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Abstract: A Hemispherical Resonator Gyro (HRG) is the Coriolis Vibratory Gyro (CVG) that measures
rotation angle or angular velocity using Coriolis force acting the vibrating mass. A HRG can be used as
a rate gyro or integrating gyro without structural modification by simply changing the control scheme.
In this paper, differential control algorithms are designed for a 2-piece HRG. To design a precision
controller, the electromechanical modelling and signal processing must be pre-performed accurately.
Therefore, the equations of motion for the HRG resonator with switched harmonic excitations are
derived with the Duhamel Integral method. Electromechanical modeling of the resonator, electric
module and charge amplifier is performed by considering the mode shape of a thin hemispherical
shell. Further, signal processing and control algorithms are designed. The multi-flexing scheme
of sensing, driving cycles and x, y-axis switching cycles is appropriate for high precision and low
maneuverability systems. The differential control scheme is easily capable of rejecting the common
mode errors of x, y-axis signals and changing the rate integrating mode on basis of these studies.
In the rate gyro mode the controller is composed of Phase-Locked Loop (PLL), amplitude, quadrature
and rate control loop. All controllers are designed on basis of a digital PI controller. The signal
processing and control algorithms are verified through Matlab/Simulink simulations. Finally, a FPGA
and DSP board with these algorithms is verified through experiments.

Keywords: hemispherical resonator gyroscope (HRG); electromechanical gain; Duhamel integral;
mode shape; multi-flexing; demodulation; modulation; force-to-rebalance (FTR) mode; pendulum
variables; direct digital synthesizer (DDS)

1. Introduction

A Hemispherical Resonance Gyroscope (HRG) is a Coriolis Vibrating Gyroscope (CVG), which
measures the angle or angular velocity using the Coriolis force generated by the rotational motion [1].
HRGs are suitable for miniaturization and high precision due to their simple structure made up
of five components and easy production process. Particularly, since it is a sensor made of quartz
material, which has excellent material properties, using the solid state wave phenomenon, it guarantees
high reliability and a long-term lifespan. In addition, it has the advantage that it can be used in the
angular velocity mode or the integral angular velocity mode according to the control technique and
the electronic circuit used, without requiring any structural changes to the sensor [1].

The development of HRG technology, which started in the 1970s, has been conducted actively
in the advanced countries such as the United States (Northrop Grumman), France (SAGEM), Russia
(RDC, Medicon), etc. for the purpose of its use in the attitude controllers of satellites and spaceships,
long-term navigation systems for strategic missiles, submarines, etc., where long-term reliability is
important [2].
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The United States (Northrop Grumman) is currently producing miniature HRGs, the size of golf
balls, based on the existing HRG 130P from 2012. This is the results of design improvement that
converts the 3-piece system, in which the forcer and pickoff are divided, into a 2-piece system, in
which the outer forcer is removed, and the process stage is reduced using the multi-flexing method [3].
The multi-flexing method involves obtaining the sensing and driving signal of the x-axis and y-axis
using the same element by switching within the specified cycle and is suitable for high precision and
low maneuverability systems like satellite systems. In addition, the SIGMA 20 navigation system,
according to data made public by France in 2013, is under development based on the 2-piece HRG,
which applies the multi-flexing technique to a resonator of 20 mm diameter, showing that it can be
utilized in ground navigation systems used in rough environments focusing on the characteristics of
the HRG, which can endure thermal and mechanical stress [4].

In the meantime, the traditional control method controls the x-axis to be major axis of the elliptical
trajectory expressing the pendulum variables from the axis where the excitation and sensing electrodes
are arranged. On the contrary, the differential control method controls the axis which forms a 45˝

angle with the x-axis, to be the major axis of the elliptical trajectory, This method has the advantage
that it can remove the common mode error for both the x-axis and the y-axis and is easy to switch to
the integral angular velocity mode [5].

As such, next generation HRGs will evolve into representative gyros, which can materialize
the demands for subminiature structure, high precision and high reliability by the development
of 2-piece systems applying multi-flexing methods, differential control algorithms, etc. To develop
such subminiature and high precision HRGs, advanced core processes such as the production of
low-loss hemispherical resonators and electrode blocks, low-stress heterojunctions, the balancing
and tuning, high degrees of vacuum packaging, etc. and electronic module technologies such as
low-noise pre-amplifiers, FPGA-based high precision digital signal processing and control circuits,
error modelling and compensation techniques, etc. must be developed.

Therefore, in this article, electromechanical modelling will be performed on a 2-piece system
equipped with a multi-flexing technique and a signal processing and control algorithm design based
on that. In Section 2, the resonator motion equation with continuous harmonic excitation will be
deduced and the major electromechanical gains between the resonator and the electrodes calculated
through the modeling. At this time, the mode shape of the resonator will be considered. In addition,
the equation of the resonator motion for case that the switched harmonic excitation is applied by the
multi-flexing will be induced, and its results will be compared with the case of continuous harmonic
excitation. In Section 3, the signal processing and control algorithm will be designed based on the
electromechanical modelling results. In this section, the signal processing algorithm based on the
multi-flexing method and the differential control algorithm in the rate gyro mode (or FTR mode) will
be designed. The designed control algorithm will be tested through Matlab/Simulink SW and the
design results will be verified finally by comparing the results of an actually made sensor with the
simulation results through suitable experiments.

2. Electromechanical Modeling of a HRG with Switched Harmonic Excitations

As mentioned in the previous section, a HRG is a sensor to measure the input angular velocity
using the precession motion of the elastic standing wave caused by a Coriolis force. The circular section
of the hemispherical resonator in the non-vibration state repeats the circle, horizontal elliptical shape,
circle and vertical elliptical shape in the secondary mode [6]. The location of the maximum amplitude
and the non-vibration location are referred to as the antinode and node, respectively, and generally,
the equation of HRG motion is induced through the secondary resonance mode having two nodes and
antinodes [7]. Basically, such a HRG system can be modeled with the secondary spring damper system
and due to causes such as mass unbalance, etc. anisoelasticity errors and damping mismatch occur,
which cause the frequency and Q-factor to split, respectively, which are the most important causes of
errors of HRG sensors [8].
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2.1. Full Equations of Motion with Harmonic Excitations

The general full equations of motion of a HRG considering the influences of frequency coupling
and damping imperfection are as follows [8]:
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where Ω is the angular velocity of system about the vertical axis of x-axis and y-aixs,ω is the mean resonant
frequency, k is the Brian coefficient (~0.3), C11 = (2/τ) + ∆(1/τ)cos2θτ , C12 = C21 = ∆(1/τ)sin2θτ ,
C22 = (2/τ)´ ∆(1/τ)cos2θτ, K11 = ω2 ´ ω∆ωcos2θω, K12 = K21 =´ ω∆ωsin2θω, K22 = ω2 + ω∆ωcos2θω,
ω2 = (ω2

1 + ω2
2)/2, 1/τ = ½(1/τ1+1/τ2), ω∆ω = (ω2

1 ´ ω2
2)/2, ∆(1/τ) = (1/τ1) ´ (1/τ2), θω is the

angle of the unbalance between the x-axis and the major axis of resonance mode, θτ is the angle
between the x-axis and the major axis of the linear damper (readers should refer to Appendix A for
further details).

To calculate the nominal amplitude and the time constant of each axis, let’s assume that there is
no frequency coupling by the damping mismatch and the mass unbalance in the above equation and
no input angular velocity. Then, the motion characteristics for the each axis in the above equation can
be interpreted as the equation of motion of the secondary spring damper system below:

..
x`

2
τn

.
x`ω2x “ fx “

f
mn

, x p0q “
.
x p0q “ 0 (2)

where mn is modal mass, τn = 2Q/ω, Q is the quality factor. In this moment, the excitation force to be
applied continuously can be modeled with the harmonic function as follows:

f ptq “
d f
dv

vc ptq (3)

where d f
dv is the change of control force per unit voltage, vc ptq “ vccosω t is ac control voltage.

