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Abstract:

 A gyrowheel (GW) is a kind of electronic electric-mechanical servo system, which can be applied to a spacecraft attitude control system (ACS) as both an actuator and a sensor simultaneously. In order to solve the problem of two-dimensional spacecraft angular rate sensing as a GW outputting three-dimensional control torque, this paper proposed a method of an extended high gain observer (EHGO) with the derived GW mathematical model to implement the spacecraft angular rate estimation when the GW rotor is working at large angles. For this purpose, the GW dynamic equation is firstly derived with the second kind Lagrange method, and the relationship between the measurable and unmeasurable variables is built. Then, the EHGO is designed to estimate and calculate spacecraft angular rates with the GW, and the stability of the designed EHGO is proven by the Lyapunov function. Moreover, considering the engineering application, the effect of measurement noise in the tilt angle sensors on the estimation accuracy of the EHGO is analyzed. Finally, the numerical simulation is performed to illustrate the validity of the method proposed in this paper.
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1. Introduction


The micro-spacecraft is a major trend in the development of space technology, since it has many advantages, such as being light weight, having low power, low cost and high integration [1]. However, when designing the micro-spacecraft, the researchers meet some issues, such as stringent mass, power and volume constraints, which significantly impact cost [2]. The attitude control system (ACS) in a micro-spacecraft, which mainly includes sensors, actuators and some control logics, accounts for a major proportion of the above-mentioned constraints [3]. In order to improve the functional integration destiny in a unit of space and the redundancy of the ACS for the micro-spacecraft, researchers attempt to exploit the fullest potential to integrate the attitude-sensing and attitude-control functions into a single device, which can significantly alleviate the constraints of the cost factors, such as mass, power and volume [4].



Previous research has demonstrated that according to the difference of the gyro rotor support, the integrated devices combining both attitude-sensing and the attitude-control can be roughly divided into two categories: the magnetically-suspended double-gimbal control moment gyroscope (CMG) (MSDGCMG) [4,5,6] and the integrated device-based gimbal support structure represented by a gyrowheel (GW) [7,8]. The former MSDGCMG supports the rotor by active magnetic bearings (AMBs) [9,10]. The latter GW is developed based on the principle of a dynamically-tuned gyroscope (DTG) by Bristol Aerospace Company for the Canadian Space Agency’s SCISAT-1 Scientific in 2003, and the GW rotor is supported by crossed torsion springs and a gimbal. The MSDGCMG implements the functions of the two degrees of freedom (DOF) torque output and two-axis angular rate sensing in two different operation modes [3,11], so that it can only implement a type of function at some point. However, unlike MSDGCMG, the GW not only has the ability for 3-DOF torque output and two-axis angular rate sensing, but also can implement both functions at the same time because of its simple structure.



This paper focuses on the problem of the two-axis angular rate sensing of a GW. Actually, this problem has been partly studied by Canadian academics at Carleton University. For example, in order to implement the two-axis angular rate sensing of the carrier by a GW, Dr. Own in Canada achieved this work by linearizing the motion equations of the GW at the zero tilt angle position and ignoring the effects of the angular acceleration of the carrier and the tilt angle acceleration of the GW rotor [12]. Combining with the static calibration experiments [13], the two-axis angular rates can be measured accurately by this method when the GW rotor works in a smaller rotor tilt angle region (<0.1°). However, it is hard to meet the requirement of the radial torque output for the smaller working tilt angle of the GW rotor. Therefore, in order to implement the radial torque output, the GW rotor frequently works in a larger tilt angle region, which can be up to [image: there is no content], and the tilt angles are time-varying, which makes the operation of linearization and the omission of tilt angle acceleration unreasonable. Moreover, the GW is applied to a strapdown inertial navigation system (SINS), which means the GW base is directly fixed on the spacecraft, and according to the gyroscope principle, the complicated angular motion of the spacecraft inevitably affects the dynamic characteristics of GW because of the large moment of inertia and spinning speed of the GW rotor. Therefore, the effect of spacecraft motion on the GW needs to be comprehensively considered. All of the above-mentioned factors result in a larger accuracy loss of angular rate sensing using the above linearized algebra measurement equations.



In this paper, the angular rate sensing problem of the GW is presented when the rotor works in larger tilt angle states. In order to deal with this problem, a novel dynamic estimation approach of spacecraft angular rates based on GW is proposed. This approach provides most of the derived nonlinear mathematical model of the GW built by Lagrange’s method and develops a nonlinear estimation algorithm to implement the angular rate sensing of spacecraft when the GW works in large tilt angles. To this end, the remainder of this paper is divided into four sections: In Section 2, the description of the GW physical structure is firstly presented, then the GW dynamic equations are derived, and the relationships between the measurable variables and unmeasurable variables are built for the subsequent angular rate measurement. In Section 3, the extended high gain observer (EHGO) is designed to implement the estimation of the related terms of the angular rates of the spacecraft, and the error convergence of the designed EHGO is proven in the time domain. In Section 4, the effects on the observer accuracy of the EHGO from measurement noise are further analyzed. In Section 5, for validating the performance of the proposed approach, the numerical simulation is performed. Finally, the conclusions are drawn in Section 6.




