

Pro Armband
SWA; BodyMedia, Inc,
Pittsburgh, PA, USA

-A 2-axis accelerometer

Direct estimation of glucose level based on
multisensor data [41]

-Heat-flux sensor
-Thermistors

-Galvanic skin response sensor
-ECG electrodes

Vital signals and CGM

Zephyr BioHarnessTM 3
Zephyr Technology,

Annapolis, MD, USA
-Heart rate

-A 3-axis accelerometer

Integration of heart rate and accelerometer
monitoring in the glucose level estimation

algorithm [42]

Integration of accelerometer monitoring in the
glucose level estimation algorithm [43]

Sport Watch: Polar:
model RS800CX

Polar®, Lake Success,
NY, USA -Heart rate Integration of heart rate monitoring in the glucose

level estimation algorithm [44]

Digital Holter monitor,
SpiderView Plus

ELA Medical,
Montrouge, France -ECG monitor Integration of heart rate variability in the glucose

level estimation algorithm [45,46]

BodyMedia SenseWear®

Pro3 Armband
SWA; BodyMedia, Inc,
Pittsburgh, PA, USA

-A 2-axis accelerometer
Integration of energy expenditure and galvanic

skin response in a glucose level estimation
algorithm [47,48]

-Heat-flux sensor
-Thermistors

-Galvanic skin response sensor
-ECG electrodes

Physical activity and NI-CGM

Multisensor Glucose
Monitoring System (MGMS)

Solianis Monitoring AG ,
Zurich, Switzerland

-Accelerometer
Integration of temperature, sweat and

acceleration and position in the glucose level
estimation algorithm [23,49–51]

-Temperature sensor
-Humidity sensor

-Optical sensor
-Dielectric spectroscopy (for glucose monitoring)

SensiumVitals
Sensium Healthcare Ltd,

London, UK

-Heart rate

Reliability of the cardiac and respiratory rates
estimates [52]

-Respiratory rate
-Physical activity

-Blood pH
-Glucose level
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In this system, the estimation of plasma glucose is based on data collected by the SWA that were
downloaded through the CMS prerelease software version 1.0. The data collected from the biosensor
were processed using a supervised machine learning based model. It integrates first an algorithm that
defines the context (exercise versus no exercise) and then a regression model that provides glucose level
estimates for the previously defined context. The quality of the model fit was assessed via a k-fold
cross-validation in which all subjects minus one are used to train the model and the remaining subject
validates the model. This procedure is repeated so that each subject is in turn used for validation.

The SenseWear® device and model-based inference of plasma glucose levels was tested on patients
with type 1 and type 2 diabetes [41]. Minute-by-minute estimates were produced by the armband.
The study included 41 patients, of which 18 had T1DM. Patients were aged 18–65 years (mean
42.1 ˘ 13.8) and the majority were women. Patients with T1DM were diabetic since 10.0 ˘ 7.1 years.
A CGM (iPro, Medtronic, Northridge, CA, USA) was placed on each of the patients. The system was
not tested in activities of daily life but only in two experimental conditions. For the first of these,
glucose levels were artificially raised while, for the second, patients had to walk for 60 min on a
treadmill at a speed of approximately 4 km/h (2.5 mph). For both experiments, the glycemic values of
T1DM patients estimated with the SWA were correlated with the reference values obtained directly
from the glucose analyzer. The correlations were good for the first experiment (r = 0.70, p < 0.05) and
the second one (r = 0.90, p < 0.05). These correlations were also similar to those obtained between
values from the CGM and the reference values (experiment 1: r = 0.75, p < 0.05; experiment 2: r = 0.95,
p < 0.05).

This study suggests that the sensor can provide reasonably good estimates of plasma glucose
levels. Yet, both experiments also showed that the device is of limited use when it comes to alerting the
patient of hypoglycemia, as hypoglycemic episodes occurred during both experiments. Compared to
the reference values, the plasma glucose values estimated by SWA during these episodes in the first
experiment were not clinically acceptable. Thus, 0% of the values were in area A + B according to
Clarke error grid, although the SWA was switched on. In the experiment with the treadmill, 26% of the
values were clinically acceptable (area A + B). These values should be compared to those obtained with
CGM. Of the blood glucose levels measured by CGM during the hypoglycemic episodes occurring
in experiments 1 and 2, respectively, 36% and 0% of the values fell into area A, and none in area B.
Accordingly, the SWA and CGM did not provide accurate hypoglycemia predictions compared to the
glucose meter.