With the aid of Euler’s formula, the solution, x ptq can be written in the form [9]:

x ptq “ f0
Q

mnω2

¨

˚

˚

˝

sinωt´
1

c

1´
´

1
2Q

¯2
e´

ω
2Q tsinωdt

˛

‹

‹

‚

(4)

where f0 “
dC
dx VBvc, VB is bias voltage, dC

dx is the change of capacitance per unit displacement,

ωd “ ω

c

1´
´

1
2Q

¯2
. Since ωd – ω with the assumption that the quality factor is high, the equation

above can be arranged as follows. The variables needed for deriving the equation are summarized in
Table 1 and it can be schematized as shown in Figure 1.
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Table 1. The design variables for the full time equation of motion.

Design Variables Values

Resonant Frequency ω “ 7.0 kHzˆ 2π prad{sq
Quality factor Q “ 7ˆ 106

Modal mass mn “ 0.85ˆ 10´3 kg
The change of control force per unit voltage d f {dv “ 2.78ˆ 10´6 N{V

Bias voltage VB “ 200 V
Nominal control voltage vc “ 420 mV

The change of capacitance per unit displacement dC{dx “ 13.9ˆ 10´9 F{m

Sensors 2016, 16, 555 4 of 22 

 

Table 1. The design variables for the full time equation of motion. 

Design Variables Values 

Resonant Frequency ߱ = 7.0kHz × 2π (rad/s) 
Quality factor Q = 7 × 10଺ 
Modal mass ݉௡ = 0.85 × 10ିଷ	kg 

The change of control force per unit voltage ݂݀/݀ݒ = 2.78 × 10ି଺	N/V	 
Bias voltage ஻ܸ = 200 V 

Nominal control voltage ݒ௖ഥ = 420 mV 
The change of capacitance per unit displacement ݀ݔ݀/ܥ = 13.9 × 10ିଽ	F/m 

 
(a) 

 
(b) 

 
(c)

Figure 1. The displacement output by continuous harmonic excitation: (a) The control force input (N); 
(b) The displacement output (ݐ ≤ 40 ∙ ଶ஠ன 	s); (c) The displacement output (ݐ ≤ 3000	s). 
In Equation (5), as ଵඥଵି(ଵ/ଶொ)మ ≅ 1  can be assumed, when expressing the amplitude as  x(ݐ) = (ݐ)ܣ sin(߱ݐ + ߶), A(ݐ) = ௡൫1ܣ − ݁ି௧/ఛ೙൯, the nominal amplitude ܣ௡ and the time constant ߬௡ 

can be calculated as follows: ܣ௡ = ଵܥߨܳ ൬݁గ஼మொ − 1൰ ଴݂ܳ݉௡߱ଶ = 4.971 μm (6) 

߬௡ = 2ܳ߱ = 318.310 s (7) 

2.2. The Nominal Amplitude and Time Constant of HRG with Switched Harmonic Excitations 

In the case of a 2-piece HRG system, it switches the sensing and driving cycles and the x-axis 
and y-axis using the common element, so the excitation force in Equation (3) is not given continuously 

0 1 2 3 4 5

x 10
-3

-1

-0.5

0

0.5

1

x 10
-6

t(sec)

f(
t)

 :
 N

 

0 1 2 3 4 5

x 10
-3

-8

-6

-4

-2

0

2

4

6

8

x 10
-11

t(sec)

x(
t)

 :
 m

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0
0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

4 . 5

5

t i m e s ( s e c )

am
pl

itu
de

 o
f 

th
e 

ou
tp

ut
, 

x(
t)

 [
um

]

Figure 1. The displacement output by continuous harmonic excitation: (a) The control force input (N);
(b) The displacement output (t ď 40¨ 2π

ω s); (c) The displacement output (t ď 3000 s).

In Equation (5), as 1
b

1´p1{2Qq2
– 1 can be assumed, when expressing the amplitude as

x ptq “ A ptq sin pωt` φq, A ptq “ An

´

1´ e´t{τn
¯

, the nominal amplitude An and the time constant τn

can be calculated as follows:

An “
Q

πC1

ˆ

e
πC2

Q ´ 1
˙

f0Q
mnω2 “ 4.971 µm (6)

τn “
2Q
ω
“ 318.310 s (7)

2.2. The Nominal Amplitude and Time Constant of HRG with Switched Harmonic Excitations

In the case of a 2-piece HRG system, it switches the sensing and driving cycles and the x-axis and
y-axis using the common element, so the excitation force in Equation (3) is not given continuously
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but as much as the time determined within the certain cycle, which can be expressed as Equation (8)
as follows:

f ptq “

$

&

%

d f
dv VBvccosωt C1T0 pn´ 1q ă t ď C2T0 ` C1T0 pn´ 1q , n “ 1, 2, ¨ ¨ ¨ ,8

0 C2T0 ` C1T0 pn´ 1q ă t ď C2T0n, n “ 1, 2, ¨ ¨ ¨ ,8
(8)

where T0 “
2π
ω s, C1 “ 5 is the total operation cycles, including sensing and driving cycles, C2 “ 1 is

the x-axis control cycle.
To obtain the system time response characteristics when the non-continuous excitation force

is given, the Duhamel integral (or convolution integral) method is used [9]. The Duhamel integral
method is the special form of integral to be applied when obtaining the output signal in a linear system
if the input signal and the system impulse response are given:

x ptq “ f ptq ˚ h ptq “
ż 8

´8

f pτq h pt´ τq dτ “

ż 8

´8

h pτq f pt´ τq dτ (9)

We get the unit impulse response of a viscously damped SDOF system. By convention, the unit
impulse response function is frequently called h ptq [9]:

h pt´ τq “
1

mnω
e´

ω
2Q pt´τqsinωd pt´ τq at t ě τ (10)

Let’s calculate x ptq by inserting above Equations (8) and (10) into Equation (9). Since f ptq “ 0
when t ă 0, x ptq “ 0. In the section of C1T0 pn´ 1q ă t ď C2T0 ` C1T0 pn´ 1q, n “ 1, 2, ¨ ¨ ¨ ,8, as the
excitation and the unit impulse response show the phase difference as Figure 2a, and in the section of
C2T0 pn´ 1q ` C1T0 ă t ď 2C1T0n, n “ 1, 2, ¨ ¨ ¨ ,8, they show the phase difference as Figure 2b, the
integral can be arranged as follows:

Case a. C1T0 pn´ 1q ă t ď C2T0 ` C1T0 pn´ 1q , n “ 1, 2, ¨ ¨ ¨ ,8

x ptq “
k“n´1
ÿ

k“1

«

ż C2T0`C1T0pk´1q

C1T0pk´1q
f pτq h pt´ τq dτ

ff

`

ż t

C1T0pn´1q
f pτq h pt´ τq dτ (11)

Case b. C2T0 pn´ 1q ` C1T0 ă t ď 2C1T0n, n “ 1, 2, ¨ ¨ ¨ ,8

x ptq “
k“n
ÿ

k“1

«

ż C2T0`C1T0pk´1q

C1T0pk´1q
f pτq h pt´ τq dτ

ff

(12)
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Assuming that xct ptq “
şt