2. Descriptions of Gyrowheel


Gyrowheel Physical Structure


The GW system schematic diagram and simplified structure as shown in Figure 1 are similar to a dynamically-tuned gyroscope (DTG). As in the computer-aided design diagram shown in Figure 1a, the GW system mainly consists of the following subassemblies: case, motor, flexibility suspension structure, flywheel rotor, torquer consisting of the current coil and a permanent magnet and the tilt sensor. Among them, the case is fixed on the carrier, such as a spacecraft. The flexibility suspension structure is made up of a gimbal and inner and outer torsion springs, as shown in Figure 1b; the gimbal is connected to the motor shaft by a pair of inner torsion springs, and the rotor is connected to the gimbal by a pair of outer torsion springs. The rotor driven by the brushless DC motor rotates with a high time-varying speed. Thus, the torque along the spin direction of the rotor can be generated by adjusting the motor speed. Two pairs of torquers perpendicular to each other can provide two-dimensional tilt control torque to make the spin axis of the rotor tilt along the transverse directions. Additionally, the tilt sensors are designed to measure the tilt angles of the rotor with respect to the case. The special physical structure of the GW determines that the device not only can measure the two-dimensional angular rates of the spacecraft, like the DTG, but also can implement the three-dimensional torque output, like the variable speed double gimbal control moment gyroscope (VS-DGCMG).


Figure 1. GW physical structure. (a) Schematic diagram of a gyrowheel system; (b) Simplified gyrowheel structure diagram.
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3. Gyrowheel Mathematical Modeling


3.1. Gyrowheel Coordinates and Frames


The simplified structure and the respective body frames of GW are shown in Figure 1b. The four body frames are case frame([image: there is no content]:O-[image: there is no content]), motor body frame ([image: there is no content]:O-[image: there is no content]), gimbal body frame ([image: there is no content]:O-[image: there is no content]) and rotor body frame ([image: there is no content]:O-[image: there is no content]), respectively. And Figure 2 shows the angular position relationship of these four body frames. The rotation angles [image: there is no content] in Figure 1a and Figure 2 are defined as chosen generalized coordinates for GW and can represent the motion about the three degrees of freedom of the GW system. They will be applied to derive the dynamical model of GW using Lagrange’s equations and can be termed as spinning coordinates [2].


Figure 2. Angular position relationship among the body frames.
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According to Figure 2, the direction cosine matrix of rotor with respect to the case can be given by:


[image: there is no content]



(1)




where [image: there is no content] represent the rotation matrix of [image: there is no content] about the [image: there is no content]-axis,[image: there is no content]-axis and [image: there is no content]-axis, respectively, and [image: there is no content], [image: there is no content].



Since the two-dimensional tilt sensors of the GW system in Figure 1a can measure the tilt angles of rotor with respect to the case, another set of case-referenced frames [image: there is no content] denoted by the orthogonal triads [image: there is no content] and case-reference coordinates [image: there is no content], respectively, need to be defined as shown in Figure 3. The frames [image: there is no content] are consistent with the frames [image: there is no content], and [image: there is no content] can be measured directly by the tilt sensors in Figure 3. According to the rotation order of the case-referenced frames, the direction cosine matrix of rotor with respect to the case can be given by:


[image: there is no content]



(2)




where [image: there is no content], [image: there is no content] represent the rotation matrix of [image: there is no content] about the x-axis,[image: there is no content]-axis and [image: there is no content]-axis, respectively, and [image: there is no content], [image: there is no content], [image: there is no content].


Figure 3. Case-Reference Coordinates and Reference Frames.



[image: Sensors 16 00537 g003 1024]







3.2. Gyrowheel Kinematic Equations


Supposing the angular velocity of the GW case fixed on the spacecraft, with respect to inertial space in the case frame [image: there is no content], is [image: there is no content]



According to the frames conversion relationship shown in Figure 3, the angular velocity of the motor shaft [image: there is no content] in the motor body frame [image: there is no content] is presented as the Equation (3).


[image: there is no content]



(3)







The gimbal angular velocity [image: there is no content] in its body frame [image: there is no content] is a function of the base and motor shaft angular velocities where:


[image: there is no content]



(4)







Finally, the rotor angular velocity [image: there is no content] in its body frame [image: there is no content] is calculated by the gimbal angular velocity and the rotation of the rotor about the outer torsion shaft where:


ωr=ωrxωryωrz=0θ˙y0+θyy·ωg=θ˙xCθy−θ˙zCθxSθy−ωbzCθxSθy+CθyCθz−SθxSθySθzωbx+CθySθz+SθxSθyCθzωbyθ˙zSθx+θ˙y−CθxSθzωbx+CθxCθzωby+ωbzSθxθ˙xSθy+θ˙zCθxCθy+ωbzCθxCθy+SθyCθz+SθxCθySθzωbx+SθySθz−SθxCθyCθzωby



(5)







Ignoring the GW case angular velocity [image: there is no content], the Equation (5) can be simplified to:


[image: there is no content]



(6)







Similarly, without considering the case angular velocity [image: there is no content], the rotor angular velocity expressed by case-referenced coordinates [image: there is no content] in its body frame [image: there is no content] can be given by:


[image: there is no content]



(7)








3.3. Gyrowheel Dynamic Equations


Supposing the principal axes of the body frames [image: there is no content], [image: there is no content], [image: there is no content] are consistent with the inertial principal axis of the motor, gimbal and rotor, respectively. Therefore, we can represent the moments of inertia of the motor, gimbal and rotor as follows.