In the experiments just described, glucose value estimates were obtained under standardized test
conditions. The effectiveness of the SWA in T1D patients has yet to be assessed under conditions of
everyday life and under uncontrolled physical activity. A SWA (SenseWear Pro3 Body Monitoring
System) was tested under free-living conditions on one type 2 diabetic patient [53]. The authors used a
mathematical model (Wiener model) to integrate the data provided by the sensor with other variables,
such as those related to diet (e.g., carbohydrate and protein intake). The vast majority of estimates
provided by the model were clinically acceptable with 90% of predicted glucose concentrations in
area A and 7% in area B according to the Clarke error grid analysis. The percentages concerned all
glycemic values (i.e., euglycemia, hypo- and hyperglycemia) and not only hypoglycemia like the
previous study [41]. In their article, Rollins et al. [53] also noted poorer model-based predictions of
glucose levels in case of high hypoglycemia. The study, although involving only a single patient,
showed an interesting approach to the estimation of blood glucose in the conditions of daily life.

One of the parameters included in this study [53] is energy expenditure. Yet, care should be taken
with the energy expenditure (EE) estimation provided by the SenseWear Pro3. The EE estimation
has been evaluated in older T1DM and T2DM individuals during sessions of walking on a treadmill
at various speeds and inclines [54]. The EE values were shown to be weakly underestimated (by
8% ˘ 17%) when the subjects walked uphill (5 km/h and 5% incline) and strongly overestimated (by
81% ˘ 24%) in case of level walking (3 km/h with 0% incline) [55]. The large overestimation at low
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efforts, in particular, might cause problems when using activity data to infer blood glucose levels for
diabetic patients with a poor physical condition.

Despite these drawbacks, the use of mobile sensors to assess blood glucose level directly through
physical activity related parameters is very promising and should be further developed. Finally the
only information given in these articles about patient satisfaction indicates that no pain associated
with the use of the SWA was reported by the patients [41].

4. Integration of Sensors-Based Physiological Parameters with CGM Data

Estimates of plasma glucose with CGM are not always reliable and it has been shown that
physical exercise disrupts blood glucose dynamics, and can render the maintenance of euglycemia
more challenging [24,40]. As a consequence, some authors have developed an approach to integrate
vital signals during exercise to increase the prediction accuracy of glucose levels, based on CGM data.
Thus, the information on, for instance, the patient's physical activity or heart rate, is used not only to
directly estimate glucose levels, as presented previously, but, in this case, to improve the accuracy of
the algorithms involved in the development of artificial pancreas.

In this context, Stenerson et al. [42] used the Zephyr BioHarnessTM 3 of the Zephyr Technology
Company (Annapolis, MD, USA; Table 1). It is worn as a belt at the chest level and combines two
sensors. The acceleration data, estimated by a 3-axis accelerometer, and heart rate data are recorded
every second. The patients need to wear a harness, but also a CGM and an insulin pump. In a first
study, the authors [42] collected, in 22 T1DM patients, the physiological and life-style data issued from
these three systems. Data were collected throughout the patients’ daily activities, on average during
4.9 days (from 1 to 16 days). Glucose levels estimated by the CGM were obtained every five minutes.
The authors developed an improved algorithm predicting glucose levels and stopping the insulin
pump when the level is below the threshold of 70 mg/dL. With simulations, the authors pointed
out that if the original algorithm reduces the number of hypoglycemia incidents by 62%, adding
information on heart rate (HR) allows to reduce their frequency by 71% and data on acceleration by
74%. The combination of data of HR and acceleration reduces hypoglycemia by 76%. These results
show the benefit of accelerometer data but do not justify the use of a heart rate sensor. However, data
on the number of false positives hypoglycemia (i.e., hypoglycemia detected by simulation but not real)
were not mentioned.

The research by simulation was completed by a study of 18 T1DM patients gathered for a football
game [43]. This study was designed to test the effectiveness of the improved algorithm with the
acceleration data. The results however indicated that the algorithm has failed to prevent hypoglycemia
in patients using it compared to patients using their usual basal insulin rate. Patients on algorithmic
glycemic control did not show higher rates of hyperglycemia. This is an advantage since the current
practice is to turn off the insulin pump before exercise, which often leads to hyperglycemia. In terms of
telemedicine, in this study on Zephyr, the data from the accelerometer can be read in real time through
the SenseView application (Mobili d.o.o., Ljubljana, Slovenia) on a mobile phone. It remains however
that this system is only at an experimental stage since the insulin pump of patients using the algorithm
was activated and deactivated manually by the staff in charge of the study. Finally, no adverse effect
has been shown due to the wearing the Zephyr system.