C1T0pn´1q f pτq h pt´ τq dτ, xpt ptq “
şC2T0`C1T0pk´1q

C1T0pk´1q f pτq h pt´ τq dτ, the
calculation results are as follows: as in this moment, the Q-factor is high, we can assume that ωd – ω:

xct ptq “
f0

mnωd
e´

ω
2Q t

ż t

C1T0pn´1q
cosωτ e

ω
2Q τsinωd pt´ τq dτ (13)

it can be arranged as follows:

xct ptq “
f0{mnωd

´

ω
2Q

¯2
` 4ω2

„

p4ωQsinωt`ωcosωtq
ˆ

1´ e
2C1πpn´1q´ωt

2Q

˙

´
ω

2Q
sinωt e

2C1πpn´1q´ωt
2Q



(14)

xpt ptq “
f0{mnωd

´

ω
2Q

¯2
` 4ω2

e
πC1pk´1q

Q

ˆ

e
2πC2´ωt

2Q ´ e´
ωt
2Q

˙„ˆ

ω

2Q
` 4ωQ

˙

sinωdt`ωcosωdt


(15)

Refer to Appendix B for further details. If Equations (14) and (15) are inserted to
Equations (11) and (12), the time response of SDOF spring-damper system by the switched excitation
can be arranged as follows:

Case a. C1T0 pn´ 1q ă t ď C2T0 ` C1T0 pn´ 1q , n “ 1, 2, ¨ ¨ ¨ ,8

x ptq “
f0

mnωd
´

ω
2Q

¯2
`4ω2

#

k“n´1
ř

k“1
e

πC1pk´1q
Q

ˆ

e
2πC2´ωt

2Q ´ e´
ωt
2Q

˙

”´

ω
2Q ` 4ωQ

¯

sinωdt`ωcosωdt
ı

`

„

p4ωQsinωt`ωcosωtq
ˆ

1´ e
2πC1pn´1q´ωt

2Q

˙

´ ω
2Q sinωt e

2πC1pn´1q´ωt
2Q

*

(16)

Case b. C2T0 pn´ 1q ` C1T0 ă t ď 2C1T0n, n “ 1, 2, ¨ ¨ ¨ ,8

x ptq “
f0

mnωd
´

ω
2Q

¯2
`4ω2

k“n
ř

k“1
e

πC1pk´1q
Q

ˆ

e
2πC2´ωt

2Q ´ e´
ωt
2Q

˙

”´

ω
2Q ` 4ωQ

¯

sinωdt`ωcosωdt
ı

(17)

The time response characteristics of the mean amplitude by the switched excitation are as follows:

A ptq “
Q

πC1

ˆ

e
πC2

Q ´ 1
˙

f0Q
mnω2

»

–1´ e´
pω´

C1´C2
C1

q

2Q t

fi

fl (18)

Refer to Appendix C for further details. Accordingly, when C1 “ 5, C2 “ 1 , the nominal
amplitude and the time constant are calculated as follows:

An “
Q

πC1

ˆ

e
πC2

Q ´ 1
˙

f0Q
mnω2 – 0.2

f0Q
mnω2 “ 0.994 µm (19)

τn “
2Q

ω´ C1´C2
C1

“ 318.316 s (20)

Through the above results, it is observed that the amplitude can be obtained by multiplying the
rate of the driving cycle against the entire operation cycle compared with the amplitude when the
continuous excitation is applied, and the time constants are almost same.

This is the important input data for electromechanical gains and design of controller.
The amplitude results are schematized as shown in Figure 3.
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Figure 3. The displacement output by switched harmonic excitation: (a) The control force input (N);
(b) The displacement output (t ď 40¨ 2π

ω s); (c) The displacement output (t ď 3000 s).

2.3. Verification of the Analytic Results through Simulations

To test the above interpretation results, the Matlab/Simulink SW was prepared as shown in
Figure 4 and the simulation was performed. It is observed that the results are as same as Figure 5 and
is identical when comparing with Figure 3.

Sensors 2016, 16, 555 7 of 22 

 

 
(a) 

 
(b) 

 
(c)

Figure 3. The displacement output by switched harmonic excitation: (a) The control force input (N); 
(b) The displacement output (ݐ ≤ 40 ∙ ଶ஠ன 	s); (c) The displacement output (ݐ ≤ 3000	s). 

2.3. Verification of the Analytic Results through Simulations 

To test the above interpretation results, the Matlab/Simulink SW was prepared as shown in 
Figure 4 and the simulation was performed. It is observed that the results are as same as Figure 5 and 
is identical when comparing with Figure 3. 

 
Figure 4. Simulation SW to verify the analytic results of the time response by switched excitation. 

0 1 2 3 4 5

x 10
-3

-1

-0.5

0

0.5

1

x 10
-6

t(sec)

f(
t)

 :
 N

0 1 2 3 4 5

x 10
-3

-1.5

-1

-0.5

0

0.5

1

1.5

x 10
-11

t(sec)

x(
t)

 :
 m

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0
0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

4 . 5

5

t i m e s ( s e c )

am
pl

itu
de

 o
f 

th
e 

ou
tp

ut
, 

x(
t)

 [
um

]

 

 

x ( t )  b y  h a r m o n i c  e x c i t a t i o n  fo r c e

x ( t )  b y  s w i t c h e d  e x c i t a t i o n  fo r c e

Figure 4. Simulation SW to verify the analytic results of the time response by switched excitation.



Sensors 2016, 16, 555 8 of 22

Sensors 2016, 16, 555 8 of 22 

 

(a) (b) 

 
(c)

Figure 5. The displacement output by switched harmonic excitation [Matlab/Simulink]: (a) The 
control force input (N); (b) The displacement output (ݐ ≤ 40 ∙ ଶ஠ன 	s); (c) The displacement output (ݐ ≤3000	s) (yellow: continuous/pink: switched excitation). 

2.4. Electromechanical Modeling between Resonator and Electrodes 

Before designing the signal processing and control circuit, the electromechanical modeling 
between resonator and electrodes must be done to estimate the capacitance change for different 
electrostatic forces. 

The gap between the resonator and the sensing (or driving) electrode block cannot be assumed 
as parallel plate simply. For the resonator, the 2nd vibration shape corresponding to a standing wave 
in the thin hemispherical shell should be considered. Therefore, in this article, the capacitance change 
and the changes in the electrostatic force are calculated considering the mode shape and modal force. 

According to Rayleigh, the mode equation for the mode shape analysis among the second 
vibration mode equations of the thin hemispherical shell of the resonator can be represented [10]: w = 2ܣ (2 + cos (ߙ tanଶ 2ߙ cosሾ2(߮ − ߮଴)ሿ sinሾ߱(ݐ − +଴)ሿݐ 2ܤ (2 + cos (ߙ tanଶ 2ߙ sinሾ2(߮ − ߮଴)ሿ cosሾ߱(ݐ −  ଴)ሿ (21)ݐ

where A, B is the 1st and 2nd wave amplitude, ߮଴  is the orientation of the wave relative to the 
resonator. w, α,φ is clear from Figure 6. 

 
Figure 6. The position of a point on the shell with the angular coordinates α, φ  in a Cartesian 
coordinate frame fixed to the resonator. 

Figure 5. The displacement output by switched harmonic excitation [Matlab/Simulink]: (a) The control
force input (N); (b) The displacement output (t ď 40¨ 2π

ω s); (c) The displacement output (t ď 3000 s)
(yellow: continuous/pink: switched excitation).

2.4. Electromechanical Modeling between Resonator and Electrodes

Before designing the signal processing and control circuit, the electromechanical modeling
between resonator and electrodes must be done to estimate the capacitance change for different
electrostatic forces.

The gap between the resonator and the sensing (or driving) electrode block cannot be assumed as
parallel plate simply. For the resonator, the 2nd vibration shape corresponding to a standing wave in
the thin hemispherical shell should be considered. Therefore, in this article, the capacitance change
and the changes in the electrostatic force are calculated considering the mode shape and modal force.