[image: there is no content]



(8)







The GW kinetic energy T consists of the kinetic energy of motor shaft, gimbal and rotor, which can be expressed by generalized rotation speed quadratic forms:


[image: there is no content]



(9)







The GW potential energy V is the sum of the potential energy of the inner and outer torsion deformation, which can be given by:


[image: there is no content]



(10)




where [image: there is no content] are stiffness coefficients of the inner and outer torsion springs, respectively.



Above all, the Lagrange energy function L can be defined by:


[image: there is no content]



(11)







For the GW, Lagrange’s equations are given by:


[image: there is no content]



(12)






[image: there is no content]



(13)






[image: there is no content]



(14)




where [image: there is no content] are generalized control torques corresponding to the generalized coordinates [image: there is no content]. [image: there is no content] are damping coefficients of the inner and outer torsion shaft, respectively.



We assume that the angular motion of the rotor along its spin axis is decoupled from the transverse axes motion, and the effect of the z-axis carrier angular rate [image: there is no content] on the transverse axes motion is ignorable. Thus considering these factors and calculating the first two equations of the Equation (14), we obtain


I1·θ¨x=−cxθ˙x−kxθx−12I2S2θx·θ˙z2−I3S2θy·θ˙xθ˙y−(I3C2θy−Iry)Cθx·θ˙yθ˙z+Tgx+B1θωbx+B2θωby+B3θω˙bx+B4θω˙by+B5θωbx2+B6θωby2+B7θωby2Iry·θ¨y=−cyθ˙y−kyθy−12I3Cθx2S2θy·θ˙z2+12I3S2θy·θ˙x2+(I3C2θy−Iry)Cθx·θ˙xθ˙z+Tgy+D1θωbx+D2θωby+D3θω˙bx+D4θω˙by+D5θωbx2+D6θωby2+D7θωby2



(15)




where [image: there is no content] and [image: there is no content] in Equations (16) and (17) are nonlinear coefficient terms of the spacecraft angular rates([image: there is no content]), respectively.


B1(θ)=−I3SθxS2θyCθz+I1Sθz+I2cos2x1Sθzθ˙z−I3S2θyCθz+SθxC2θySθz−IrySθxSθzx4B2(θ)=−I3SθxS2θySθz+I1Cθz+I2C2θyCθzθ˙z−I3S2θySθz−SθxC2θyCθz+IrySθxCθzx4B3(θ)=−I1Cθz−12I3SθxS2θySθzB4(θ)=−I1Sθz+12I3SθxS2θyCθzB5(θ)=12I2Sθz2S2θx+14I3CθxS2θyS2θzB6(θ)=12I2Cθz2S2θx−14I3CθxS2θyS2θzB7(θ)=−12I2S2θzS2θx−12I3CθxS2θyC2θz



(16)






D1(θ)=I3S2θyCθz+SθxC2θySθz−IrySθxSθzθ˙x+I3CθxC2θyCθz−12S2θxS2θySθz+IryCθxCθzθ˙zD2(θ)=I3S2θySθz−SθxC2θyCθz+IrySθxCθzθ˙x+I312S2θxS2θyCθz+CθxC2θySθz+IryCθxSθzθ˙zD3(θ)=IryCθxSθzD4(θ)=−IryCθxCθzD5(θ)=+12I3SθxC2θyS2θz+S2θyCθz2−Sθx2Sθz2D6(θ)=−12I3SθxC2θyS2θz−S2θySθz2−Sθx2Cθz2D7(θ)=+12I3Sθx2S2θyS2θz−2SθxC2θyC2θz+S2θyS2θz



(17)








3.4. Relationship between the Unmeasurable Variables and the Measurable Variables


According to the GW description in Section 2.1, the two-dimensional tilt angles([image: there is no content]) can be measured by tilt sensors, the control torques ([image: there is no content]) can be obtained by measuring the torquer coils currents, the motor speed ([image: there is no content]) and rotation angles ([image: there is no content]) can be measured by the Hall sensors or rotary transformers, respectively. However, the variables [image: there is no content] and its derivatives [image: there is no content] in Equation (15) are not measurable, so the relationship between the unmeasurable variables and the measurable variables should be built, which means the generalized coordinates ([image: there is no content] and its derivatives) in the GW Equation (15) should be expressed by the case-reference coordinates [image: there is no content], and the torque terms ([image: there is no content]) in Equation (15) should be expressed by the measurable control torques [image: there is no content]. For this purpose, according to the rotation motion characteristics of motor shaft, gimbal and rotor, the relationship between [image: there is no content] and [image: there is no content] can be given by:


[image: there is no content]



(18)







Considering that both [image: there is no content] in Equation (1) and [image: there is no content] in Equation (2) can be used to describe the rotation direction of the rotor with respect to the case, thus the Equation (19) is established as follows:


[image: there is no content]



(19)







Let [image: there is no content],the relationship between [image: there is no content] and the measurable variables [image: there is no content] can be shown as:


[image: there is no content]



(20)







To build the relationship between ([image: there is no content]) and ([image: there is no content]), we take the equation:


[image: there is no content]








and it gives:


[image: there is no content]