If Stenerson et al. [42,43] retained the acceleration as the most important signal to integrate in
the algorithm, in other studies, information on HR was included in order to modulate the amount of
injected insulin [44,56,57]. Heart rate data were collected using a RS800CX sports watch from the Polar®

firm (Lake Success, NY, USA; Table 1). These data were integrated into an algorithm implemented on a
DiAs artificial pancreas platform. DiAs was also connected to an insulin pump and to a CGM. It runs
on an Android® phone (Google, Mountain View, CA, USA) and is controlled by the patient that may
introduce information such as the carbohydrate intake.

To evaluate this approach, the authors performed a study on 12 T1DM patients with a randomized
crossover design [44]. They compared the effectiveness of the classical algorithm with the one enriched
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with heart rate values to prevent hypoglycemia during exercise. They showed a significant decrease of
the reduction of blood glucose during exercise, and reduced hypoglycemia during moderate exercise,
although this last difference was not significant. The advantages of this system, during the recovery
phase and during the night, are less clear. Finally in case of physical activity, the system DiAs is
manually informed by pressing a button when the HR exceeds 125% of the patient’s HR at rest.
It should be further optimized to become automatic and also controlled to limit false alerts.

Other authors focused also on the heart rate signals, but using different devices. Thus, heart
rate variability (HRV) was collected through lead II with a digital Holter monitor (SpiderView Plus,
ELA Medical, Montrouge, France; Table 1) and combined with glucose values measured with CGM
to predict and to improve the detection of hypoglycemia [45,46]. The combination initially tested
in a clinical research setting [45] was evaluated in free-living conditions on 21 adult patients [46].
The algorithm combining glucose values with those of HRV shows a good response for both the
sensitivity and specificity of hypoglycemia detection with, respectively, values of 91% and 100% for
20 min prediction interval.

The SenseWear, employed by Sobel et al. [41] to directly estimate glucose concentration (see
Section 3), has also been used for combining physiological variables with blood glucose measurements
obtained by CGM [47,48]. This combination is expected to provide better estimates of the insulin
amount to inject. In these studies the major physiological parameters taken into account to indicate
physical activity are the energy expenditure and the galvanic skin response. With the addition of
these physiological data, glucose levels are better controlled. This adjustment is carried out directly,
i.e., without a user intervention to announce, to the system, the patient’s physical activity or food
intake [47]. The device has been enriched by an alarm indicating efficiently the risk of hypoglycemia
before their occurrence [48].

As mentioned, these studies did not directly estimate glucose levels from the sensor-based
physiological values but rather combine these data with CGM measurements to provide an increased
precision in glucose concentration predictions. This approach offers an interesting reflection on ways
to combine, with mathematical algorithms, plasma glucose data with physical activity levels. They also
allow an assessment of various sensors (Zephyr Bioharness, Sports Watch . . . ) that could be used in
other settings.

5. Integration of Sensors-Based Physiological Parameters with NI-CGM

In the last section we pointed out that physiological data can be combined with glucose level
values measured by CGM. Similarly research has been conducted to improve the accuracy of NI-CGMs
through the integration of several physiological factors [23,49,50]. These studies were conducted with
the Multisensor Glucose Monitoring System (MGMS) developed by Solianis Monitoring AG (Zurich,
Switzerland; Table 1). The device includes dielectric spectroscopy and optical sensors. Glucose level
variations engenders changes in the properties of tissues, notably in cell membrane conductivity,
that are tracked by the dielectric spectroscopy electrodes. An important feature is that the sensors
for estimating glucose concentration as well as those monitoring potential disturbing physiological
factors are integrated in the same device. Thereby, the apparatus, worn on the upper arm, also
tracks the subject’s temperature, sweating and movement, among others. The monitoring of glucose
levels changes through this system was subsequently improved through the implementation of more
sophisticated mathematical models combining the various variables monitored by the device [49,50].

The results obtained are globally good, with 92% of the results in the A+B region of the Clarke
error grid analysis [50]. Nevertheless, it would have been interesting to know if the behavior of the
system is specifically reliable under hypoglycemia and hyperglycemia since these deviations in glucose
levels were provoked in the patients.

One study has used Monte Carlo simulations to test the robustness of the system to a disruptive
factor, sweating [51]. The authors showed that the system does not need to be re-calibrated after
sweating event, which is appealing for use in everyday life.