According to Rayleigh, the mode equation for the mode shape analysis among the second
vibration mode equations of the thin hemispherical shell of the resonator can be represented [10]:

w “ A
2 p2` cosαq tan2 α

2 cos r2 pϕ´ ϕ0qs sin rω pt´ t0qs

` B
2 p2` cosαq tan2 α

2 sin r2 pϕ´ ϕ0qs cos rω pt´ t0qs
(21)

where A, B is the 1st and 2nd wave amplitude, ϕ0 is the orientation of the wave relative to the resonator.
w,α,ϕ is clear from Figure 6.
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The mode shape calculated by inserting ϕ0 “ 0, A “ 1, B “ 0 to Equation (21) is as follows:

φ pα, ϕq “
1
2
p2` cosαq tan2 α

2
cos2ϕ (22)

The electrostatic capacitance C0 and capacitance changes by the displacement dC
dx in the sensing

electrode are induced as follows using above equation:

C0 “

ż α2

α1

ż ϕ2

ϕ1

ε pR´ d0q
2

d0
dαdϕ “

ε pR´ d0q
2

d0
pα2 ´ α1q pϕ2 ´ ϕ1q (23)

dC
dx
“

ż α2

α1

ż ϕ2

ϕ1

´
ε pR´ d0q

2 φ pα, ϕq

rd0 ` q ptq φ pα, ϕqs2
dϕdα¨

pα2 ´ α1q ` pϕ2 ´ ϕ1q

4π
(24)

where x ptq “ d0 ` q ptq φ pα, ϕq, q ptq is a modal amplitude. See Table 2 for the rest of the variables.
If Equation (22) is inserted to Equation (24), it is as follows:

dC
dx
– ´

ε pR´ d0q
2

2d2
0

¨
pα2 ´ α1q ` pϕ2 ´ ϕ1q

4π

ż α2

α1

p2` cosαq tan2 α

2
dα

ż ϕ2

ϕ1

cos2ϕdϕ (25)

ż ϕ2

ϕ1

cos2ϕdϕ “
1
2
rsin2ϕsϕ2

ϕ1
(26)

ż α2

α1

p2` cosαq tan2 α

2
dα “

„

4tan
α

2
´ 2tanα´

2
sinα

´ sinα

α2

α1

(27)

If Equations (26) and (27) is inserted to Equation (25), it is as follows:

dC
dx
– ´

ε pR´ d0q
2

4d2
0

¨
pα2 ´ α1q ` pϕ2 ´ ϕ1q

4π
rsin2ϕsϕ2

ϕ1

„

4tan
α

2
´ 2tanα´

2
sinα

´ sinα

α2

α1

(28)

The calculating the control force f by the control voltage vac applied to the electrode block is
as follows:

d f
dvac

–
ε pR´ d0q

2
pVbias ` vacq

4d2
0

¨
pα2 ´ α1q ` pϕ2 ´ ϕ1q

4π

ż α2

α1

p2` cosαq tan2 α

2
dα

ż ϕ2

ϕ1

cos2ϕdϕ (29)

Equations (26) and (27) are inserted to Equation (29), it can be arranged as follows:

d f
dvac

–
εpR´d0q

2
pVbias`vacq

4d2
0

¨
pα2´α1q`pϕ2´ϕ1q

4π rsin2ϕsϕ2
ϕ1

“

4tan α
2 ´ 2tanα´ 2

sinα ´ sinα
‰α2

α1
(30)

The equation related to the amplitude of resonator by the control force is as follows:

dx
d f
“

Q
mnω2 (31)

The equation of the change amplifier output by the change in the amplitude is as follows:

dvca

dC
“ ´

1
C f

Vbias (32)

By inserting the values in Table 2 into Equations (23), (28), (30)–(32), the electromechanical gains
in Table 3 can be obtained:
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Table 2. The design variables for calculating the electromechanical gains.

Design Variables Values

Radius of Resonator R “ 15.3 mm
Nominal gap between resonator and electrode block d0 “ 120µm

Dielectric permittivity ε “ 8.85ˆ 10´12 F{m
Electrodes angles in azimuth ϕ1 “ ´18˝, ϕ2 “ 18˝

Electrodes angles in elevation α1 “ 78.2˝, α2 “ 90˝

Bias voltage Vbias “ 200 V
Quality factor Q “ 7ˆ 106

Modal mass mn “ 0.85ˆ 10´3 kg
Resonant frequency ω “ 4.4ˆ 104 rad{s

Feedback capacitance of the charge amp C f “ 22 pF

Table 3. The electromechanical gains.

Case of the Parallel Plate Capacitor Case of Considering the Mode Shape of Resonator

C0 3.8 pF 3.8 pF
dC
dx 17.5ˆ 10´9 F{m 13.9ˆ 10´9 F{m
d f

dvac
3.5ˆ 10´6 N{V 2.78ˆ 10´6 N{V

dx
d f 4.26 m{N 4.26 m{N
dvac
dC 9.1ˆ 1012 V{F 9.1ˆ 1012 V{F

If 5-cycles operation multi-flexing method, where C1 “ 5 , C2 “ 1, is applied and four electrode
blocks are assigned to the signals of x-axis and y-axis, the control force, the amplitude and the output
voltage of charge amplifier by control voltage of 100 mVac are follows:

f |vac“100mV “
1
5
ˆ 2.78ˆ 10´6 ˆ 4ˆ 100ˆ 10´3 “ 2.224ˆ 10´7 pNq (33)

x|vac“100mV “ 2.224ˆ 10´7 ˆ 4.26 “ 0.9474 pµmq (34)

vca|vac“100mV “ 9.1ˆ 1012 ˆ 17.5ˆ 10´9 ˆ 0.9474ˆ 10´6 “ 150.7 pmVq (35)

In the measurement results after making actual sensor, the amplitude by the control voltage of
100 mV was 1.02 µm and the output voltage of the charge amplifier was 143 mV showing 5.1% and
6.9% of differences, respectively, which proves that the design results are valid when considering the
error in the process and measurement. Based on the electromechanical gains mentioned above, the
proper signal processing and control circuit will be designed.

3. Design of the Signal Processing and Control Algorithm

A HRG can be operated as an angular velocity sensor or an angular sensor with a single sensor
without structural change. In this study, FTR mode (or rate gyro mode), which has dynamic range
limitations but excellent noise and resolution characteristics, will be handled. FTR mode is driven by
the closed loop. In the FTR mode, the driving-axis is excited to remain as the reference amplitude and
the sensing-axis generated by input of angular velocity controls the amplitude to be 0. In this moment,
the force required to remove the sensing-axis vibration is referred to as the rebalance force and as it is
proportional to the angular velocity input, the angular velocity input is estimated by multiplying this
force by the conversion scale factor [11].

As shown in Figure 7, if the analog voltage output comes out from the pre-amplifier, it is
transmitted to the FPGA in the form of a digital signal through the filter and ADC. It is converted
to the in-phase, quadrature signals of x- and y-axis through the demodulation in the FPGA. These
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signals are calculated from the pendulum variables required for control and digital PI control outputs
for amplitude, quadrature, rate and phase control are generated in the DSP. If the control outputs are
delivered to the FPGA, the driving signal is generated by the modulation, which becomes an analog
control voltage through the DAC controlling the HRG. In addition, in the DSP, it was designed to
output the angular velocity by estimating the input angular velocity with rate control output.
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3.1. Design of the Signal Processing Algorithm

In this study, the ADC sampling frequency fs was designed with 512 times the resonance frequency.
If the FPGA clock frequency fclk is assumed as 2 fs for the convenience and the sensing and control
timing diagram is schematized as shown in Figure 8 and Table 4. In the actual algorithm, fclk “ ns fs

(ns is an integer). The reference phase φ is assumed to be 0, which means that sinωt, cosω t are
used for the demodulation signal. In the time diagram, [i] indicates i-th operation period. [i-1]
indicates previous operation period. If x ptq is expressed as cxcosωt` sxsinωt and y ptq is expressed
as cycosωt` sysinωt, Direct Digital Synthesis (DDS) is used to obtain cx, sx, cy and sy. As the phase
of DDS and the demodulation reference phase are same, the cosine and sine output of the DDS is
multiplied by x ptq as is. As y ptq is reversed in the signal intended for demodulation originally and the
phase of DDS has difference of π (180˝) from the demodulation reference phase, it is multiplied to y ptq
as is like x ptq.