(21)







In addition, since both [image: there is no content] in Equation (6) and [image: there is no content] in Equation (7) represent the rotor angular velocity in the rotor body frame [image: there is no content] with different coordinates, the following Equation (22) is given by:


[image: there is no content]



(22)







Rearranging the Equations (6), (7) and (22), ([image: there is no content]) and ([image: there is no content]) can be expressed by the following forms:


[image: there is no content]



(23)






[image: there is no content]



(24)






[image: there is no content]



(25)







Taking the derivatives of the two equations in Equation (24), it yields the following Equation (26):


ϕ¨x=ϕ˙ySϕyCϕy2CϕzCθyθ˙x−Sϕzθ˙y−CθxSθyCϕz+SθxSϕzθ˙z+1Cϕy−ϕ˙zSϕzCθy−θ˙yCϕzSθyθ˙x−ϕ˙zCϕzθ˙y+CϕzCθyθ¨x−Sϕzθ¨y−CθxSθyCϕz+SθxSϕzθ¨z+ϕ˙zCθxSθySϕz−Cϕzθ˙yCθxCθy−θ˙xSθxSθy−ϕ˙zSθxCϕz−CθxSϕzθ˙xθ˙zϕ¨y=ϕ˙zCθyCϕz−θ˙ySθySϕzθ˙x+CθySϕzθ¨x+Cϕzθ¨y−Sϕzϕ˙zθ˙y−CθxSθySϕz−SθxCϕzθ¨z−ϕ˙zCθxSθyCϕz+Sϕzθ˙yCθxCθy−θ˙xSθxSθy−θ˙xCθxCϕz−ϕ˙zSθxSϕzθ˙z



(26)







Now the relationship between the unmeasurable variables [image: there is no content] and the measurable variables (tilt angles [image: there is no content],motor speed [image: there is no content] and motor rotation angle [image: there is no content]) can be expressed by Equations (15), (18), (20), (21), (23) and (25).




3.5. Description of Angular Rates Estimation Problem Using Gyrowheel State Equation


Applying the Equations (15), (18), (20), (21), (23) and (25) to the Equation (26), and choosing the measurable tilt angles ([image: there is no content]) and its derivatives as the state variables:


[image: there is no content]











GW state equation can be constructed in terms of [image: there is no content] as Equation (27):


[image: there is no content]



(27)







Considering that the tilt angles ([image: there is no content]) can be measured by the tilt sensors, measurement equation of GW can be shown as:


[image: there is no content]



(28)







Further more, GW dynamical equations can be rewritten by the following forms:


[image: there is no content]



(29)




where


A=0100000000010000B=00100001C=10000010u=uxuy=TcxTcyfx,t=f1(x,t)f2(x,t)wωb,x,t=w1(ωb,x,t)w2(ωb,x,t)gx,t=gx1(x,t)gy1(x,t)gx2(x,t)gy2(x,t)








[image: there is no content] is a vector irrelevant to the spacecraft angular rates [image: there is no content], and tilt control torque [image: there is no content], [image: there is no content] is a vector consisting of the related terms of spacecraft angular rates [image: there is no content], [image: there is no content] is the tilt control torque vector. Specifically, [image: there is no content] and [image: there is no content] can be obtained by combining the simultaneous Equations (15), (20), (21), (23), (25) and (26) with the physical significance of each term, and these concrete expressions are shown in Appendix A. [image: there is no content], [image: there is no content] are scale factors of torquers along x-axis and y-axis, [image: there is no content] are measurable currents of torquer coils, respectively. In the following of this paper, the moments of inertial of both rotor and gimbal along transverse axis and spin axis are supposed as:


Irx=Iry=IrtIrz=IrsIgx=Igy=IgtIgz=Igs











For the GW physical system carried on the spacecraft, since the GW torquers and motor power are limited and the spacecraft bandwidth is small, the tilt angles of the rotor, the rotation speed of the motor and the motion of the spacecraft are always continuous and bounded in Equation (29), so the following assumptions hold:



Assumption 1: 

both the control torques [image: there is no content] and spacecraft angular rates [image: there is no content] are bounded input signals, and spacecraft angular rates ([image: there is no content]) are derivable and their derivatives are bounded.





In addition, since the state [image: there is no content] represents the tilt angles and tilt angular rates of the rotor along the transverse axis in the case frame [image: there is no content], the tilt angle range is usually limited to [image: there is no content] by mechanical stoppages, then the Assumption 2 is given by:



Assumption 2: 

The state [image: there is no content] is uniformly continuously bounded.





Another main objective of this paper is to design a high gain observer(HGO) featuring global asymptotic convergence to estimate the nonlinear related terms [image: there is no content] about the angular rates of the spacecraft, then the spacecraft angular rates ([image: there is no content]) can be calculated by solving the differential equations containing the angular rates ([image: there is no content]) with the direct estimates.



Through the following study of this paper, these four problems of spacecraft angular rates estimation with GW will be dealt with:

	(1)

	
The errors caused by the linearization of nonlinear equations of GW in large tilt angles can be avoided.




	(2)

	
The problem of dynamic drift error compensation existing both traditional mechanic gyroscopes [14] and GW can be solved by the above derivation and the following application of full dynamical model in angular rates estimation.