Sensors 2016, 16, 589 8 of 13

The SensiumVitals (Sensium Healthcare Ltd, London, UK) is another device that combines
multiple sensors into a small and lightweight single-use system. The device can measure various
physiological parameters, including heart and respiratory rates, physical activity, blood pH or glucose
level [58,59]. Blood glucose is monitored through an ion sensitive field effect transistor. The principle
is based on variations in ion concentration resulting from glucose level changes [60]. The values of the
physiological variables can be transmitted wirelessly. The reliability of this system for the estimation of
cardiac and respiratory rates were evaluated with diabetic inpatients [48]. The SensiumVitals accuracy
assessment does not appear to have been conducted for glucose level estimation on inpatients or
outpatients. The integration of different physiological parameters in the determination of glucose level
has not been approached either.

6. Conclusions

The reviewed studies indicate the appeal of devices using physiological signals related to physical
activity and their potential to improve the management of diabetes in a near future. Thus physical
activity, although beneficial for diabetic patients, constitutes an element that disrupts glucose dynamics
and generates blood glucose regulation problems during and after exercise. These sensors provided
valuable results to estimate glucose concentration either based solely on physical activity parameters
or in conjunction with CGM or NI-CGM systems. In these last cases, vital signs are used to modulate
the glucose estimations provided by the CGM and NI-CGM devices.

These systems tracking physiological signals were assessed for their validity and accuracy to infer
blood levels and to detect hypoglycemia. In this respect, their performance was often compared with
CGM-based glucose estimations. Nevertheless, evaluations of their therapeutic superiority compared
to gold standard treatment globally still need to be conducted. This would for instance allow one
to determine if the new devices reduce the risk of hypoglycemia or if the glycaemia is adequately
controlled in the long-term. The use of the largely recognized glycated hemoglobin (HbA1c) would
allow to appreciate their efficiency to control blood glucose for three months [61].

In terms of communication, a key point concerns the need to develop compatible systems with
the computerized patient records of clinical institutions [62,63]. This will promote the sharing of
patient data between healthcare providers (doctors, nurses...) and should improve patient care [64,65].
The interoperability of multisensory devices for diabetic patients has been investigated to allow their
connection with health monitoring platforms [66,67]. The proposed architecture follow the standards
of Health Level 7 (HL7). Interoperability between systems is essential to ensure changes in the
functioning of care. Healthcare provision initially mostly occurring in hospital settings and private
practice, moves to a patient-centered process, much more open as occurring at all times and in all
places [68,69]. Data could also be combined with other sources of information such as “social media”
to generate clinical and well-being recommendations [70].

Wireless data transmission, to health professionals, to the patient and to his relatives, is not
yet possible with all devices. Information and communication technology (ICT) will nevertheless
undoubtedly bring an additional advantage to biosensors and their users. ICT offers to diabetic
individuals a diversity of solutions to help them better manage the disease. ICT can for instance
encompass internet, mobile phone applications (mHealth: [71–73]), and telemedicine technologies
based on decision support. These technologies were, and still are, the subject of much literature
reviews showing a general, although mild, advantage of these technologies for diabetic patients [74–77].
Notably they facilitate patient self-management [63], a better control of nutrition [76] and a metabolic
control pointed out by a low reduction in glycated hemoglobin [78]. The patients also appear satisfied
with these systems and present enhanced well-being and feeling of disease control [79].

Patient satisfaction has not been investigated for the presented devices tracking physical activity
parameters. Only sparse general information on patients was mentioned in the articles, such as the
absence of pain or discomfort. Studying patient satisfaction in regard with new technologies is in fact
not a generality. A literature review indicates that this outcome is envisaged in less than 50% of the
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studies testing ICT [63]. Yet it is well known that patient satisfaction constitutes a significant part for a
successful implementation. However, in recent years, primary studies published on patient satisfaction
with technological advances have increased (e.g., [80,81]), as well as systematic reviews (e.g., [82]).
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Abbreviations

The following abbreviations are used in this manuscript:

CGM Continuous Glucose Monitoring
ECG Electrocardiogram
HbA1c Glycated hemoglobin
HL7 Health Level 7
HR Heart Rate
HRV Heart Rate Variability
ICT Information and Communication Technology
MGMS Multisensor Glucose Monitoring System
NI-CGM Non-Invasive Continuous Glucose Monitoring
PAMS Physical Activity Monitoring System
SWA SenseWear® Pro Armband
T1DM Type 1 diabetes mellitus
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