Sensors 2016, 16, 555 11 of 22 

 

signals are calculated from the pendulum variables required for control and digital PI control outputs 
for amplitude, quadrature, rate and phase control are generated in the DSP. If the control outputs are 
delivered to the FPGA, the driving signal is generated by the modulation, which becomes an analog 
control voltage through the DAC controlling the HRG. In addition, in the DSP, it was designed to 
output the angular velocity by estimating the input angular velocity with rate control output. 

 

Figure 7. HRG signal processing and control circuit block diagram. 

3.1. Design of the Signal Processing Algorithm 

In this study, the ADC sampling frequency ௦݂  was designed with 512 times the resonance 
frequency. If the FPGA clock frequency ௖݂௟௞ is assumed as 2 ௦݂ for the convenience and the sensing 
and control timing diagram is schematized as shown in Figure 8 and Table 4. In the actual algorithm, ௖݂௟௞ = ݊௦ ௦݂  ( ݊௦  is an integer). The reference phase ϕ  is assumed to be 0, which means that sin߱ݐ , cos߱ݐ are used for the demodulation signal. In the time diagram, [i] indicates i-th operation 
period. [i-1] indicates previous operation period. If x(ݐ) is expressed as ܿ௫ cos߱ݐ + ௫ݏ sin߱ݐ and y(ݐ)  is expressed as ܿ௬ cos߱ݐ + ௬ݏ sin߱ݐ , Direct Digital Synthesis (DDS) is used to obtain ܿ௫, ,௫ݏ ܿ௬	and	ݏ௬. As the phase of DDS and the demodulation reference phase are same, the cosine and 
sine output of the DDS is multiplied by x(ݐ) as is. As y(ݐ) is reversed in the signal intended for 
demodulation originally and the phase of DDS has difference of π (180°) from the demodulation 
reference phase, it is multiplied to y(ݐ) as is like x(ݐ). 

t

f_
cl

k
D
D

S
_D

em
o
d

f_
s

P
re

-
a
m

p.
M

o
d
u
la

ti
o
n

Reference phase

t

t

t

t

t

9
0

o

C
lo

ck
C

yc
le

C
lo

c
k

t

D
e
m

od
.

ADC
delay

t

C
u
rr
e
nt

P
er

io
d

t

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

]1[ iN

][ix ][iy

]1,[ iiN x ],[ iiN y

X-sensing Y-sensing

X-control Y-control

D
D

S
_M

o
d

t

 
Figure 8. HRG sensing and control signal time diagram. Figure 8. HRG sensing and control signal time diagram.



Sensors 2016, 16, 555 12 of 22

Table 4. The update period of control commands.

Control Command Designation The Period

Nφ Phase control 1 operation period

Na Amplitude control X-control: update after X-sensing
Nx “ f

`

cx ris , sx ris , cy ri´ 1s , sy ri´ 1s
˘

Y-control: update after Y-sensing
Ny “ f

`

cx ris , sx ris , cy ris , sy ris
˘

Nq Quadrature control

Nr Rate control

Since x ptq and y ptq are measured discontinuously by the multi-flexing, cx, sx, cy and sy cannot be
calculated using conventional LPF. Therefore they will be calculated averaging the sensing signal as in
the equations below:

cx «
2

Ns

Ns
ÿ

i“1

x ptiq cos ωti, sx «
2

Ns

Ns
ÿ

i“1

x ptiq sin ωti (36)

cy «
2

Ns

Ns
ÿ

i“1

y ptiq cos ωti, sy «
2

Ns

Ns
ÿ

i“1

y ptiq sin ωti (37)

where Ns is the number of FPGA clocks for sampling cycle (= 512).
It was designed that the phase delay φcorr of the electronic circuit is compensated in the modulation

stage of control command calculated through the PI controller. DDS_Mod cosine and sine outputs
correspond to cos pωt` φcorrq and ´sin pωt` φcorrq, respectively. The internal frequency of FPGA is
generated in the Numerical Controlled Oscillator (NCO). This NCO and the block including the sine
and cosine wave Look-Up Table (LUT) are referred to as the DDS. DDS, which generates the signal
required for demodulation and modulation, is composed of phase accumulator, phase quantizer and
LUT as shown in Figure 9. In Figure 9, the equation related of DDS clock frequency fclk, accumulator
bit number N and phase increment value ∆θ and the calculus of the DDS frequency resolution ∆f are
as follows:

fout “
fclk∆θ

2N Hz, ∆f “
fclk
2N Hz (38)
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The data stored in LUT are sin
´

n 2π
2M

¯

and cos
´

n 2π
2M

¯

and n is the integer satisfying

n P
“

0, 2M ´ 1
‰

. For DDS output for demodulation, the phase offset is applied and it was designed to
add Ncorr obtained by below acquisition equation to the address bit number M:

Ncorr “
2M

2π
ˆ θcorr (39)
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Figure 10 shows the entire motion simulation results of FPGA signal processing algorithm
explained so far.Sensors 2016, 16, 555 13 of 22 
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3.2. Design of the Control Algorithm

The control algorithm is designed to pursue the ideal gyro motion without flaw. In this design,
the definition of IEEE Std 1431 Annex B (D. Lynch) is used [12]. In the case of a shell resonator, which
has no damping and the elasticity is axially symmetrical, since E and Q are not changed regardless
of pattern angle θ and orbit phase φ1, these two invariants are used as amplitude and quadrature
control variable, respectively. In the FTR mode, S and Q are used as rate and phase control variable,
respectively. The control variables are shown in Table 5, the control commands are PI controller outputs
and the unit is bits.

Table 5. The design of control variables.

Control variable Formula Designation Control Command Target Value

E a2 ` q2 Amplitude Na E0 “ 1 µm2

Q 2aq Quadrature Nq Q0 “ 0 µm2

S
`

a2 ´ q2˘ sin2θ Rate Nr S0 “ 1 µm2

L ´
`

a2 ´ q2˘ sin2φ1 Phase Nφ L0 “ 0 µm2

The relation between the demodulated signal (cx, sx, cy, sy) and the control variables in Table 5 is
follows [12]:

c2
x ` s2

x ` c2
y ` s2

y “ a2 ` q2 ” E (40)

2
`

cxsy ´ cysx
˘

“ 2aq ” Q (41)

c2
x ` s2

x ´ c2
y ´ s2

y “
´

a2 ´ q2
¯

cos2θ ” R (42)

2
`

cxcy ` sxsy
˘

“

´

a2 ´ q2
¯

sin2θ ” S (43)

2
`

cxsx ` cysy
˘

“ ´

´

a2 ´ q2
¯

sin2φ1 ” L (44)
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θ “
1
2

tan´1 S
R

(45)

φ1 “ ´
1
2

sin´1 L
a

E2 ´Q2
(46)

As above, if the control variables are calculated, the resonant frequency must be sought through
PLL and the amplitude, quadrature and rate digital control force must be calculated through PI control.
The calculation results by referring to Figure 11 and Table 6 are Equations (47) and (48). When the
DAC scale factor is kDA(V/bit) and the voltage-to-force scale factor is k f c(force/volt.), Fx “ k f ckDANx,
Fy “ k f ckDANy.
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Table 6. Components of the control forces.