	(3)

	
The initial iteration error accumulation of the calculated angular rates of the spacecraft, caused by the angular acceleration ([image: there is no content]) in the term [image: there is no content], is eliminated by the real-time estimation of the [image: there is no content] term.




	(4)

	
The amplification of measurement noise by the multi-difference of measured tilt angles with measurement noise can be weakened by appropriately choosing the design parameters of HGO [15].









It is noted that the system parameters such as [image: there is no content] in Equation (29) can be identified by the calibration experiments both on-orbit and on-ground.





4. Gyrowheel High Gain Observer for Angular Rates Estimation


4.1. Gyrowheel High Gain Observer Design


To implement the estimation of the state [image: there is no content] and the spacecraft angular rates related term [image: there is no content] using the measurable states ([image: there is no content]) by tilt angle sensors, we need to extend the existing states [image: there is no content] and design the following extended high gain observer:


[image: there is no content]



(30)




where [image: there is no content], [image: there is no content] are state variables and extended state variables, respectively.


Hε=h10h200h30h4=α11ε0α21ε200α12ε0α22ε2Fε=−h500−h6=−α31ε300−α32ε3



(31)




where the role of the small design parameter [image: there is no content] is: (1) adjusting the dynamic response speed of the observer; (2) Weakening the effects of nonlinear disturbance terms on observation accuracy. The parameters [image: there is no content] are real numbers and should be chosen to satisfy the Hurwitz polynomials shown below:


s3+α1js2+α2js+α3jj=1,2



(32)








4.2. EHGO Error Convergence Proof


We first build the singularly perturbed equation for the above GW nonlinear observer. For this, the observation error vector η can be defined as follows:


[image: there is no content]








where


[image: there is no content]



(33)






[image: there is no content]



(34)







Combining Equations (29) and (30) with Equations (33) and (34), the singularly perturbed equation can be given by:


[image: there is no content]



(35)




where


A¯=−α1110000−α2101000−α3100000000−α1210000−α2201000−α3200B¯=000010000001Δx=f˙x,t−f˙x^,tΔd=w˙x,t+g˙x,t−g˙x^,tu











Due to Assumption 1 and 2, there exists compact set [image: there is no content] such that,


xt∈Ωcfort∈[0,∞)



(36)







Besides, considering that there is no singularity for the derivatives of [image: there is no content], [image: there is no content] and [image: there is no content] in Equation (29) and [image: there is no content] satisfies the Lipschitz condition in the closed interval of the state [image: there is no content], there exist constants [image: there is no content], such that [image: there is no content] for [image: there is no content].



Defining Lyapunov function [image: there is no content] and Lyapunov equation for singular perturbed Equation (35), respectively, as follows:


[image: there is no content]



(37)






[image: there is no content]



(38)




where [image: there is no content] in Equation (37) is the unique positive definite solution of Equation (38), [image: there is no content] is an arbitrary positive-definite matrix, in particular, [image: there is no content] is given as identity matrix [image: there is no content]. As previously mentioned, the parameters [image: there is no content] in the matrix [image: there is no content] are real and satisfy Hurwitz polynomial condition, so all the eigenvalues of the matrix [image: there is no content] have negative real parts, which guarantees the existence of [image: there is no content]. Taking the time derivative of [image: there is no content] along Equation (35), we have:


V˙(η)=ηTPA¯+A¯TPη+2εηTPB¯Δx+2εηTPB¯Δd≤−1−2εKxPB¯η2+2εKdPB¯·η



(39)







Obviously, there exists [image: there is no content], such that [image: there is no content] for arbitrary [image: there is no content].



Defining the auxiliary function as follow:


[image: there is no content]



(40)







Whenever [image: there is no content] is such that [image: there is no content], we have [image: there is no content]. Therefore, there exists [image: there is no content], such that the observation error vector [image: there is no content] enters the following set: [image: there is no content] and will remain in the set [image: there is no content] in finite time [image: there is no content] for [image: there is no content] and initial value [image: there is no content], which means:


[image: there is no content]



(41)







Therefore, the observation error converges to a small neighborhood of zero in finite time. Moreover, to meet the requirement of observation accuracy, it is supposed that the accuracy index is given by [image: there is no content]; we can find that the auxiliary function [image: there is no content] is [image: there is no content] in the amplitude magnitude and is an increasing function of the design parameter ε. Hence, there exists [image: there is no content], such that, for every [image: there is no content] and arbitrary [image: there is no content], the relationship [image: there is no content] is always true. Thus, the requirement of the observation error performance index [image: there is no content] can be achieved in finite time.



According to the Equation (36), [image: there is no content] and [image: there is no content] in Equation (34) is Lipschitz and bounded, thus, the observation error index for the spacecraft angular rate related terms [image: there is no content] can be transformed into the requirement on the observation error η. Hence, the extended state [image: there is no content] can be regarded as the estimation of [image: there is no content]. According to the above analysis, we can conclude that there exists [image: there is no content] for any given [image: there is no content] such that, the Equation (42) is always true for every [image: there is no content].


[image: there is no content]



(42)







From the above design process, the designed extended high gain observer can estimate the tilt angle accelerations of the rotor [image: there is no content] (that is, [image: there is no content]) when implementing the estimation of the original state [image: there is no content]. The tilt angle accelerations of the rotor [image: there is no content] mainly consist of two parts: the irrelevant part and the relevant part of the spacecraft angular rates [image: there is no content]. The former can be regarded as the known model consisting of the GW inertia parameters, measurable variables and observable variables. Additionally, the latter is treated as an unknown factor due to the unknown spacecraft angular rates [image: there is no content]. Thus, removing the known part, we can obtain the estimation of the other unknown related terms. Above all, the estimation of the spacecraft angular rates [image: there is no content] can be implemented indirectly by the estimation of tilt angular accelerations of rotor [image: there is no content] using the designed extended high gain observer with accuracy satisfied by adjusting the design parameter ε.




4.3. Influence Analysis of Measurement Noise


Theoretically, the observation accuracy can be obtained by decreasing the design parameter ε. However, in practice, the outputs of the tilt sensors of GW usually include measurement noise. Meanwhile, due to the differential characteristic of the above designed observer, a smaller design parameter ε will amplified the effects of measurement noise, which limits the range of the design parameter ε and affects the observation accuracy of the spacecraft angular rates [image: there is no content]. The measurement equation with noise can be further given by:


[image: there is no content]



(43)




where [image: there is no content] is bounded measurement noise, which means that there exists positive number μ such that, the expression [image: there is no content] holds. Then, the observation estimation error satisfies the following equation [16,17] given by:


x(t)−x^(t)≤εc1+με3c2=defF(ε,μ),∀t≥T



(44)




where [image: there is no content] and T are positive constants.



For [image: there is no content] and [image: there is no content], taking the partial derivatives of the function [image: there is no content] with respect to ε, we can obtain:


[image: there is no content]



(45)







From Equation (45) we can find that: (1) [image: there is no content] is strictly decreasing for [image: there is no content], where [image: there is no content], strictly increasing for [image: there is no content], and has a global minimum [image: there is no content] for [image: there is no content] at [image: there is no content]; (2) For any given observation accuracy requirement [image: there is no content], [image: there is no content] for [image: there is no content], and the equation [image: there is no content] has two solutions at [image: there is no content] and [image: there is no content]: For [image: there is no content], we have the following relationship:


[image: there is no content]



(46)







Considering [image: there is no content] and [image: there is no content], we have [image: there is no content], so that


[image: there is no content]



(47)




where the equality happens only at [image: there is no content]. In addition, for [image: there is no content], since [image: there is no content], [image: there is no content]. So we have [image: there is no content] for all [image: there is no content]. According to the above analysis, the change sketch of the function [image: there is no content] as the parameter ε changing is shown in Figure 4.


Figure 4. The changes of the extremum of estimation error.
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From Equation (44) and Figure 4, we can find that due to the existence of measurement noise, the order of magnitude of the estimation error is [image: there is no content], and too small or large ε will amplify the observation error; When [image: there is no content], the minimum of the function [image: there is no content] is achieved. Within a certain accuracy index [image: there is no content] the range of the design parameter ε is limited to [image: there is no content]. Considering the effect of the parameter ε on the observer performance recovery, a tradeoff should be considered between noise amplification and performance recovery including the state reconstruction speed [18].





5. Simulation


In order to demonstrate the effectiveness of the proposed method, a simulation platform as Figure 5 is built. Utilizing this simulation platform, we will verify the performance of the extended high gain observer for estimating the spacecraft angular rates terms [image: there is no content] and [image: there is no content] in Equation (27).


Figure 5. The changes of the extremum of estimation error.
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In Figure 5, the variables [image: there is no content] are the inputs of the motor control loop, the x-axis and the y-axis tilt control loop of the GW, respectively. The variables [image: there is no content] are the corresponding measurable outputs of the above three control loops of the GW, respectively. The variables [image: there is no content] are the control torque outputs of the above three control loops of the GW, respectively. The variables [image: there is no content] are the measurable current outputs from the x-axis and the y-axis torquer, respectively. The relationship between [image: there is no content] and [image: there is no content] is given by [image: there is no content], respectively. The variables [image: there is no content] acting on the spacecraft are the three-axis control torque outputs of the GW. The estimates [image: there is no content] are the extended observer states, which represent the estimates of the related terms of the spacecraft angular motion in the GW dynamics equations along the x-axis and y-axis, respectively. The variables [image: there is no content] are the calculated values of spacecraft angular rates through the estimates [image: there is no content] of the EHGO and the spacecraft attitude algorithm. According to the above description, the spacecraft attitude algorithm in Figure 5 can be expressed by:


[image: there is no content]



(48)




where [image: there is no content] and [image: there is no content] are shown in Appendix A. Through solving the differential Equation (48), the spacecraft angular rates [image: there is no content] can be obtained in real time.



The key parameters in the simulation are given in the Table 1.


Table 1. Gyrowheel and Spacecraft Design Parameter in Simulation [19].