Control
Variable

Control Force (Digital
Control Command) Input Phase Nx Component Ny Component

E Fa pNaq ´sin pωt` φcorrq Nacosθ Nasinθ
Q Fq

`

Nq
˘

cos pωt` φcorrq ´Nqsinθ Nqcosθ
S Fr pNrq ´sin pωt` φcorrq ´Nrsinθ Nrcosθ

Nx ptq “ ´ pNacosθ ´ Nrsinθq sin pωt` φcorrq ´ Nqsinθcos pωt` φcorrq (47)

Nx ptq “ ´ pNasinθ ` Nrcosθq sin pωt` φcorrq ` Nqcosθcos pωt` φcorrq (48)

The error for PI control is calculated as shown in Table 7. For integral, the trapezoidal rule is
used. It should be noted that for the phase control, the frequency input must be reduced when the
phase error is negative. For improving stability and compensating the truncation error, the limiter and
summation block are applied to the controller.

Table 7. Design of PI Controller.

Control Variable Error Command PI Control Output

E ea “ E0 ´ E Na Nk “ Nk´1 ` KP
`

ek ´ ek´1
˘

`
Ts

2TI

`

ek ` ek´1
˘

Q eq “ ´Q Na where
KP is the Proportional gain
TI is the Integral time
Ts is sampling time (=1{ fs)

S er “ S0 ´ S Na

L eφ “ L Na
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3.3. Numerical Verification of the Algorithm through Simulations

Based on the design results of Sections 2 and 3 the Matlab/Simulink simulation SW is employed
as shown in Figure 12. The target bandwidth by control loop is as shown in Table 8. The process of
control variables is approximated by a first- or second-order plus delay model (E & S: first-order, Q & L:
second-order). The controller tunings are based on these models by using the recommended SIMC-PID
method [13]. Table 9 shows the comparison between the control gains satisfying the bandwidth in the
simulation program and the control gains in the actual DSP.

Table 8. The bandwidth goals of control loop.

Control Loop Phase (PLL) Amplitude Quadrature Rate

Bandwidth (Hz) 7.5–12.5 1–5 1–5 7.5–12.5

Table 9. Comparison of controller gains for simulation and DSP uploading program.

Design Variables of the Controller Matlab/Simulink Simulation Ver. DSP Uploading Program Ver.

Frequency 7.1 kHz 7.12605 kHz
Target Amp.(E0) 512 bits (scaling) 540 bits (scaling)

Phase Delay 1820 bits 1682 bits
Phase control P gain 6000 bits 4000 bits
Phase control I gain 10 bits 25 bits

Amplitude control P gain 725 bits 700 bits
Amplitude control I gain 1 bits 1 bits

Quadrature control P gain 800 bits 700 bits
Quadrature control I gain 6 bits 1 bits

Rate control P gain 400,000 bits 400,000 bits
Rate control I gain 300 bits 300 bits
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The simulation results are shown in Figures 13 and 14. The amplitude control variable is converged
to the target amplitude E0 “ 512 bits

`

“ 1 µm2˘ and the rate control variable is converged well to the
target azimuth angle θ0 “ 45˝ pS0 “ 512 bitsq. An estimate of the input rate is obtained by taking the
difference of demodulated two forces, while the quadrature is nulled out [13].
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Figure 13. Matlab/Simulink simulation results; control varialbes: (a) the amplitude and quadrature
control variables; (b) the rate and phase control variables.
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Figure 14. Matlab/Simulink simulation results: (a) the digital optputs to control; (b) an estimate of the
input rate.

3.4. Experimental Verification of the Algorithm

Figure 15 shows the test set to test the design and to conduct the gyro performance test linking
with electronic board equipped with sensor, signal processing and control algorithm. First of all, the
gyro parameters (Q, ∆Q, f, ∆f) were measured after tuning the PI control gain suitable for sensor.
When the control is stabilized, the amplitude control is turned off and the Q-factor is calculated by
measuring the time constant by the target azimuth angle θ. At this time, ∆Q can be estimated from
the difference between the maximum value and the minimum value. The test results are shown in
Table 10 and Figure 16a. Then, if only the quadrature and rate control are turned off while maintaining
the phase control and the amplitude control, θ is vibrated with certain cycle as shown in Figure 16b
and this vibration frequency is the resonance frequency split ∆f. As shown in Figure 16b, in case of test
sample, the vibration cycle is approximately 55 s and the frequency split ∆f is approximately 18 mHz.
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Table 10. The measures of time constant and quality factor in according to target angle.

Target Azimuth Angle θ Time Constant τ Target Value

–90˝ 387 s 8.6635 ˆ 106

´60˝ 424 s 9.4987 ˆ 106

´30˝ 324 s 7.2620 ˆ 106

0˝ 281 s 6.2853 ˆ 106

30˝ 328 s 7.3470 ˆ 106

60˝ 374 s 8.3804 ˆ 106

90˝ 335 s 7.4885 ˆ 106
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Figure 16. A estimate of the Q, ∆Q and ∆f by using the controllers: (a) Measured Q-factor in according
to target angle θ; (b) Vibration of the target angle θ.

Next, the gyro scale factor and the bias were measured using the rate table and the bias instability
and Angle Random Walk (ARW) measuring test were performed within a sound absorbing chamber.
Bias instability and ARW are calculated through Allan variance using the data that recorded the gyro
output for more than 8 h after stabilizing the gyro in a state isolated from the disturbance. As shown
in Figure 17, in case of the sample used in this study, the bias instability is 0.07˝/h and ARW is
0.006˝/(rt¨h).
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HRG is one of the kinds of CVG, which measures the angle or angular velocity using the Coriolis 

force produced by the rotational motion. The rotational angle or angular velocity can be measured 

using the principle that the standing wave generated in the quartz resonator in the form of 

hemisphere shell performs the procession motion. 

HRG technology development is underway in many advanced countries and the next generation 

HRGs, which can materialize the objectives of subminiature size, high precision and high reliability 

with the 2-piece HRG system is being applied with multi-flexing method and differential control 

development in the United States, France, etc. 

Therefore, in this article, a controller design suitable for a 2-piece HRG system was performed. 

To design the controller, the electromechanical modeling of the 2-piece HRG system was  

pre-performed. To interpret the vibration characteristics due to the switched discontinuous excitation 

force, the Duhamel integral method was applied. In addition the electromechanical gains were 

calculated considering the mode shape of the thin hemispherical shell. It was proven that the design 

results are valid by showing an error within 7% in the comparison between design results and 

measurement results of the amplitude and charge amplifier output. 

Based on such modeling, the signal processing based on the multi-flexing method and 

differential control algorithm were designed. The sensing and driving cycles of x- and y-axis were 

divided by time with five operation cycles using a common element. The sensing signals generate the 

control inputs signal through the sampling and demodulation processes. The controller output 

generates the final control voltages through the modulation processes and the phase delay 

compensation algorithm was applied in the modulation process. In FTR mode, Control is composed 

of phase, amplitude, quadrature and rate control and the pendulum variables are used as control 

variables. The designed algorithm was verified through Matlab/Simulink simulation and in the 

results, the bandwidth of the amplitude and quadrature control were satisfactory, at 1–5 Hz, and the 

bandwidth of the rate and phase control were satisfactory at 7.5–12.5 Hz. Finally, the electronic circuit 

was made by equipping the algorithm in FPGA and DSP and that it satisfied with the target 

bandwidth was verified through the experiment. In addition, through the sensor linking test, the 

error identification was performed and it was conformed that the bias instability and ARW are 

approximately 0.07°/h and 0.006°/(rt·h), respectively by performing the gyro performance test. 
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Figure 17. Test results to measure the bias instability and ARW: (a) Gyro rate output for 15 h in
the sound absorbing chamber; (b) Allan variance analysis result for the estimate of bias instability
and ARW.

4. Conclusions

HRG is one of the kinds of CVG, which measures the angle or angular velocity using the Coriolis
force produced by the rotational motion. The rotational angle or angular velocity can be measured
using the principle that the standing wave generated in the quartz resonator in the form of hemisphere
shell performs the procession motion.