	Parameter Name
	Value





	Rotor transverse-axis inertia [image: there is no content]
	[image: there is no content] kg · m2



	Rotor spin-axis inertia [image: there is no content]
	[image: there is no content] kg · m2



	Gimbal transverse-axis inertia [image: there is no content]
	[image: there is no content] kg · m2



	Gimbal spin-axis inertia [image: there is no content]
	[image: there is no content] kg · m2



	Torsion Spring Stiffness [image: there is no content]
	0.092Nm/rad



	Torsion Spring damping [image: there is no content]
	0 Nm/(rad/s)



	Spacecraft Inertia [image: there is no content]
	[image: there is no content] kg · m2









The estimation performance of the spacecraft angular rates with the above designed EHGO when GW outputting control torque [image: there is no content] should be validated, so the inputs of the two-dimensional tilt angles ([image: there is no content], [image: there is no content]) and the motor speed ([image: there is no content]) of GW can be given by:


ϕx*=ϕy*=0.5·t∘t≤10s0.1·sin2π·0.04·t∘t>10sθ˙z*=157.04+22·sin2π·0.02·trad/s











The initial values of spacecraft angular rates [image: there is no content] and [image: there is no content] are set as 0.001 rad/s. Here, the design parameters of EHGO [image: there is no content] in Equation (31) can be given by:


α1j=35.335,α2j=183.5681,α3j=705.5417,j=1,2








where the parameters [image: there is no content] satisfy the Hurwitz polynomials as Equation (32), in addition, they are finally determined based on the design principle of control system to guarantee the dynamic response performance of EHGO.



To verify the effects of the design parameter ε of EHGO on the estimation accuracy of spacecraft angular rates ([image: there is no content]) which is analyzed in Section 4.2, the design parameter ε is chosen as different positive real constants in simulation.



Without considering measurement noise in the two-dimensional tilt angle sensors, the estimates of the spacecraft angular rates ([image: there is no content]) and estimation errors curves are shown in Figure 6.


Figure 6. Estimation of spacecraft angular rates without measurement noise. (a) x-axis angular rate [image: there is no content]; (b) y-axis angular rate [image: there is no content]; (c) [image: there is no content] estimation error; (d) [image: there is no content] estimation error.
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From Figure 6a,b, we can see that when the design parameter ε is equal to both [image: there is no content] and [image: there is no content], the spacecraft angular rates ([image: there is no content]) estimates can converge rapidly to the real spacecraft angular rates. The spacecraft angular estimation accuracy increases with the decrease of the value of ε from Figure 6c,d. Simulations with other values of the design parameter ε also show the same phenomenon. These phenomenons are also consistent with the error convergence proof in Section 4.2. The results for other values of ε are omitted in Figure 6.



Strictly, peaking effect of HGO will occur with the parameter ε decreasing [20], which means that the transient response of the estimates will change dramatically when the parameter ε becomes smaller. However, From the partial magnification of Figure 6a,b, the peaking effect is overcame by the saturation of control loop and the boundedness of the nominal model. Actually, for GW, the amplitude of the torque output from the two-dimensional torquers subject to the power limitation is always limited, which is set as less than 100 mNm in this paper, so the tilt control torques([image: there is no content]) acting on the rotor through tilt control loops are saturated and the peaking effect on the estimation performance of the extended state variables([image: there is no content]) can be naturally avoided. Besides, in the partial magnification of the Figure 6b, we can find that in the process of transient response the peaking values as [image: there is no content] is larger than these values as [image: there is no content], which is because the spacecraft angular rates [image: there is no content] is obtained indirectly by the estimates [image: there is no content] in Equation (48).



Further more, in the following simulation, measurement noise in the two dimensional tilt angle sensors is considered. The magnitudes of measurement noise in the tilt angle sensors are assumed to be uniformly distributed random variables taking values between [image: there is no content] and [image: there is no content], and the time interval of these random values variation is [image: there is no content]s. In addition, the other simulation conditions remain unchanged, and the estimation curves of the spacecraft angular are shown in Figure 7a,b when the design parameter ε is chosen as [image: there is no content] and [image: there is no content], respectively.


Figure 7. Estimation of spacecraft angular rates with measurement noise ([image: there is no content]). (a) x-axis angular rate [image: there is no content]; (b) y-axis angular rate [image: there is no content].
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From Figure 7, when the design parameter ε is equal to [image: there is no content], with the presence of measurement noise, the estimations of spacecraft angular rates can track the real angular rate instead of the deterioration of the estimation accuracy. However, differing from the previous simulation results without measurement noise, the design parameter ε is decreased to [image: there is no content]; the estimation noise is significantly amplified; and the estimation accuracy of the spacecraft angular rates becomes worse, as shown in Figure 8, because of the effect of measurement noise. Comparing Figure 7 and Figure 8, the phenomenon shows that the design parameter [image: there is no content] is a comparatively reasonable tradeoff, as analyzed in Section 4.3 for the designed EHGO. It should be noted that the magnitudes of the measurement noise decide the optimal tradeoff of the design parameter ε between estimation performance improvement and noise amplification. Moreover, the statistics of measurement noise are not necessary for the high-gain observer design, which is different from the filtering approach, for which the imprecise knowledge of the measurement noise statistics seriously deteriorates the estimation, even resulting in instability. Although the motion of the spacecraft is unobservable from the sensors in the GW, the estimation of the spacecraft angular rates with the EHGO is independent of it. While for the filtering approach, the estimation of spacecraft angular rates [21] is improved by observability, and the observability [22] depends on the information of the spacecraft dynamical model.


Figure 8. Estimation of spacecraft angular rates with measurement noise ([image: there is no content]). (a) x-axis angular rate [image: there is no content]; (b) y-axis angular rate [image: there is no content].
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6. Conclusions


In this paper, the estimation of the spacecraft rates with GW based on extended high gain observer, which works in large tilt angles for the radial torque output, add, is first proposed and studied. For this purpose, three major contributions of this paper can be summarized as follows:

	(1)

	
A complete dynamical model of GW is built with chosen generalized coordinates ([image: there is no content]) by Lagrange’s Method, and since the generalized coordinates ([image: there is no content]) and its derivatives in the GW dynamical model are unmeasurable, the relationships between the unmeasurable generalized coordinates and the measurable variables ([image: there is no content]) by sensors are derived to construct the nonlinear state equation expressed by measurable variables for the spacecraft rate estimations with the GW.




	(2)

	
The affine nonlinear state equation of GW and measurement equation are built based on the contribution (1). Combining the affine nonlinear state equation with measurement equation and extending the relevant terms of spacecraft angular rates as states, a high gain observer is designed to estimate the relevant terms of the spacecraft angular rates. Through solving the known differential equation, the spacecraft angular rates can be calculated.




	(3)

	
The stability of the designed EHGO in contribution (2) is proved by Lyapunov’s stability theory, and the effects of the design parameter ε and measurement noise on the estimation accuracy are also analyzed.
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The following abbreviations are used in this manuscript:



	GW7
	Gyrowheel



	ACS
	Attitude control system



	HGO
	High gain observer



	EHGO
	Extended high gain observer



	CMG
	Control moment gyroscope



	MSDGCMG
	Magnetically suspended double-gimbal control moment gyroscope



	AMBs
	Active magnetic bearings



	DOF
	Degrees of freedom



	SINS
	Strapdown inertial navigation system



	DTG
	Dynamically tuned gyroscope



	VSDGCMG
	Variable speed control moment gyroscope










Appendix A




f1x,t=ϕ˙ySϕyCϕy2CϕzCθyθ˙x−Sϕzθ˙y−CθxSθyCϕz+SθxSϕzθ˙z+1Cϕy−ϕ˙zSϕzCθy−θ˙yCϕzSθyθ˙x−ϕ˙zCϕzθ˙y−CθxSθyCϕz+SθxSϕzθ¨z+ϕ˙zCθxSθySϕz−Cϕzθ˙yCθxCθy−θ˙xSθxSθy−ϕ˙zSθxCϕz−CθxSϕzθ˙xθ˙z−β12I12cxθ˙x+2kxθx+I2S2θxθ˙z2+2I3S2θyθ˙xθ˙y+2I3C2θy−IryCθxθ˙yθ˙z−η2Iry−2cyθ˙y−2kyθy−I3Cθx2S2θyθ˙z2+I3S2θyθ˙x2+2I3C2θy−IryCθxθ˙xθ˙zf2x,t=ϕ˙zCθyCϕz−θ˙ySθySϕzθ˙x−Sϕzϕ˙zθ˙y−CθxSθySϕz−SθxCϕzθ¨z−ϕ˙zCθxSθyCϕz+Sϕzθ˙yCθxCθy−θ˙xSθxSθy−θ˙xCθxCϕz−ϕ˙zSθxSϕzθ˙z+β22I1−2cxθ˙x−2kxθx−I2S2θxθ˙z2−2I3S2θyθ˙xθ˙y−2I3C2θy−IryCθxθ˙yθ˙z+Cϕz2Iry−2cyθ˙y−2kyθy−I3Cθx2S2θyθ˙z2+I3S2θyθ˙x2+2I3C2θy−IryCθxθ˙xθ˙z










w1ωb,x,t=β1B1(θ)−ηD1(θ)ωbx+β1B2(θ)−ηD2(θ)ωby+β1B3(θ)−ηD3(θ)ω˙bx+β1B4(θ)−ηD4(θ)ω˙by+β1B5(θ)−ηD5(θ)ωbx2+β1B6(θ)−ηD6(θ)ωby2+β1B7(θ)−ηD7(θ)ωbxωbyw2ωb,x,t=β2B1(θ)−CϕzD1(θ)ωbx+β2B2(θ)−CϕzD2(θ)ωby+β2B3(θ)−CϕzD3(θ)ω˙bx+β2B4(θ)−CϕzD4(θ)ω˙by+β2B5(θ)−CϕzD5(θ)ωbx2+β2B6(θ)−CϕzD6(θ)ωby2+β2B7(θ)−CϕzD7(θ)ωbxωbygx1x,t=β1I1Cθz+ηIrySθzCθxgy1x,t=β1I1Sθz−ηIryCθzCθxgx2x,t=β2I1Cθz−CϕzIrySθzCθxgy2x,t=β2I1Sθz+CϕzIryCθzCθx








where, [image: there is no content] has been shown in Equations (16) and (17), and the unmeasurable variables ([image: there is no content]) in the above equations are substituted by following equations:


β1=CϕzCθyI1Cx3η=SϕzIryCx3β2=CθySϕzI1θx=arcsinCx1Sx3Sϕz+Sx1Cϕzθy=arcsinSx3Cθz−Sx1Cx3Sθzθ˙x=1CθyCx3Cϕzx2+Sϕzx4+CθxSθyθ˙zθ˙y=Cϕzx4−Cx3Sϕzx2−Sθxθ˙z








where [image: there is no content].
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