HRG technology development is underway in many advanced countries and the next generation
HRGs, which can materialize the objectives of subminiature size, high precision and high reliability
with the 2-piece HRG system is being applied with multi-flexing method and differential control
development in the United States, France, etc.

Therefore, in this article, a controller design suitable for a 2-piece HRG system was performed.
To design the controller, the electromechanical modeling of the 2-piece HRG system was pre-performed.
To interpret the vibration characteristics due to the switched discontinuous excitation force, the
Duhamel integral method was applied. In addition the electromechanical gains were calculated
considering the mode shape of the thin hemispherical shell. It was proven that the design results are
valid by showing an error within 7% in the comparison between design results and measurement
results of the amplitude and charge amplifier output.

Based on such modeling, the signal processing based on the multi-flexing method and differential
control algorithm were designed. The sensing and driving cycles of x- and y-axis were divided by
time with five operation cycles using a common element. The sensing signals generate the control
inputs signal through the sampling and demodulation processes. The controller output generates the
final control voltages through the modulation processes and the phase delay compensation algorithm
was applied in the modulation process. In FTR mode, Control is composed of phase, amplitude,
quadrature and rate control and the pendulum variables are used as control variables. The designed
algorithm was verified through Matlab/Simulink simulation and in the results, the bandwidth of the
amplitude and quadrature control were satisfactory, at 1–5 Hz, and the bandwidth of the rate and
phase control were satisfactory at 7.5–12.5 Hz. Finally, the electronic circuit was made by equipping
the algorithm in FPGA and DSP and that it satisfied with the target bandwidth was verified through
the experiment. In addition, through the sensor linking test, the error identification was performed
and it was conformed that the bias instability and ARW are approximately 0.07˝/h and 0.006˝/(rt¨h),
respectively by performing the gyro performance test.
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Appendix A

An ideal Coriolis Vibrating Gyroscope (CVG) is a two-dimensional isotropic mass-spring system
vibrating with the natural frequencies, ω1, ω2. In the presence of the angular velocity of system about
the vertical axis of x1-axis and y1-axis (=Ω), the equations of motion of an ideal CVG are as follows [8]:

..
x1 ´ 2kΩ

.
y1 ´ k

.
Ωy1 `

´

ω2
2 ´ k2Ω2

¯

x1 “ fx1 (A1)

..
y1 ` 2kΩ

.
x1 ` k

.
Ωx1 `

´

ω2
1 ´ k2Ω2

¯

y1 “ fy1 (A2)

where k is the Brian coefficient(~0.3), fx1 fy1 is the linear acceleration of the x1-axis and y1-axis, Ω2,
.

Ω are the centrifugal and angular acceleration terms. In the presence of the angle by the unbalance
between the x-axis and the major axis of resonance mode (=θωq, assuming that the x-axis and y-axis
are assumed the axes where the excitation and sensing electrodes are aligned, the relations between x1,
y1 axes and x, y axes are:

«

x1

y1

ff

“

«

cosθω sinθω

´sinθω cosθω

ff«

x
y

ff

(A3)

Equations (A1) and (A2) can be arranged as follows:

..
x´ 2kΩ

.
y´ k

.
Ωy`

˜

ω2
1 `ω2

2
2

´ k2Ω2

¸

x´
ω2

1 ´ω2
2

2
pxcos2θω ` ysin2θωq “ fx (A4)

..
y` 2kΩ

.
x` k

.
Ωx`

˜

ω2
1 `ω2

2
2

´ k2Ω2

¸

y`
ω2

1 ´ω2
2

2
p´xsin2θω ` ycos2θωq “ fy (A5)

In the presence of the mismatch angle between the x-axis and the major axis of the linear
damping(=θτ), the Equations (A4) and (A5) are as follows by coordinate transformation:

..
x´ 2kΩ

.
y´ k

.
Ωy`

´

1
τ1
` 1

τ2

¯ .
x`

´

1
τ1
´ 1

τ2

¯

` .
xcos2θτ `

.
ysin2θτ

˘

`

ˆ

ω2
1`ω2

2
2 ´ k2Ω2

˙

x

´
ω2

1´ω2
2

2 pxcos2θω ` ysin2θωq “ fx

(A6)

..
y` 2kΩ

.
x` k

.
Ωx`

´

1
τ1
` 1

τ2

¯ .
y´

´

1
τ1
´ 1

τ2

¯

`

´
.
xsin2θτ `

.
ycos2θτ

˘

`

ˆ

ω2
1`ω2

2
2 ´ k2Ω2

˙

y

`
ω2

1´ω2
2

2 p´xsin2θω ` ycos2θωq “ fy

(A7)

where τ1, τ2 are energy dissipation time constants. Since the coefficients are defined as follows,
Equations (A6) and (A7) can be arranged as Equation (A9):

ω2 “
ω2

1 `ω2
2

2
,

1
τ
“

1
2

ˆ

1
τ1
`

1
τ2

˙

,ω∆ω “
ω2

1 ´ω2
2

2
, ∆

ˆ

1
τ

˙

“
1
τ1
´

1
τ2

(A8)

« ..
x
..
y

ff

`

«

C11 C12 ´ 2kΩ
C21 ` 2kΩ C22

ff« .
x
.
y

ff

`

«

K11 K12

K21 K22

ff«

x
y

ff

“

«

fx

fy

ff

(A9)

where:

C11 “
2
τ
` ∆

ˆ

1
τ

˙

cos2θτ , C12 “ C21 “ ∆
ˆ

1
τ

˙

sin2θτ , C22 “
2
τ
´ ∆

ˆ

1
τ

˙

cos2θτ

K11 “ ω2 ´ω∆ωcos2θω, K12 “ K21 “ ´ω∆ωsin2θω, K22 “ ω2 `ω∆ωcos2θω
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Appendix B

Assuming that xct ptq “
r t

C1T0pn´1q f pτq h pt´ τq dτ, xpt ptq “
r C2T0`C1T0pk´1q

C1T0pk´1q f pτq h pt´ τq dτ, the
calculation results are follows. As in this moment, the Q-factor is high, we can assume that ωd – ω:

xct ptq “
f0

mnωd
e´

ω
2Q t

ż t

C1T0pn´1q
cosωτ e

ω
2Q τsinωd pt´ τq dτ (B1)

xct ptq “
f0

mnωd
e´

ω
2Q t

´

sinωdt
şt

C1T0pn´1q e
ω

2Q τcosωτcosωdτdτ´
şt

C1T0pn´1q e
ω

2Q τcosωτsinωdτdτ
¯

(B2)

ż t

C1T0pn´1q
e

ω
2Q τcosωτcosωdτdτ “

»

—

–

e
ω

2Q τcosωτ
´

ω
2Q

¯2
` 4ω2

ˆ

ω

2Q
cosωτ` 2ωsinωt

˙

`
4ωQe

ω
2Q τ

´

ω
2Q

¯2
` 4ω2

fi

ffi

fl

t

C1T0

“
e

ω
2Q t

´

ω
2Q

¯2
` 4ω2

ˆ

4ωQ`
ω

2Q
cos2ωt`ωsin2ωt

˙

´

´

ω
2Q ` 4ωQ

¯

e
C1πpn´1q

Q

´

ω
2Q

¯2
` 4ω2

(B3)

ż t

C1T0pn´1q
e

ω
2Q τcosωτsinωdτdτ “

1
2

ż t

C1T0pn´1q
e

ω
2Q τsin2ωτdτ “

1
2

»

—

–

e
ω

2Q τ
´

ω
2Q sin2ωτ´ 2ωcos2ωτ

¯

´

ω
2Q

¯2
` 4ω2

fi

ffi

fl

t

C1T0

“
1

´

ω
2Q

¯2
` 4ω2

„

e
ω

2Q t
ˆ

ω

4Q
sin2ωt´ωcos2ωt

˙

`ωe
C1πpn´1q

Q



(B4)

Equations (B3) and (B4) are inserted to Equation (B2), it can be arranged as follows:

xct ptq “
f0{mnωd

´

ω
2Q

¯2
` 4ω2

„

p4ωQsinωt`ωcosωtq
ˆ

1´ e
2C1πpn´1q´ωt

2Q

˙

´
ω

2Q
sinωt e

2C1πpn´1q´ωt
2Q



(B5)

xpt ptq “
f0

mnωd
e´

ω
2Q t

´

sin ωdt
r C2T0`C1T0pk´1q

C1T0pk´1q e
ω

2Q τcos ωτcos ωdτdτ´ cos ωdt
r C2T0`C1T0pk´1q

C1T0pk´1q e
ω

2Q τcos ωτsinωdτdτ
¯

(B6)

ż C2T0`C1T0pk´1q

C1T0pk´1q
e

ω
2Q τcosωτcosωdτdτ “

e
πrC2`C1pk´1qs

Q

´

ω
2Q

¯2
` 4ω2

ˆ

4ωQ`
ω

2Q

˙

´

´

ω
2Q ` 4ωQ

¯

e
C1πpk´1q

Q

´

ω
2Q

¯2
` 4ω2

“

´

ω
2Q ` 4ωQ

¯

e
C1πpk´1q

Q

´

ω
2Q

¯2
` 4ω2

ˆ

e
C2π

Q ´ 1
˙

(B7)

şC2T0`C1T0pk´1q
C1T0pk´1q e

ω
2Q τcosωτcosωdτdτ “ 1

´

ω
2Q

¯2
`4ω2

„

´ωe
πrC2`C1pk´1qs

Q `ωe
πC1pk´1q

Q



“ ωe
C1pk´1q

Q
´

ω
2Q

¯2
`4ω2

ˆ

1´ e
πC2

Q

˙

(B8)

Equations (B7) and (B8) are inserted to Equation (B6), it can be arranged as follows:

xpt ptq “
f0{mnωd

´

ω
2Q

¯2
` 4ω2

e
πC1pk´1q

Q

ˆ

e
2πC2´ωt

2Q ´ e´
ωt
2Q

˙„ˆ

ω

2Q
` 4ωQ

˙

sinωdt`ωcosωdt


(B9)

Appendix C

The time response of SDOF spring-damper system by the switched excitation can be arranged
as follows:
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Case a. C1T0 pn´ 1q ă t ď C2T0 ` C1T0 pn´ 1q , n “ 1, 2, ¨ ¨ ¨ ,8

x ptq “
f0

mnωd
´

ω
2Q

¯2
`4ω2

#

k“n´1
ř

k“1
e

πC1pk´1q
Q

ˆ

e
2πC2´ωt

2Q ´ e´
ωt
2Q

˙

”´

ω
2Q ` 4ωQ

¯

sinωdt`ωcosωdt
ı

`

„

p4ωQsinωt`ωcosωtq
ˆ

1´ e
2πC1pn´1q´ωt

2Q

˙

´ ω
2Q sinωt e

2πC1pn´1q´ωt
2Q

*

(C1)

Case b. C2T0 pn´ 1q ` C1T0 ă t ď 2C1T0n, n “ 1, 2, ¨ ¨ ¨ ,8

x ptq “
f0

mnωd
´

ω
2Q

¯2
`4ω2

k“n
ř

k“1
e

πC1pk´1q
Q

ˆ

e
2πC2´ωt

2Q ´ e´
ωt
2Q

˙

”´

ω
2Q ` 4ωQ

¯

sinωdt`ωcosωdt
ı

(C2)

Assumed that Cx “

f0
mnωd

´

ω
2Q

¯2
`4ω2

, 1 ` 1
8Q2 – 1,

c

´

1
2Q ` 4Q

¯2
` 1 –

a

16Q2 ` 1(Q " 1), The

equation related A ptq is arranged as follows:

Case a. C1T0 pn´ 1q ă t ď C2T0 ` C1T0 pn´ 1q , n “ 1, 2, ¨ ¨ ¨ ,8

A ptq “ Cxω
a

16Q2 ` 1

«

k“n´1
ÿ

k“1

ˆ

e
πC2

Q ´ 1
˙

e
2πC1pk´1q´ωt

2Q `

ˆ

1´ e
2πC1pn´1q´ωt

2Q

˙

ff

(C3)

Case b. C2T0 pn´ 1q ` C1T0 ă t ď 2C1T0n, n “ 1, 2, ¨ ¨ ¨ ,8

A ptq “ Cxω
a

16Q2 ` 1
k“n
ÿ

k“1

ˆ

e
πC2

Q ´ 1
˙

e
2πC1pk´1q´ωt

2Q (C4)

Based on the above equations, the mean amplitude A ptq while 0 ă t ď C1T0 is calculated
as follows:

A pt ď C1T0q “ Cxω
a

16Q2 ` 1
Q

πC1

ˆ

e
πC2

Q ´ 1
˙„

1´ e´
ωt
2Q

ˆ

1`
C1 ´ C2

2C1Q
t
˙

(C5)

The amplitude while t ď C1T0 ` C2T0 is as follows:

A pt ď C1T0 ` C2T0q “ Cxω
a

16Q2 ` 1
"

Q
πC1

ˆ

e
πC2

Q ´ 1
˙

”

1´ e´
ωt
2Q

´

1` C1´C2
2C1Q t

¯ı

`

ˆ

1´ e
2πC1´ωt

2Q

˙*

(C6)

The amplitude while t ď 2C1T0 is as follows:

A pt ď 2C2T0q “ Cxω
a

16Q2 ` 1
"

Q
πC1

ˆ

e
πC2

Q ´ 1
˙

”

1´ e´
ωt
2Q

´

1` C1´C2
2C1Q t

¯ı

`

ˆ

e
πC2

Q ´ 1
˙

e
2πC1´ωt

2Q

*

(C7)

Based on the above equations, the mean amplitude A ptq while 0 ă t ď 2C1T0 is calculated
as follows:

A pt ď 2C1T0q “ Cxω
a

16Q2 ` 1 Q
πC1

ˆ

e
πC2

Q ´ 1
˙"

1´ e´
ωt
2Q

„

1` C1´C2
2C1Q t` 1

2

´

C1´C2
2C1Q t

¯2
*

(C8)

With the same method, the mean amplitude by operation cycle is calculated as follows:

A pt ď 3C1T0q “ Cxω
a

16Q2 ` 1 Q
πC1

ˆ

e
πC2

Q ´ 1
˙"

1´ e´
ωt
2Q

„

1` C1´C2
2C1Q t` 1

2

´

C1´C2
2C1Q t

¯2
` 1

6

´

C1´C2
2C1Q t

¯3
*

(C9)

A pt ď nC1T0q “ Cxω
a

16Q2 ` 1 Q
πC1

ˆ

e
πC2

Q ´ 1
˙"

1´ e´
ωt
2Q

„

1` C1´C2
2C1Q t` 1

2

´

C1´C2
2C1Q t

¯2
` ¨ ¨ ¨ ` 1

n!

´

C1´C2
2C1Q t

¯n
*

(C10)
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The Taylor series included in above equation can be expressed briefly as follows:

1`
C1 ´ C2

2C1Q
t`

1
2

ˆ

C1 ´ C2

2C1Q
t
˙2
` ¨ ¨ ¨ `

1
n!

ˆ

C1 ´ C2

2C1Q
t
˙n
“ e

pC1´C2q{C1
2Q t (C11)

Therefore, the time response characteristics of the mean amplitude by the switched excitation are
as follows:

A ptq “
Q

πC1

ˆ

e
πC2

Q ´ 1
˙

f0Q
mnω2

»

–1´ e´
pω´

C1´C2
C1

q

2Q t

fi

fl (C12)
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